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Abstract— We propose an architecture and algorithms for
maintaining end-to-end network connectivity for autonomous
teams of robots. By adopting stochastic models of point-to-
point wireless communication and computing robust solutions
to the network routing problem, we ensure reliable connectivity
during robot movement in complex environments. We fully
integrate the solution to network routing with the choice of
node positions through the use of randomized motion planning
techniques. Experiments demonstrate that our method succeeds
in navigating a complex environment while ensuring that end-
to-end communication rates meet or exceed prescribed values
within a target failure tolerance.

I. INTRODUCTION

The use of mobile robotic systems to achieve tasks that are
otherwise dangerous for humans is becoming more and more
ubiquitous. However, in a real-world deployed system, the
issue of communication between a human operator and the
robotic system severely limits the system’s usefulness. While
commercial technologies exist to provide general purpose
wireless data connectivity, they rely on infrastructure that is
not available in the hazardous environments for which robots
are most useful. Instead, we propose that agents within a
team of mobile robots must act as communication relays to
reliably support communication requirements.

To restrict the scope of our work, we focus on a motivating
telepresence application where a team of robots move and
wirelessly relay messages in order to maintain a particular
rate of communication between a human operator at a
base station and the “lead” robot he or she is controlling.
There are two key challenges to this work. First, point-to-
point wireless channel capability is notoriously uncertain and
difficult to predict. Second, the communication maintenance
problem inherently involves a high-dimensional search that
must jointly consider network routing and robot placement
or mobility.

Much of the communication-aware mobility control lit-
erature relies on the assumption that point-to-point wire-
less links can be predicted primarily based on proximity
or visibility and that the existence of these links makes
them feasible for communication. With this simple model of
point-to-point connectivity, maintenance of network integrity
reduces to finding robot motions that guarantee the connec-
tivity graph retains a single connected component [1], [2],
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[3], [4]. These methods are able to leverage network-wide
connectivity indicators such as the second largest eigenvalue
of the graph Laplacian or the k-connectivity of the network’s
graph. These indicators are tractable and often attainable with
distributed methods making these approaches appealing.

However, it is well accepted in the wireless networking
literature that binary channel models are not accurate repre-
sentations of wireless links and several methods have been
proposed that consider the reliability of point-to-point links
in order to choose routes that optimize end-to-end reliability
metrics [5], [6]. Additionally, point-to-point reliability met-
rics have been successfully incorporated into mobility control
algorithms [7], [8].

The existence of graph connectivity only implies that a
multihop path from any source to any destination exists
but does not determine whether the network formed by
the robots is able to support desired communication rates.
A more accurate metric of network integrity relies on the
achievability of target end-to-end communication rates. Since
end-to-end communication rates do not depend solely on
the spatial configuration of the system but also on the
manner in which packets are routed through the network,
the maintenance of network integrity requires methodologies
that concurrently plan robot positions and solve the network
routing problem [9].

Due to shadowing and small scale fading, even small
variations in robot positions lead to significant changes in
channel capability [10], [11]. Furthermore, the application
of motion planning algorithms to the team state necessitates
predictions of channel quality in future configurations that
have not yet been visited and measured. Thus, we consider
point-to-point communication rates as random variables and
robust methods must be employed in order to consider the
maintenance of end-to-end rates [12].

We propose an architecture for robust communication
maintenance that addresses a wide range of multirobot spatial
applications as depicted in Fig. 1. We then propose a solution
to the concurrent routing and mobility control problem.
That is, jointly finding robot configurations x with wireless
network routing solutions α (see Fig. 1) that address the
task specification in terms of visiting required goal locations
while reliably maintaining adequate network integrity.

In contrast to most existing methods for communication
maintenance on a team of mobile robots which rely on
reactive control algorithms, we develop a deliberative plan-
ning technique. In Section III we present a randomized
motion planning approach that finds sequences of robot
configurations that satisfy spatial objectives while robustly
maintaining the end-to-end communication requirements. We
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Fig. 1. System architecture. A human operator provides goal locations
XG for a lead robot as well as requirements on the rate of sensor updates
that are relayed back. Individual robot components consist of the low-level
controllers, estimators, and communication. The focus of this work is on
developing concurrent methods for routing and mobility control.

finish with experimental results in Section IV and concluding
remarks in Section V.

