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Abstract— We consider a dynamic game with payoff exter-
nalities. Agents’ utility depends on an unknown true state of
the world and actions of everyone in the network. Each agent
has an initial private information about the underlying state
and repeatedly observes actions of its neighbors. We analyze
the asymptotic behavior of agents’ actions and beliefs in a
connected network when it is common knowledge that the
agents are myopic and rational. Given a quadratic payoff
function, we provide a new proof for an existing result that
claims almost sure consensus in actions asymptotically. Given
consensus in actions, we show that agents have the same mean
estimate of the true state of the world in the limit. We justify
these results in a numerical example motivated by a socio-
economic scenario.

I. INTRODUCTION

The model discussed in this paper belongs to the class of
repeated games of incomplete information. Agents repeatedly
play a game where the payoffs depend on a parameter (“state
of the world”) as well as the actions taken by other agents.
In a game of incomplete information the payoff-relevant
parameter is unknown to the agents; rather, they make private
noisy observations about the parameter that can be used when
deciding on an action. In such a setting, on the one hand,
agents’ optimal actions depend on their private observations
as well as how they expect others to play, and on the other
hand, by selecting certain actions agents are revealing—
perhaps unwillingly—pieces of private information about
the unknown parameter [1]. As a result, the actions chosen
by “rational” agents are influenced by both an information
externality pertaining to the flow of information about the
unknown parameter and a payoff externality corresponding
to the dependence of the payoff on actions taken by other
agents. Rational agents need to select actions that are optimal
given their information while also taking into account the
effect of their decisions on the future play. They also need
to try the learn about the underlying parameter as much
as possible by incorporating the new information revealed
to them optimally, i.e., using the Bayes rule. This kind of
strategic learning is relevant to the vast literature on learning
in games; refer to [2] and references therein.

There exists an extensive literature on learning over net-
works. Bayesian learning stands as the normative behavioral
model for agents in social networks; however, it is often
computationally intractable even for networks with small
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number of agents. This is since a Bayesian update requires
an agent to infer not only about the information of her
neighbors but also that of the neighbors of her neighbors
and so on. Because of such computational intractability,
Bayesian learning models often focus on asymptotic char-
acterizations of agents’ behavior [3]-[5]. Only under some
structural assumptions on the network or distribution of
information, Bayesian updating can be performed tractably
[6]-[8]. The mathematical intractability of Bayesian learning
in the general case motivates the introduction of bounded
rational approaches that resort to simplified Bayesian updates
and heuristic rules to keep computations tractable. These
non-Bayesian models are predicated on the claim that they
replicate some observed real world behavior [9]. From an
analytical perspective, the use of tractable rules permits
transient convergence analysis and the determination of the
effects of network structure on agents’ behaviors and conver-
gence rates [9]-{12]. The algorithms in distributed estimation
problems also assume relevance to these bounded rational
models, in which agents strive to recover the estimate based
on global information through refining their estimates using
local information [13]-{16].

In this paper, we study the asymptotic behavior of agents’
actions and their beliefs given a fixed network that deter-
mines the flow of information — see Section II. We consider
payoffs that are quadratic in self action, the state of the
world and actions of other agents. Agents incorporate new
information according to Bayes’ rule and are myopically
optimal at each stage of the game — see Section II-B. Given
this setup, we review a recent result in [17] that shows
agents’ strategies converge in the limit (Lemma 1). In parallel
to [17], we use this result to show that agents’ limit actions
are in agreement with each other (Theorem 1). There are
two contributions of this paper. First, we follow a different
approach in proving the consensus in actions result (see
Lemma 2). While the proof in [17] is applicable to more
general class of games, the proof in this paper is suitable
for quadratic payoff functions. Second, we show that agents
mean estimates of the state have to be equal in the limit by
using the consensus in limit actions (Corollary 1). Finally,
we provide an example from a socio-economic context where
agents have trade-off between estimating the true value of
a company’s stock and estimating value estimates of other
agents — see Section IV.
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II. QUADRATIC GAMES

Consider a repeated game with IV players. Time is discrete
and agents act synchronously. Hence, at each stage t € N,
agent ¢ takes an action a;. that belongs to a compact
measurable action space A; and receives a payoff u; based
on actions of other agents a_; ¢ = {aj,¢}; € X,_; A; and
the underlying state of the world § € © C R,

1
w; (aie,a—i, 0) = aa; ¢ — ) Z a;,t + ﬁz Q4,1 Aj,¢
j=1,..,N J#i
+d6a; 0 + ch?. 1)

«, 3, c and 0 are constants. Note that the payoff is quadratic
in actions of other agents and the underlying state of the
world. It is possible to include other additive terms that
depend on 6 in (1).

