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ABSTRACT

This paper develops a framework for the estimation of a time-varying
random signal using a wireless sensor network. Given a continuous time
model, sensors collect noisy observations and produce local estimates
according to the discrete-time equivalent system defined by the sampling
period of observations. Estimation is performed using a maximum a pos-
teriori probability estimator (MAP) within a given window of interest. To
mediate the incorporation of information from other sensors we introduce
Lagrange multipliers to penalize the disagreement between neighboring
estimates. We show that the resulting distributed (D-)MAP algorithm is
able to track dynamical signals with a small error. This error is character-
ized in terms of problem constants and vanishes with the sampling time
as long as the log-likelihood function satisfies a smoothness condition.

Index Terms— Wireless sensor networks. Distributed estimation.

1. INTRODUCTION

We consider the problem of estimating a time-varying signal with a dis-
tributed sensor network which collects noisy observations of the signal of
interest. Our goal is to implement a distributed and adaptive estimation
algorithm to track this dynamical system relying on local observations
and communication with neighboring nodes. To meet this goal we utilize
maximum a posteriori probability (MAP) estimates and design a mecha-
nism to incorporate global information into local estimates. Ultimately,
we want sensors to compute estimates at time t which estimate the state
of the system at the same time t and are close to the optimal centralized
MAP, the estimate computed if all the observations were available at a
central location.

The first idea proposed to mediate the incorporation of global infor-
mation within local estimates is the consensus algorithm in which sensors
update their estimates through iterative averaging of neighboring values.
Consensus algorithms are well studied for static estimation problems,
e.g. [1], and have also been adapted for dynamic estimation [2]. An
alternative approach to mediate the incorporation of global information
is through the introduction of Lagrange multipliers, effectively setting a
price on disagreement which sensors try to minimize; a feat which can
be accomplished in a distributed manner using dual subgradient descent
techniques [3]. This approach has been generalized to nonlinear estima-
tion and linear Gaussian autoregressive (AR) models [4]. The generaliza-
tion to linear Gaussian AR models gives rise to distributed Kalman filter
implementations; [4]; see also [5] for a tutorial review.

Aside from the distributed Kalman filters in [4], work on distributed
estimation for time-varying parameters assumes that communications oc-
cur in a time scale separate from the timeline of the dynamic system.
This assumption is necessary because the algorithms in [1–3] are itera-
tive. Thus, their implementation in a dynamic setting requires the as-
sumption that an infinite number of communication steps occur between
subsequent states of the dynamic system. In this paper we generalize
the price mediation algorithms of [3, 4] to nonlinear dynamic estimation
problems while using a common time scale for communications and the
evolution of the process. When using a single time scale, each iteration
of the price update algorithm brings the sensors closer to agreement on
the MAP estimate, while at the same time the process, and thus the MAP
estimate, drifts to a new value. The technical contribution of this paper
is to characterize this tradeoff by showing that local estimates approach
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the centralized MAP estimator with a small error which we characterize
in terms of problem-specific constants.

Section 2 starts by introducing the dynamical model in continuous
time and its equivalent model in discrete time, and formulating the global
MAP estimation problem. We then proceed to the development of dis-
tributed dual gradient descent by separating the global MAP estimation
problem into local maximization problems. To clarify the discussion we
particularize the algorithm to the estimation of a linear Gaussian AR pro-
cess (Section 2.2). Due to randomness of the dynamical system being
tracked, convergence of the distributed algorithm to the global optimal
solution can only be claimed in a probabilistic sense (Section 3). Specif-
ically, we claim that the proposed distributed MAP estimator: (i) con-
verges in mean to a value close to the centralized MAP; and (ii) visits a
small neighborhood of the optimal set of solutions infinitely often. The
paper closes with numerical results for a scalar linear system (Section 4).

2. PROBLEM FORMULATION

Consider a connected symmetric sensor network G composed of K
sensors and let nk denote the set of neighbors of sensor k. The net-
work is deployed to estimate a J × 1 continuous time-varying vec-
tor signal sa(τ) = [sa1(τ), sa2(τ), , . . . , saJ(τ)]

T . Each sensor
collects a J × 1 vector observation which we denote as xak(τ) =
[xak1(τ), xak2(τ), , . . . , xakJ(τ)]

T . We assume that observations
xak(τ) collected at different sensors are conditionally independent given
the signal sa(τ) and that the conditional probability density function
(pdf) P (xa(τ)|sa(τ)) is known at each sensor. We further assume that
the process of time-varying signal values sa(τ) can be described by the
differential equation

ṡa(τ) = fas(sa(τ),ua(τ)), (1)

where ua(τ) denotes white driving input noise. For any time h we can
compute the transition pdf P (sa(τ + h)|sa(τ)) from (1). We assume
that this pdf as well as the observation model pdf P (xa(τ)|sa(τ)) are
log-concave, i.e. the logarithms ln P (xa(τ)|sa(τ)) and ln P (sa(τ + h)
|sa(τ)) are concave functions of the signal values s(τ) and s(τ + 1).