II. ARCHITECTURE FOR COMMUNICATION
MAINTENANCE

The architecture depicted in Fig 1 is designed to support
a fixed operating center that requires a lead agent to visit
locations Xg while relaying back observations and maintain-
ing network integrity metrics (ai,min, ε). Individual robots
are capable of state estimation, navigation, and pairwise
measurements of point-to-point communication capability
via received signal strength indicators (RSSI). For the pur-
poses of this work, we make limited assumptions about
the structure of radio communication modeling – only that
point to point rate is a random variable and represented by
mean R̄ij and variance R̃ij . The remainder of this section
mathematically formulates our problem statement, details our
assumptions on point-to-point communication rate modeling,
and introduces the concept of robust network routing.

A. Problem Statement

Consider a team of N robots and denote their positions
as xi ∈ R2, for i = 1, . . . , N . The robots are kinematic
and fully controllable which allows us to consider simple
mobility models of the form ẋi(t) = ui(t), where ui(t) is
the control input to robot i. A human operator is located at
the fixed operation center that we index as i = 0 at position
x0. Further define the vector x := (x0, . . . , xN ) ∈ R2(N+1)

to group all positions.
The spatial task assigned to the team is specified through a

generic scalar convex task potential function Ψ : R2(N+1) →
R. E.g., when a designated leader agent ` must visit a target
location x`,g ∈ R2, we define Ψ(x) = ‖x` − x`,g‖2.

While controlling to a physical configuration, the sys-
tem must also maintain a certain network integrity that is
specified by desired end-to-end communication rates which
represent the flow of data from members of the team to the
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Fig. 2. Communication network. The nodes are deployed to support end-to-
end rates from node i to fixed destination k. Routing variables αij determine
the fraction of time node i sends packets to node j. Rij is defined as the
supported rate of the wireless channel from node i to node j.

fixed operating center. For the purposes of this paper, we
will focus on a single flow of information to a fixed operating
center but our problem formulation and solution is generic to
support several information flows [13]. The variable ai,min

represents the required end-to-end communication rate be-
tween node i and the operating center.

We model point-to-point connectivity through a rate func-
tion Rij(x) = Rij(xi, xj) that determines the amount of
information that an agent at xi can send to an agent at
xj . Since direct communication between the source and the
destination of an information flow is not always possible,
terminals self-organize into a multihop network to relay
packets for each other. Packet relaying is determined by
routing variables αij which describe the fraction of time node
i spends transmitting data to node j as depicted in Fig 2.

Thus, the product αijRij(x) determines the rate of point-
to-point information flow from i to j. The information rate
ai(α,x) available for source i is the difference between
outgoing and incoming rates at node i

ai(α,x) =

N∑
j=0

αijRij(x)︸ ︷︷ ︸
Outgoing packets

−
N∑
j=1

αjiRji(x)︸ ︷︷ ︸
Incoming packets

, (1)

where we define the vector α ∈ RN2

grouping all routing
variables αij .

Routing variables α and configuration-dependent rates
Rij(x) determine the set ai(α,x) of end-to-end communica-
tion rates from each node i as per (1). The task specification
requires that end-to-end rates exceed the minimum threshold
ai,min. Therefore, integrity of the communication network
necessitates that ai(α,x) ≥ ai,min for all i. Notice that
ai(α,x) is a function of positions x and routing variables
α. Thus, end-to-end connectivity is maintained by control of
positions x and network routes α.