The underlying state of the world 6 is unknown to agents.
At time t = 0, agent ¢ receives private signal s; coming from
some measurable signal set .S;. The space of private signals
is S := 57 x ... x Sy. Initially agents have common prior
P over the state of the world and private signals, that is,
P=0x5.

Agents can only receive information from a certain subset
of the population. We use V' to denote the whole population.
The subset of the population that agent ¢ can observe is
denoted by V; € V. We use a graph G = (V, ) with node
set V' and edge set F/ to summarize the observations within
the population. Using the graph GG, we formally define the
observation set of ¢ as V; = {j : (j,4) € E}. We assume the
graph is undirected (agent ¢ can observe j if and only if j
can observe %), static (fixed over time) and connected (there
is a path from ¢ € V to k € V, p1,...,p; such that p; =1,
pp =k and py_1 € Vi, form=2,...,10).

At the beginning of each stage of the game, agent i
observes actions of agents in V; from the previous stage. We
use N;; to denote the part of the history observed by agent
i at time ¢t. Agent ¢’s history can be recursively written as

hi = {hit—1,{aje-1}jevi )

where h; o = {x;}. The set of all possible histories observed
by agent ¢ at time ¢ is denoted by H;; ie., hyy € Hiy.
The history of the game at time ¢ is h; = UiGV I The
game history contains underlying state of the world, private
signals of agents, and the set of all actions up to time t. We
denote the feasible set of plays that game history belongs
to as H;. We assume that the action space is equal for all
agents, that is, A; = A for all ¢ € V. Hence, the game
history at time ¢ can be defined as H, := © x § x AN(=1),
The space of play that covers the entire horizon is denoted
by Q := Ho, := ;2 H-. (Q,F) is the measurable space
with Borel o-algebra F. We define the o-field over € of
agent ¢ at time ¢ as H,; ;. H, ; represents the information of
agent ¢ at time ¢.

So far, we have described the individual utility functions
and information provided to agents. Next, we characterize
agent behavior in the repeated game.

521

A. Strategy

Agent i’s behavior is determined by a pure strategy o; =
(04,0,041,-..) where 054 : H; s — Afromt =0tot =
oo. Hence, the strategy of agent ¢ determines its course of
action given any possible information observed by agent .
The strategy profile o := (01,...,0xN) generates a path of
play and determines the information observed by each agent.
At time ¢ = 0, actions played by agents a, € AV are

ao(U): (0'170(1'1),...,0']\7’0(33]\7)). (3)

The actions at time ¢ = 0 determines the history observed
by each agent as given by the recursion in (2). Hence, the
actions of the subsequent step ¢t = 1 are

ai(0) = (o10(h1,1),.--,on0(hn1)) 4)

and this process is repeated for ¢ > 1 generating a realization
of the game w € 2. Another way to look at this process is
that there is a realization of the game w € €2 and the history
observed by agent ¢ is a deterministic function of w, that is,
hi7t(W).

Together with the common prior P, the strategy profile o
induces a probability distribution over the space of plays
Q. Let P, be the probability distribution induced by o.
We define the corresponding expectation operator E, with
respect to the distribution P,. Using P, measure on ), we
define the L?(Q)-norm for the H; o, measurable functions

fi:Q— Aas
||fi||a,2 = (/ fz'ZdPa) . (5)
Q

We define the space of functions A; that consists of all f;
such that || fi||o,2 < oco. Note that o;¢(h¢(w)) is Hi -
measurable and hence belongs to A; for all ¢ € N. We
say that f; € A; and g; € A; are P,-ae. equivalent when
|| fi — gillo,2 = 0. Similarly, we define the space of functions
A= X;ev Ai using the following norm

o 2 :
||fHa,2—rin€z‘t;\ (/indPa> . (6)