To estimate sa(τ) we consider the equivalent discrete time model
sn = sa(nTs) obtained by sampling sa(τ) at intervals of length Ts.
Likewise, we consider discrete-time observations xn

k = xak(nTs)
obtained at the same sampling instances and define the vector xn =
[xn

1
T , . . . ,xn

K
T ]T stacking the observation samples of all nodes for

time n. The probabilistic description of the discrete time model can
be obtained from the continuous time model introduced above. We use
P (xn

k |sn) and P
(
sn|sn−1

)
to denote the kth sensor observation and

state transition pdfs, respectively.
In estimation of time-varying processes the goal is to compute

estimates ŝ0, . . . , ŝt of all observed signals given all collected obser-
vations x0, . . . ,xt. To avoid excessive memory growth we introduce
a time window of length W and focus instead on computing estimates
ŝt−W+1, . . . , ŝt during the window length using all the observations
xt−W+1, . . . ,xt collected during the window. To simplify notation let
t denote the current time index so that the window of interest includes
observations and signals between times t − W + 1 and t. Denote
as xk(t) := [xt−W+1

k (t)T . . .xt
k(t)

T ]T the vector containing all ob-
servations during the window for given sensor k, recall the definition
of the vector xn := [xn

1
T , . . . ,xn

K
T ]T grouping observations of all

sensors during given time n ∈ [t − W + 1, t], and further define
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x(t) := [xT
1 (t), . . . ,x

T
K(t)]T grouping observations for all sensors and

all times during the window. Unless otherwise noted, in a symbol of the
form xn

k (t), the argument denotes the current time t, the superscript a
time n ∈ [t−W + 1, t] during the window of interest, and the subscript
k a given sensor. If a symbol does not have a subscript it is supposed to
group homologous variables for all sensors. If it misses a superscript it
groups all times between t−W +1 and t, and if it misses both it groups
all sensors and all window times. According to this notational convention

we can define the vector ŝMAP(t) = [ŝt−W+1
MAP (t)T . . . ŝtMAP(t)

T
]T of all

MAP estimates between times t−W + 1 and t as

ŝMAP(t) = argmax
s

P (s|x(t)) = argmax
s

P (x(t)|s) P (s) , (2)

where Bayes’s rule is used in the second equality. Recalling the condi-
tional independence of the observations at different sensors, the condi-
tional probability in (2) can be rewritten as

P (x(t)|s) =
t∏

n=t−W+1

K∏
k=1

P (xn
k |sn) , (3)

Similarly, using the Markov property of the continuous model according
to which sn only depends on sn−1 but not on previous data we can write
the prior distribution in (2) as

P (s) =

t∏
n=t−W+1

(
P
(
sn|sn−1) )

(4)

Substituting (3) and (4) for the corresponding terms in (2) leads to

ŝMAP(t) = argmax
s

t∏
n=t−W+1

( K∏
k=1

(
P (xn

k |sn)
)

P
(
sn|sn−1)). (5)

Notice that the estimator ŝMAP(t) is obtained through the maximization of
a time-varying objective, because observations xn

k shift to the left as time
t progresses. Since the logarithm is a monotonously increasing function,
we can alternatively write the MAP estimate in (5) as

ŝMAP(t) = argmax
s

f0(s, t) = argmax
s

t∑
n=t−W+1

( K∑
k=1

(
ln P (xn

k |sn)
)
+ ln P

(
sn|sn−1)), (6)

where we introduced f0(s, t) to denote the maximization objective at
time t. Since we assume that the probability distributions P (xn

k |sn) and
P
(
sn|sn−1

)
are log-concave, the likelihood function f0(s, t) is concave.

Thus, the computational complexity of solving (6) is approximately cu-
bic in the window size and the dimension of the signal vector sn. This
means that computation of MAP estimates at a centralized location can be
carried at manageable computational complexity even for large window
sizes. Concavity of f0(s, t) also permits devising a distributed imple-
mentation as we discuss in the next section.