The primary mobility control problem is to find a se-
quence of robot configurations x(t) such that at time tf
the team configuration x(tf ) satisfies task completion in
that Ψ(x(tf )) is minimized. The maintenance of network
integrity dictates that ai(α(t),x(t)) ≥ ai,min for all t ∈
[t0, tf ]. In practice, it is difficult to ensure that the network
integrity constraint is satisfied. As seen in (1), rates ai(α,x)
depend on point-to-point link reliabilities Rij(x) that are
difficult to estimate. We address the specific form of Rij

in the following sections but for now it suffices to assume it
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is a random variable. The important observation is then that
if point-to-point rates Rij(x) are random, so are the end-to-
end rates ai(α,x) [cf. (1)]. Thus, we introduce a reliability
tolerance ε and require that

P [ai(α,x) ≥ ai,min] ≥ ε. (2)

We can write the full joint mobility and robust routing
problem as

min
α(t),x(t),t∈[0,tf ]

Ψ(x(tf ))

subject to P [ai(α(t),x(t)) ≥ ai,min] ≥ ε

x(t) = x(0) +

∫ t

0

ẋ(τ) dτ . (3)

The mobility portion of this problem inherits the same
issues that are studied in the robotic motion planning lit-
erature. That is, the search for a sequence of obstacle-
free configurations from the initial configuration to goal.
However, the network integrity constraint leads to a coupling
of the mobility and network routing problems and forces us
to consider planning in a very high-dimensional joint space
of positions and network routes. The general problem has
N2 + 2N variables and (α,x) ∈ RN2 × R2(N+1). We de-
compose this space by fixing x and choosing α in a manner
that optimizes the reliability P [ai(α(t),x(t)) ≥ ai,min] in
Section II-C. First, however, we provide more detail on our
assumptions of point-to-point rate modeling.

B. Point-to-Point Rate Modeling

In general, we seek to develop a probabilistic model
for the communication rate Rij(x) = Rij(xi, xj) between
robots at position xi and xj . However, we also stress that
the approaches described in this paper are agnostic to the
particular form of this underlying rate model. In fact, we
only rely on the ability to predict the mean R̄ij(xi, xj) and
variance R̃ij(xi, xj) of the supported communication rate. It
is well known that the supported rate of communication is a
function of the signal-to-noise ratio (SNR) [14]. We therefore
focus on models of the received signal strength PR(xi, xj)
that we cascade into models of the packet error rate and the
supported communication rate Rij(xi, xj).

While many methods exist for the modeling of received
signal strength [12], in this work we rely on a relatively
coarse model based on the distance between source and
receiver as well as the existence of a line-of-sight be-
tween the nodes. This model is most easily described on
a logarithmic scale of received power PR,dBm(xi, xj) =
10 log(PR(xi, xj)) measured in dBm

PR,dBm(xi, xj) =

L0 − 10n · log(‖xi − xj‖)︸ ︷︷ ︸
Path loss

−W (xi, xj)︸ ︷︷ ︸
Shadowing

− F︸︷︷︸
Fading

,

(4)

where the term F is a zero-mean Gaussian random variable
with variance σ2

F modeling fading effects. The term L0

is the measured power at a reference distance 1 m from

the source, n is a path loss exponent, and W (xi, xj) is
a non-smooth function to model shadowing as a function
of the number of obstacles between source and destination.
Experimental data collected in an indoor office environment
at the University of Pennsylvania leads to parameters L0 =
−51 dBm, n = 2.1, W (xi, xj) = 0 for line of sight links and
W (xi, xj) = 7.6 dB for non-line-of-sight links, and σ2

F =
32 dB2. For brevity, the application of an approximation that
relates received signal strength to bit-error-rate and, in turn,
supported communication rate is omitted [14].

The form of received signal strength in (4) yields a suitable
model for the supported communication rate between nodes
at xi and xj that not only takes into account path loss
and shadowing due to environmental obstructions but also
models random fading that is the result of the multi-path
phenomenon in indoor environments.

C. Robust Routing

A key component to our approach is the ability to decom-
pose the search of the space defined by network routes and
robot configurations (α,x). We do this by determining an
α(x) that optimally satisfies the reliability constraint (2) for
the current configuration despite the uncertainty of point-to-
point communication rates Rij(x).