B. Myopic rationality

Given a strategy profile o, agents form beliefs over the
space of play €2 using Bayes’ rule. Hence at stage ¢ € N, the
belief of agent is the conditional probability over €2 given
information at 4, that is, P, (- |HM)

Given the strategy profile o and utility function in (1),
agent ¢ responds to the strategies of other agents at time ¢,
that is, let s_;; € A_; = XjeV\i Aj; be the strategies of
other agents at time ¢ then ¢’s response is a function ®; ; :
A_; — A;. Furthermore, best response function for agent ¢
is defined as

(I)i,t(sfi,t) = argmax E‘7 [ui(ai7 sz',t: 0) ‘Hiﬂg] (7)

a;EA
Note that this definition assumes that up until time ¢, agents
played according to the sequence of strategies oq1,. ¢—1
mapping respective histories {%; - } jev to actions {a; - }jev



for 7 < t. Hence, agent ¢’s best response at time ¢ to
strategies of other agents is based on the belief formed by
prior strategies.

Since w;(+) is continuous in its arguments and A is com-
pact, the best response function is well defined. Furthermore,
the maximizer in (7) is unique because the utility function is
strictly concave—observe that 9%u;(+)/0a? < 0. As a result,
we obtain the best response function for the utility function
in (1) by taking the derivative of E, [ui(ai,s,i,tﬁ) ’Hi,t]
with respect to a; and solving for a; when the resultant
derivative is equated to zero,

ip(si) =a+B Y. EolsjlHie +0E[0]Hi].
JEV\{i}
®)

The best response function in (8) is a linear function of ¢’s
expectation of the underlying state of the world and of the
strategies of other agents at time ¢. Note that in (8) agents
are playing myopically optimal.

We define our notion of Bayesian-Nash equilibrium as the
fixed point of (8) for any realization of w and ¢ € N, that is,
foralli € V and ¢t € N,

o7 (hit(w)) = @i 4(0%,,) forall hyy € Hiyo  (9)

A simple interpretation of (9) based on the definition of best
response function in (8) is that agent ¢ plays best response to
best response strategies of all the other agents. Hence agent ¢
not only has to form its own belief on the state of the world
and beliefs of other agents but also has to consider strategies
of other agents while taking actions at each step. We can
equivalently write (9) in vector form using ®; : A — A
which is the stacking of best responses in (8) as follows

of = ®4(o;) forallteN. (10)

Myopic rationality presented in this section can be thought
of as the subgame perfect Bayesian-Nash equilibrium while
the agents’ future discounting goes to zero.

III. CONVERGENCE RESULTS

The setup considered in Section II introduces payoff
externalities to the learning process. Here, we provide an
asymptotic analysis of the repeated Bayesian game. Agents’
beliefs over the underlying parameter converges since it is
a martingale [3]. From the learning point of view, we are
interested in answering whether agents’ belief over 0 agree
with each other in the limit or not. In this paper, we rely on
existing results in [17] that shows convergence of actions in
the limit. As is shown in [17], this implies that agents can
identify limit strategies of agents in their observation set. We
use this result along with properties of the utility function to
prove that agents’ reach consensus in actions (Theorem 1).
While this result exists in [17], here we provide a new proof
for it. The contribution of this paper is that we use these
existing results to conclude that agents’ mean estimates of €
are equal in the limit.

We need the following assumption on the constant 3 in
order for our results to hold.

Assumption 1: There exists a £ < 1 such that

0<p<

N_1 (11)

Lemma 1: If 0* is a BNE and Assumption 1 holds, then

(12)
t—o0
Proof: Use triange inequality for the distance between
o/ and o,

lim of =0, P, as.

oy —otalloz < lloy = Pe(02) o2 + [[Pe(0%) — 0% llo2-
(13)
Consider the first term on the right hand side of the inequality
(13). Using the definition of o} in (10) and best response

function in (8), the difference can be equivalently written as

o7 — 1(02)llo2 = max||p Y Eolof — 00 | Hilllo2
jev{i}
(14)
We can obtain an upper bound on (14) by moving the norm
inside the sum using the triangle inequality

loi = ®u(%)lloz2 < maxs 3 [Bolo = 5o | Hidlloz
JeVvA{i}

15)
We would only be making the right hand side of (15)
larger by removing the conditional expectations inside the
norms since conditional expectation is a projection in Lo ().
Further, we can upper bound each term in the sum by the
maximum distance among all j € V'\ {i} to get the following