2.1. Distributed maximum a posteriori probability estimators

Formulated as in (6), the MAP estimator cannot be implemented in a dis-
tributed manner because the MAP estimate ŝMAP(t) is a variable global to
the network. We therefore introduce local estimates ŝnk (t) for all sensors
k and window times n ∈ [t −W + 1, t] within the current window and
reformulate (6) as the time-varying constrained optimization problem

ŝ(t) = argmax
s

t∑
n=t−W+1

(
K∑

k=1

ln P (xn
k |snk ) + ln P

(
snk |sn−1

k

))
(7)

s.t. snk = snl , ∀ l ∈ nk, ∀n = t−W + 1, . . . , t

where we introduced the vector ŝ(t) stacking local estimates ŝnk (t) for all
sensors and times. Observe that if we denote the edge incidence matrix
of the directed network as C the equality constraints in (7) can be written
as Cs = 0.

For a connected network the constraints snk = snl reduce the feasible
space of (7) to configurations which have the same values at all sensors,
i.e., they require snk = snl for all pairs of sensors k, l and times n. This
further implies equivalence of (7) and (6) in the sense that if the opti-
mization problem in (6) has a solution ŝMAP(t), every element ŝk(t) of
the estimator in (7) is equal to the MAP estimator, i.e. ŝk(t) = ŝMAP(t).

Since the equality constraints are linear and the maximand is concave
in the variables snk , the optimization problem in (7) is convex. Thus, we
can equivalently work with the Lagrangian dual problem of (7). To do so,
associate the Lagrange multiplier λn

kl with the constraint snk = snl for the
optimization problem at time t and define the Lagrangian as

L(s,λ, t) =
t∑

n=t−W+1

K∑
k=1

[
ln P (xn

k |snk ) + 1

K
ln P

(
snk |sn−1

k

)

+
∑
l∈nk

λn
kl

T (snk − snl )

]
(8)

where λ stacks the Lagrange multipliers for all links k, l and times n. Ob-
serve that the Lagrangian in (8) is time-varying because it depends on the
observations x(t) collected during the current window. The dual func-
tion, which is also time-varying, is defined as the maximum of the La-
grangian with respect to primal variables, g(λ, t) = argmaxs L(s,λ, t),
and the dual problem is defined as the minimization of the dual function.
We denote as Λ∗(t) the set of optimal dual variables for the dual function
g(λ, t).

Because the dual function is convex, we can use a gradient descent
algorithm to update multipliers λ so that they approach the optimal mul-
tiplier set Λ∗(t). Since we want to handle communications in the same
timeline as the samples of the signal we consider dual iterates λ(t) which
we want to update according to the gradient descent algorithm

λ(t+ 1) = λ(t)− ε∇g(λ(t), t), (9)

with some given stepsize ε. Notice that in (9), λ(t + 1) is updated ac-
cording to the gradient of the dual function g(λ(t), t) at time t, but we are
interested in its optimality with respect to the dual function g(λ, t+1) at
time t+ 1. We analyze this mismatch in Section 3.

To compute the gradient of the dual function consider the Lagrangian
primal maximizers s(t) := argmaxL(s,λ(t), t) for given dual iterate
λ(t). As is well-known, e.g., [6], the gradient component associated with
link k, l and time n is then given by the corresponding constraint slack[

∇g(λ(t), t)
]n
kl

= snk (t)− snl (t). (10)

Further notice that because of the symmetry of the network, the last sum
in (8) can be rearranged so that it is expressed as a sum of primal vari-
ables snk instead of as a sum of dual variables λn

kl. If we do so, the
Lagrangian can be separated into a sum of local Lagrangians, i.e., we can
write L(s,λ, t) =∑k Lk(sk,λ, t) with

Lk(sk,λ, t) =

t∑
n=t−W+1

[
ln P (xn

k |snk ) + 1

K
ln P

(
snk |sn−1

k

)

+
∑
l∈nk

snk
T (t)(λn

kl − λn
lk)

]
. (11)

Since separate maximization of the local Lagrangians in (11) results in
the maximization of their sum, it follows that the Lagrangian maximizers
snk (t) necessary to compute the dual gradient components in (10) can
be determined in a distributed manner. This permits the definition of a
distributed MAP (D-MAP) algorithm which we formulate as an iterative
application of the following items.
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Primal iteration. Given dual iterate λ(t) at time t, determine primal
Lagrangian maximizers as

sk(t) = argmax
sk

t∑
n=t−W+1

[
ln P (xn

k |snk ) + 1

K
ln P

(
snk |sn−1

k

)