A simple way to account for the uncertainty in Rij(x) is to
discount individual Rij(x) in order to reduce the likelihood
of having actual rates smaller than the estimated value.
While this is a feasible solution, it results in underutilization
of the communication network. Instead, we recall that the
end-to-end rather than point-to-point failures are relevant.
By splitting traffic and exploiting spatial redundancy, we
can devise routes that guarantee small changes in end-to-
end rates despite the large variability of point-to-point rates
Rij(x) [13].

For a given configuration x, we would like to find routes
α = α(x) that provide the maximum possible reliability. We
do this by maximizing the minimum achievable rate with
probability ε. Maximizing this minimum implies that the
constraints in (3) are satisfied with significant slack and that
there is liberty to change the physical configuration without
violating communication constraints. To solve for such an
optimal route α(x), we can introduce a slack variable a∆

and write the optimization problem

α(x) = argmax
α, a∆

a∆

subject to P [ai(α,x) ≥ ai,min + a∆] ≥ ε.
(5)

The form of the probability constraint is important when we
write (5). By representing this probability based on the mean
and variance statistics of Rij(x), it can be written as a second
order cone constraint allowing us to solve this optimization
as a second order cone program (SOCP) [12]. SOCPs are
a particular class of convex optimization problem that can
be solved by efficient polynomial time algorithms [15]. For
the problems considered here, the computational complexity
of these algorithms is represented as a polynomial function
of the number of agents N as O

(
(N2)3.5

)
. In practical
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implementations, the N2 term can be reduced by eliminating
links for which rate estimates R̄ij(x) are below a certain
threshold.

III. PLANNING FOR MOBILITY

The original problem statement in (3) illustrates the full
joint state space of network routes α and positions x that
must be determined by communication maintenance algo-
rithms. We have demonstrated that for a fixed x, we can
efficiently compute the optimal α(x). One approach to the
optimization of (3) would then be to apply gradient descent
algorithms and incrementally drive the system towards a goal
configuration [12]. However, gradient-based approaches have
major drawbacks with respect to local minima. These are
due to obstacles in the environment and the complications
of jointly optimizing α and x under complex network
topologies. Therefore, it is necessary to pursue deliberative
motion planning that takes into account global constraints.
In order to consider this type of approach, it is necessary to
address some additional notation.

Let X be a bounded, connected open subset of R2N

that represents the joint state space for the team of robots
where xinit is the initial configuration of the team. We then
define the goal set for our physical task to be Xg = {x :
Ψ(x) < Ψmin + δ} where Ψmin is the minimum value of
the potential function, δ is a parameter used to represent
configurations close to this absolute minimum, and Xg ⊂ X.
The obstacle region Xobs contains any configuration that
places an individual robot on a physical obstacle and the
infeasible region Xinf represents configurations where it is
infeasible to satisfy the network constraint (2),

Xinf =

{
x : P [ai(α,x) ≥ ai,min] ≤ ε ∀α

}
. (6)

The free space Xfree is then X \ (Xobs ∪Xinf ). Finally, a
path in X is parameterized by a scalar s ≥ 0 and given by
σ : [0, s] → X. Concatenation of paths is defined by σ =
σ1|σ2. A feasible path, and solution to our global-planning
problem, is then σ : [0, s]→ Xfree such that σ(0) = xinit

and σ(s) ∈ Xg .
The dimensionality of our problem and the high com-

putational cost of verifying a state is in Xfree makes
deterministic search algorithms impractical. Instead, we turn
to probabilistic search methods that offer good space-filling
properties and efficient exploration of an unknown space –
e.g., rapidly–exploring random tree (RRT) algorithms [16].
The basic structure of an RRT, as detailed in Algorithm 1,
is to start with an initial state xinit and expand to fully
explore the workspace, adding states in a tree-like struc-
ture until a feasible point is added such that x ∈ Xg .
The tree is expanded by picking a random state x̂ =
RANDOMSTATE(X, T ), finding the closest point on the
existing tree xmin = NEAREST(T , x̂), and attempting to add
a new point by extending from xmin, x = EXTEND(xmin, x̂).