* * . T . * %
llo? = @4(0%)llo,2 < max B(N 1)],611‘}%:’{‘1,}”0',1& 07 colloy2

By (11), we have
ot — Pe(03)llo2 < m}lggl\aj,t —= 0} oollo2
0,2 (16)

where we included the ¢th element inside the maximum
operator to obtain the first equality. Note that the second
equality follows by the norm definition in (6).

Consider the second term in (13), note that by Levy’s 0 —
1 law ®4(0%) — Poo(o’,) and by the definition in (10),
D (0k) = ok . As aresult, for arbitrary € > 0, there exists

oo

7 such that for all t > 7,
[®:(05) — o5 llo2 < €(1 = K).

Substituting (16) and (17) for the corresponding terms in
(13), we see that ||of —o’ ||»,2 can be made arbitrarily small
and hence (12) follows. | |
Given that there is a limit strategy that is played infinitely
often by the players, agent ¢ can identify the limit strate-
gies of agents in Vj; ie. 0j € H;o for j € Vi To
see this note by the observation model in (2), we have
07 1—1(hji—1(w)) € hy(w). Taking limits on both sides and
using (12), we see that it is true— see [17] for a formal proof.

Next, we use this identifiability result to show consensus
in limit actions. We denote the limit action of agent ¢ as

*

= KHO’: - O-oo‘

an
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Uiroo 7= 0} oo (Riyoo(w)) € A for all i € V' that is a resultant
of its limit strategy. Before we prove this result, we present
an intermediate result that will be used in proving action
consensus.
Lemma 2: If ¢* is a BNE and Assumption 1 holds then
for j € V;,
Eq[ui(al,,0)] + Eo[u;(as,,0)] <
E [ui( j [ee) a*—i,(xﬂ 9)] + EU[uj(a;oo7 aij,oo’ 6)]
18)
Proof: Let w € Q C Q be the set in
which a; ., > aj . Consider the following difference
between conditional expected utilities when j deviates
to i’s limit strategy Eq[ui(a] o, ] o, 0% 55 ) | Hioo] —
E, [ui(a;ﬁm,a;m?aii\jm) "Hf,oo]l. Taking expectation of
this difference, we lose the conditional expectations and
obtain the following equality

EU [ui(azoo, a’;(xw ax_l\]’oo)]_Eo' [ui(a;,oo7 a:,oo’ a:z\],oo)]
1
- a(az oo a;’,oo) - E(a:,io - a;,zoo)

+ B(Gi,oo - a;ooa;:,oo) + 5(0’;{,00 - a; oo)EU [9]

Now, consider the same difference when agent ;7 does not
deviate, that is,

Eq [ui(a%)]—Eo [1i(a] 00, 6Z4,00)]-

When we expand the terms in (20) like in (19), the only
difference from right hand side of (19) is the third term

19)

(20)

which is replaced by S(aj ,a; 300) Since 5 > 0
and af ,, > aj o> /)’(ajooajoo - a;*oo) is smaller than
ﬁ(a;‘fw —a; a5 ). As a result, we have
Ea[ui(a* )} -E, [ul( ]oo’aii,oo)] <
Eo’[ui(a;ooaa;om —i\j,oo)]fEU[ui(a;,oova:,oo’a*—i\j,oo)]
@n
For the utility function in (1), we have
u’i(a‘: 00! a;ow aii\j, oo) = uj(a"f,ow aij,oo) and
uq(ajOO 7 o00r O\ oo uj(al,). Substituting these
equalities for the corresponding terms in (21) and

rearranging the terms, we get (18). Now, we obtain
the same inequality when a’ ., > a; . Hence it is true for
all w e Q. |
Next, we show that there is consensus in actions.
Theorem 1: Let 0* be a BNE strategy.If Assumption 1
holds then

a; o, =aj., forall 4,jeV P,-as. (22)
Proof: By myopic optimality of agents ,
E; [ui(a ]oo7a—1 00r ) Mirco] < Eglui(al,,0)[Hi o) (23)

for all ¢ € V. When we take expectation of both sides of
(23), we are left with expectations, E, [u;(a* 0} 001 A% 4 001 0)] <
E;[ui(a%,,0)] forall i € V. As a result, the first term on the
left hand side of (18) is at least as large as the first term on

n this proof, we drop 6 from the argument of u; for convenience.
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Fig. 1. Coordination game of mobile agents

its right hand side. The same relation holds for the second
terms on both hand sides of (18). Hence, we have