+
∑
l∈nk

snk
T (λn

kl(t)− λn
lk(t))

]
. (12)

Dual iteration. Given primal iterates s(t) update dual iterates as

λn
kl(t+ 1) = λn

kl(t)− ε
(
snk (t)− snl (t)

)
(13)

To implement the primal iteration, sensor k needs access to local multi-
pliers λn

k (t) and multipliers λn
l (t) for neighboring sensors l ∈ nk. Like-

wise, to implement the dual iteration, only local snk (t) and neighboring
snl (t) primal variables are needed.

2.2. Linear Gaussian autoregressive model

To illustrate the D-MAP algorithm in (12) and (13) consider its appli-
cation to a linear Gaussian autoregressive model. In this case the state
sa(τ) and signal xak(t) evolve and are related according to

ṡa(t) = Aa sa(t) + ua(t) (14)

xak(t) = Hak sa(t) + nak(t) (15)

where ua(t) is the driving noise drawn from a zero-mean Wiener process
with covariance matrix Qa, and na(t) represents Gaussian observation
noise drawn from a zero-mean Wiener process with covariance matrix
Ra. An equivalent discrete-time model can be obtained by solving the
differential equation (14) between times nTs and (n + 1)Ts with initial
condition sn to get [6]

sn+1 = Asn + un
(16)

xn
k = Hk s

n + nn
k (17)

where the discrete model parameters depend on the sampling time Ts

and can be explicitly computed. The matrices in (16)-(17) are given
by A = exp(Aa Ts), Hk = Hak, while the driving and observation

noises are white Gaussian with covariance matrices Q = E

[
unT

un
]
=

(Qa/2)A
−1
a (exp(2Aa Ts)− I) and Rk = E

[
nnT

k nn
k

]
= Rak/Ts.

Because the addition of Gaussian random variables yields a Gaussian
random variable, the discrete prior conditional probabilities are Gaussian
for all times n and any sensor k. Consequently, the MAP estimator in (6)
can be reduced to the maximization of the quadratic form

ŝMAP(t) = argmax
s

t∑
n=t−W+1

( K∑
k=1

(xn
k −Hk s

n)TR−1
k

(xn
k −Hk s

n) + (sn −Asn−1)TQ−1(sn −Asn−1)

)
. (18)

Substituting this specific function into the primal iteration in (12), it fol-
lows that for linear Gaussian autoregressive models the primal iteration
of the D-MAP algorithm becomes

sk(t) = argmax
sk

t∑
n=t−W+1

(
(xn

k −Hks
n)TR−1

k (xn
k −Hks

n)

+
1

K
(sn−Asn−1)TQ−1(sn−Asn−1) +

∑
l∈nk

snk
T (λn

kl(t)−λn
lk(t))

)
.

(19)

The dual iteration is identical to (13).

3. CONVERGENCE PROPERTIES

To determine the optimality of the algorithm described in (12) and (13),
feasibility and optimality of the solution need to be assessed. Therefore
we want to compare the primal iterate snk (t) computed by sensor k at time
t for the signal value at time n with the corresponding centralized MAP
estimator ŝnMAP (t). Given the equivalence of (6) and (7), ŝnMAP(t) =
ŝnk (t) which means that the distance of interest is given by

‖snk (t)− ŝnMAP(t)‖ = ‖snk (t)− ŝnk (t)‖. (20)

The norm in the right hand side is the distance between the current primal
iterate and the optimal primal value of (7). As such it can be easily related
to the distance ‖λ(t)−Λ∗(t)‖ between the current dual iterate λ(t) and
the set of optimal dual variables Λ∗(t). Characterizing this latter distance
is the purpose of this section.

To derive this result we make the following assumptions on the log
likelihood f0(s, t) and dual g(λ, t) functions.