There are two difficulties that arise when applying stan-
dard RRT algorithms to solve the specific high-dimensional
network connectivity problem in (3): (i) the verification of

Algorithm 1 Structure of the rapidly exploring random tree
algorithm
Require: Initial state xinit, goal region Xg , representation

of the bounded configuration space X .
1: T .init(xinit)
2: while i < N do
3: x̂← RANDOMSTATE(X, T )
4: xmin ← NEAREST(T , x̂)
5: if xnew ← EXTEND(xmin, x̂) then
6: T .add vertex(xnew)
7: T .add edge(xmin,xnew)
8: if xnew ∈ Xg then
9: return T

10: end if
11: end if
12: end while
13: return T

feasible states as EXTEND is used to expand the tree towards
x̂ and (ii) the prohibitive cost of uniformly exploring Xfree

for our high-dimensional problem with slow-to-compute con-
straints.

A. Efficient verification of feasible states
The EXTEND(xfrom,xto) algorithm attempts to virtually

drive the system from xfrom towards xto by successively
verifying that points along the line connecting xfrom and
xto are in Xfree. It returns the state xnew as the closest
state to xto such that all states sampled with precision ∆x
between xfrom and xnew are in Xfree. In traditional motion
planning applications, verification that x ∈ Xfree is based on
an algebraic constraint or collision query via efficient compu-
tational methods, e.g., [18]. While the necessary computation
to determine x /∈ Xobs is typically small, computation of
x /∈ Xinf requires a solution of the SOCP (5) and can be
costly.

To limit re-computation of optimal α, we store the full
state (α,x) for every node in T and rely on the fact that
an optimal robust routing solution α(x) will be feasible
for neighboring states and will often be a feasible solution
for the entire trajectory to xnew. Thus, in Algorithm 2, we
recompute α only when reliability drops below the desired
threshold to warrant the additional computation.

B. Biased space sampling
Random states x̂ are chosen to sample the space X ⊂ R2N

according to a probability distribution px(x) representing the
belief about configuration x being part of a feasible path
σ(s). If nothing is known about σ(s), we choose px(x)
uniform in the space X . In general, the final configuration is
known in that σ(s) ∈ Xg . We can then bias the distribution
towards Xg by making

px(x) =
pg

v(Xg)
I {x ∈ Xg}+

1− pg
v(X \Xg)

I {x /∈ Xg}. (7)

where larger values of pg make x̂ more likely to hit Xg . Goal
biasing as in (7) improves efficiency of RRT algorithms by
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Algorithm 2 EXTEND(xfrom,xto)

Require: Initial state xfrom, desired final state xto, verify
segment with resolution ∆x

1: xnew ← xfrom

2: α← argmax (5) for rates Rij in configuration xnew.
3: while xnew 6= xto andα 6= ∅ do
4: xnew ← xnew + ∆x
5: if min {P [ai(α,xnew) ≥ ai,min]} ≤ ε then
6: {Recompute α if reliability low}
7: α← argmax (5) for rates Rij(xnew).
8: end if
9: end while

10: if xnew = xfrom then
11: return ∅
12: else
13: return xnew

14: end if

reducing the number of samples necessary to find a feasible
path σ(s) in the high dimensional space X ⊂ R2N .

In our telepresence application where Ψ(x) = ‖x` −
x`,g‖2, the goal position of the leader x`,g is known, but
the positions of the remaining robots are free. This means
that volume of Xg is comparable to the volume of X. In
this case goal biasing offers little improvement over uniform
sampling. That is, goal biasing would reduce the exploration
cost along the components associated with x` but keep
the cost of exploring the remaining 2(N − 1) dimensions
fixed. To further reduce exploration cost in this case, we
construct a prediction X̃g ⊂ Xg of the final configuration
and bias sampling towards this configuration prediction by
recomputing the sampling distribution px(x) in (7) with X̃g

instead of Xg .
Constructing a final configuration prediction X̃g is task-

specific. We describe here a method applicable to the
telepresence–type application where the final position of a
lead node is specified. To determine the prediction X̃g , we
determine predictions X̃i,g for each robot and compute X̃g

as the Cartesian product of these individual sets. Notice that
for the lead robot we can make X̃`,g = X`,g = {x` ∈ R2 :
‖x` − x`,g‖ < δ}.