E, [’UJ,(CLJ 00 a*—z’,oov 9)} =E, [ui(a;ov 0)] (24)
By (23), we

have that E/[u;(000,0)[Hico] —
E;[ui(cl,,0)|Hioo] > 0 with P -probability one. This
proves that the relation in (24) also holds for conditional
expectations,

|Hzoo = Eq[ui(a |’Hzoo

(25)

EU [ul(a;oo a—z 007

By the definition of myopic rationality a; ., = ®; o0 (07, )
for all j € Vi. However, ®; (0, ) is a singleton. Hence,
it must be that a; , = aj  foral ¢ € V and j € V;.
Connectivity of the network proves the result. |

Next, we use the consensus in actions result to argue that
agents mean estimate of 0 is equal.

Corollary 1: If o* is a BNE and Assumption 1 holds then
Eol0 | Hi] = Eol0 | M) o] forall i €V and j € V.

Proof: By definition of BNE, we have

af,oo =a+p Z Ea[a;,oorHLOO] + 6EU[9|H1',00}
JeVA{i}
(26)
From Theorem 1, we have consensus in actions, a;-‘,oo =a*
for all ¢ € V. Substituting in a* for all the action terms in (8)
for t = oo and solving for a*, we have a* = f(E,[0|H; o))
for some function f(-) for all ¢ € V' and hence the result
follows. |
Corollary 1 shows that agents have the same mean esti-
mates of the underlying state of the world in the limit.

IV. COORDINATION GAME

An investment decision in the stocks of a company in-
cludes a player to consider both its valuation of the asset
and also how everyone values the asset. In this setting, we
define w € R to be the true value of the stock and action
a;,¢ represents player ¢’s valuation of the asset; i.e., it is the
price that agent ¢ is willing to pay per stock share at time ¢.
The payoff function for agent ¢ is given by

1—/\(%_@)2

A 2
TAN-1) 2 (ai—a),
JevA{i}
where A € (0,1). The first term of the payoff function

measures the desire of the player to estimate the true value
of the stock. The desire to coordinate with other players is

ui (0, a5,a—;) = —

@n
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Fig. 2. Geometric network with N = 50 agents. Agents are randomly
place on a 4 meter X 4 meter square. There exists an edge between any
pair of agents with distance less than 1 meter apart.

represented by the second term. The constant A gauges the
relative importance of coordination and estimation. Note that
this utility function satisfies Assumption 1.

The same payoff function can also be motivated by looking
at coordination among a network of mobile agents starting
with a certain formation trying to move toward a finish line
on a straight path [17] — see Fig. 1. Each agent collects an
initial noisy measurement of the true heading angle 6, that
is, the angle that achieves the shortest path toward the finish
line. In this example the actions of agents represent their
choice of heading direction or movement angle. The first
and second terms in (27) again correspond to the estimation
and formation coordination payoffs, respectively.

A. Numerical example

We exemplify the game where the true value of the stock
is 0 = 10%. We let A = 0.5. Agents initially receive private
signals that are corrupted with zero mean Gaussian noise,

x; =0+ ¢, (28)

where ¢; ~ N(0,1). ¢; is independent across agents. There
exists a local recursion for individual belief updates and
myopic rational behavior when the initial private signals are
jointly Gaussian [8].

Based on this result, we evaluate convergence behavior
in a geometric network with N = 50 agents (Fig. 2). The
geometric network has a diameter of d, = 5. The action
values of each agent is depicted in Fig. 3.

The results show that agents’ actions a; converge to the
best estimates of true state of the world, that is, E,[¢ ‘ Heo)-
This means that E, [0 | Hoo] = E,[0 | Hiso) for all i € V.
Furthermore, convergence rate is fast in the order of the
diameter of the network.
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