Observe now that X ⊂ R2N is the Cartesian product X =∏N
i=1 Xi of the N decoupled spaces Xi ∈ R2 corresponding

to each individual robot. If we further assume a homogeneous
team of robots, then all robots operate in the same space
Xi = Y, with a common set of physical obstacles Yobs,
and consequently a common free space Yfree = Y \Yobs.
It follows that the joint free space Xfree is also a Cartesian
product of N identical sets Yfree minus those configurations
for which a network cannot be established with sufficient
reliability,

Xfree = (Yfree)
N \Xinf . (8)

While infeasible network configurations are captured by
Xinf as given in (6), Xfree can otherwise be described by
the free space of individual robots.

Goal

X̃1,g

X̃2,g

X̃3,g

X̃4,g

X̃�,gx1,0

x2,0

x3,0

x4,0 � : [0, s]! Xfree

Fig. 3. Illustration of the biased space sampling. Since we only know one
component of the goal state xg,` and it is expensive to expand our search
space in the high-dimensional state of the entire system, it is beneficial to
bias our search towards configurations that are deemed likely to succeed.

To exploit this observation, we first determine an obstacle
free path γ : [0, s] → R2 such that γ(0) = x0 is the
position of the operating center and γ(s) ∈ X`,g . Since
the dimensionality of the space and the goal set X`,g are
small, it is possible to find this path with small computational
cost using modern discrete planning algorithms [19]. The
obstacle-free path γ : [0, s] → Yfree is split into N − 1
equal length segments γk such that γk : [0, sk] → γ :

[ ks
N−1 ,

(k+1)s
N−1 ]. The ith robot is then assigned to a segment by

the function k(i) based on euclidian distance to its midpoint
such that

∑
i 6=0,` ‖γk(i)(s/2)−xi,0‖ is minimized; see Fig. 3.

Segments are then enlarged to define the region X̃i,g for
i 6= 0, `. Since this is a heuristic for the goal configuration,
the only requirement on X̃i,g is that γk(i) : [0, s]→ X̃i,g . A
typical choice is

X̃i,g = {xi : min
s
‖xi − γk(i)(s)‖ < d̃g}

where d̃g is a parameter controlling the enlarged size of X̃i,g .
The predicted final configuration is then computed as the
Cartesian product X̃g =

∏N
i=1 X̃i,g .

This procedure is summarized in Algorithm 3. In lines
1–3, the predicted goal configuration X̃g is constructed. A
random sample x̂ is then drawn uniformly from X̃g with
probability pg or from X \ X̃g otherwise. It should be noted
that the construction of X̃g described above is based on the
heuristic that a feasible goal configuration in an environment
with obstacles will resemble a line-of-sight communication
chain. Increasing the size of X̃g with large values of d̃g limits
the implication of this assumption.

IV. RESULTS

We rely on a centralized implementation of the algorithms
for concurrent solutions to the robust routing and mobility
control problem that are presented in this paper. Since
the algorithms implicitly maintain a connected network of
agents, coordinated control commands can be robustly routed
through the wireless network. Furthermore, a centralized
implementation is not a shortcoming for the problem sizes
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Algorithm 3 RANDOMSTATE(X)

Require: Configuration space description X , obstacle-free
path γ(s) → R2 such that γ(0) = x0 and γ(s) = x`,g ,
probability pg .

1: X̃`,g = {x` ∈ R2 : ‖x` − x`,g‖ < δ}
2: X̃i,g ← Enlarge

(
γk(i)

)
3: X̃g ←

∏N
i=1 X̃i,g

4: p← Uniform[0, 1]
5: if p > pg then
6: x̂← Uniform(X \ X̃g)
7: else
8: x̂← Uniform(X̃g)
9: end if

10: return x̂

we consider, e.g. 10 or fewer agents, since it is tractable to
exchange and maintain global state.

All experiments are conducted on the Scarab ground
platform at the University of Pennsylvania; see Fig. 4
inset. The robots are capable of accurate self-localization
throughout the indoor environment and are equipped with
off-the-shelf Zigbee radios that provide basic point-to-point
communication capabilities in the 2.4 GHz spectrum.

Each experiment consists of a telepresence-type task, e.g.
(3), that requires a single lead robot, indexed by `, to visit
one or more locations in the environment while maintaining a
desired end-to-end communication rate a`,min with reliabil-
ity ε to a fixed operating center. The algorithms introduced
in this paper yield feasible configurations for the team –
α(t) and x(t) which represent the network and physical
configurations respectively. During an experiment, each robot
probes the communication channels with its neighbors to
determine actual instantaneous measurements of the point-
to-point received signal strength at a rate of 5 Hz. This data
is logged locally and aggregated after each experiment to
compute the supported communication rate R̂ij(t) between
node i and j at time t. Using these measurements in
conjunction with the network routing solution α(t), we can
compute lower bounds on the actual achievable end-to-end
rate at time t for each node i, âi(α(t),x(t)).

Recall that the problem statement in (3) requires that
P [ai(α(t),x(t)) ≥ ai,min] ≥ ε for all nodes i. Thus, in our
experimental verification each node must be able to maintain

âi(α(t),x(t)) > ai,min (9)

with probability ε. To achieve the desired end-to-end rates,
all nodes in the team must satisfy this constraint. Thus,
in experimental analysis we will evaluate (9) across the
duration of the experiment to determine the percent of time
âi(α(t),x(t)) > ai,min and use this as a metric for the
success of that trial.

A. Experiments

Figure 4 depicts the series of waypoints that the lead node,
x5 must visit. Four additional mobile nodes, x1, x2, x3, x4

are available to relay data back to the fixed access point

indicated in the lower left of Fig. 4 with end-to-end rate
of a5,min = 0.25 with probability ε = 0.75. Each relay
node must maintain end-to-end rates greater than zero. The
predicted and measured end-to-end rates of each node are
depicted in Fig. 7.
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Fig. 4. The task specification for the Levine building experiment. It
requires the lead node, x5 to follow a sequence of waypoints. The initial
configuration of the team is depicted above.

First, notice that the instantaneous rate â5(α(t),x(t)) is
almost always above its minimum threshold of a5,min =
0.25. In fact, it drops below the minimum threshold only
2.9% of the time, well within the allowable reliability ε =
25% for this problem specification. However, for that rate
to be maintained in an end-to-end sense across the network,
each node must be able to support the necessary rate margin
ai,min. The corresponding fraction of time spent below the
minimum threshold for each of the instantaneous node rates
â1, â2, â3, â4 is 9.2%, 0.8%, 0.3%, and 0.6%. This means
the desired rates are not supported during, at most, 13.8%
of the time.

Representative network configurations are depicted in
Fig. 6. In Fig. 6a, at t = 100 s, the predicted goal state
X̃g assumes the shortest line of sight path which is the
left hallway, i.e. a result similar to what one would expect
from reactive methods. As the system transitions to Fig. 6b,
where the lead node x5 has been tasked to a waypoint in
the right hallway, the prediction for X̃g shifts to a chain
of relays going through the right hallway. This shift in the
basic topology of X̃g re-focuses exploration of the joint state
space so that x4 moves towards a configuration that will
lower the performance of the network over the short term.
As node x5 completes the desired loop, it utilizes x4 as a
relay channel and is able to maintain the desired end-to-end
rate. This dramatic shift in network topology would not be
possible with a purely reactive method and illustrates one of
the advantages of our deliberative approach.
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Fig. 5. Running time for benchmark environment with global planner solving the task depicted in (a). The average running time for tasks with different
amin and number of robots N are depicted in (b). The variance of the running time for a particular task is depicted in (c).
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Fig. 6. Snapshots from the sequence of feasible network configurations
that satisfy the task depicted in Fig. 4. Line weight indicates the expected
amount of information to be transmitted over that point-to-point link.

B. Benchmarking

We also study the computational complexity of the pro-
posed approach through a benchmark task that can be solved
many times with different problem parameterizations. The
task, depicted in Fig. 5a, requires the lead robot to visit a
series of positions in the environment (labeled 1–8) while
communicating data at a specified rate, amin, to the operating
center located near waypoint 1. We parameterize the task
by the number of robots N and the end-to-end rate of
communication that must be maintained amin while fixing
the desired reliability ε = 0.8.
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Fig. 7. The end-to-end rates of the nodes during the Levine building
experiment depicted in Fig. 4. (a) depicts the prediction, ā5, ã5, and
instantaneous, â5, end-to-end rate for the leader and (b) – (e) depict the
instantaneous rates of the relay nodes. In each plot, the solid line with shaded
envelope depicts āi and variations that occur with probability ε = 0.75
based on ãi. The dashed black line represents the instantaneous end-to-end
rate âi. The dashed red link in (a) depicts the threshold a5,min = 0.25.

The performance is measured by the running time to
compute the series of network configurations necessary for
the lead robot to visit its sequence of waypoints. The
average performance is depicted in Fig. 5b based on 10
trials per task parameterization. As expected, increasing
the number of robots adds to the complexity of both the
individual SOCP solutions as well as the randomized search
algorithm. Increasing the minimum end-to-end rate, amin,
has a similar effect on the complexity. Intuitively, increased
amin increases complexity because it reduces the number
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of feasible configurations that can support the required rate
amin. This increases the planning effort necessary to explore
the workspace and find a feasible path. Additionally, as we
increase the end-to-end rate requirement, more agents are
necessary for task completion.

Randomized planning algorithms can only offer the guar-
antee of probabilistic completeness. Since there is no precise
way to determine when a task cannot be solved with the
current configuration, we test for task infeasibility by stop-
ping the planning process after a specified timeout period.
For the purposes of this benchmarking, that timeout is 300 s
for each subtask. An artifact of this timeout is that tasks in
extremely complex spaces (e.g. amin = 0.51, N = 8) are not
solved though we know a solution exists (e.g. the solution
for amin = 0.51, N = 7 is a subset of the possible solutions
with N = 8). As the complexity of the task increases, so
does the variance of the running time as depicted in Fig. 5c
for a particular task, amin = 0.61.

V. CONCLUSION

We propose an architecture and algorithms to address
the full communication maintenance problem that includes
solving for relay node mobility and network routing to
maintain end-to-end connectivity. Because the performance
of point-to-point wireless links is difficult to predict, we
adopt a stochastic model for supported rates. By developing
an optimal robust solution to the network routing problem
for a given physical configuration, we are able to reduce the
dimensionality of our search problem to only be the joint
state-space of the robot positions. This allows us to pursue
the connectivity maintenance problem in the framework of
a high-dimensional motion plan where feasible states rely
on not only the free space of the environment but also the
feasibility of a robust wireless networking solution.

We present, to the best of our knowledge, the first ex-
ample of an experimental verification for a communication
maintenance system that relies on an end-to-end rate metric
for network integrity. Furthermore, we are able to do this
with limited assumptions about the model for point-to-point
achievable rates. In fact, our experiments succeed with a
coarse rate model that can be applied to a wide range of
environments. Finally, our experimental results illustrate the
value in pursuing global search methods rather than reactive
gradient-based methods in that we are able to find a sequence
of network configurations that would not emerge from local
optimization of network integrity.

The use of randomized planning techniques implicitly
casts our formulation as a feasibility problem. Unfortunately,
recent developments found in [20] for optimal RRT–based
planning are not directly applicable due to the high-cost of
verifying inter-state connectivity in our problem. Future work
will focus on the incorporation of techniques from gradient-
based methods to decrease the time-to-plan and increase the
optimality of our solutions. We will also pursue decentralized
approaches that can be applied to larger team sizes.
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