(A1) The dual functions are strongly convex for all t with strong convex-
ity parameter m,

g(μ, t) ≥ g(λ, t) +∇g(λ, t)T (μ− λ) +
m

2
‖μ− λ‖2 (21)

(A2) The gradients of the dual function gx(λ) are Lipschitz continuous
with Lipschitz constant M ,

‖∇g(μ, t)−∇g(λ, t)‖ ≤ M‖μ− λ‖ (22)

(A3) Consider the gradients of the log likelihood functions f0(s, t) and
f0(s, t+1) at subsequent times t and t+1 evaluated at correspond-
ing optimal points ŝMAP(t) and ŝMAP(t+1). The expected value of
the norm of this difference is bounded by a constant δ(Ts),

E

[∥∥∥∥∂f0∂s

(
ŝMAP(t)

)− ∂f0,t2
∂s

(
ŝMAP(t+ 1)

)∥∥∥∥
]
≤ δ(Ts) (23)

Assumption (A2) is mild. If the dual function is differentiable, then it
implies that the Hessian is upper bounded by M . If the objective function
is strongly convex, then the Lipschitz constant M exists. If assumption
(A2) is fulfilled, then due to specific characteristics of the optimization
problem in (7), (A1) is fulfilled for the λ considered. Assumption (A3)
is also a reasonable requirement. For the linear Gaussian autoregressive
model of Section 2.2, the constant δ(Ts) is proportional to

√
Ts, [6].

The main result of this paper concerns the optimality of λ(t). Since
the optimal multipliers λ∗(t) are elements of a set Λ∗(t), we use the
Hausdorff distance from λ(t) to the set λ∗(t), defined as

‖λ(t)−Λ∗(t)‖ = sup
λ∈Λ∗(t)

‖λ(t)− λ‖, (24)

as a measure of optimality of λ(t). Our main result concerns this distance
and is stated in the following Theorem – see [6] for the proof.

Theorem 1 Let λ(t) denote the vector with current dual iterates ob-
tained at time t from (13) and Λ∗(t) the set of optimal multipliers with
elements λ∗(t). Assume the step size ε < 1/M . If assumptions (A1) to
(A3) hold, then the expected value of the distance between the dual mul-
tipliers λ(t) and the set of optimal multipliers Λ∗(t) at time t satisfies

lim
t→∞

E [‖λ(t)−Λ∗(t)‖] ≤ γ
1− εm

εm
δ(Ts). (25)

Furthermore, for almost all realization of the signal process s(t) it holds

lim inf
t→∞

‖λ(t)−Λ∗(t)‖ ≤ γ
1− εm

εm
δ(Ts) a.s. (26)

The constant γ := μmax(C
+) > 0 is the largest eigenvalue of the Moore-

Penrose pseudoinverse of the network’s edge incidence matrix C.
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Fig. 1. D-MAP and local estimates compared to centralized estimates
and signal for the time t ∈ [32, 56]. The D-MAP is significantly closer
to the centralized MAP than the local estimates.

While Theorem 1 claims convergence of dual variables, the desired con-
vergence result for estimates ŝ(t) follows as a simple corollary. The result
is conceptually analogous of Theorem 1 – see [6]. Due to the randomness
of the multipliers, it is not possible to bound ‖λ(t)−Λ∗(t)‖ directly. In-
stead, Theorem 1 shows that there is a tendency for ‖λ(t) − Λ∗(t)‖ to
become smaller with increasing time. Specifically, the first result in (25)
states that the mean across different realizations of the process becomes
small. The second result states that all processes eventually reach the
same small value, although they may deviate from this value with some
probability. Further notice that for smooth log-likelihood functions hav-
ing continuous gradients the gradient difference norm in (23) vanishes
with decreasing sampling time. It is therefore possible to approximate
Λ∗ arbitrarily by reducing the sampling time. We can then interpret The-
orem 1 as a means for selecting Ts to achieve a prescribed error tolerance
in the difference ‖λ(t)−Λ∗(t)‖. A final interesting observation is the de-
pendence on μmax(C

+) which characterizes networks for which D-MAP
performs poorly. The eigenvalue μmax(C

+) is large for networks that are
sparsely connected and small for densely connected networks.

4. SIMULATION RESULTS

We simulate tracking of a 2 sinusoid signals s(t) with a sensor network
consisting of K = 8 sensors, where the discretized signals from the lin-
ear Gaussian autoregressive model are rotated by π/30 to achieve the
sinusoidal shape. With an initial value of s(0) = [2, 2]T , the system
parameters are Aa = −0.01, qa = diag(σq) and ra = diag(σr) where
the entries of σq are all 0.5, the entries of σr are 1, and Ha is a vector of
8 uniformly distributed values between 0.5 and 1.5. At time t = 0, the
Lagrange multipliers λ0

kl(0) were initialized as 1 for all l ∈ nk, and at
each new time step t, λt is initialized as λt(t) = λt−1(t). With these
parameters, for a randomly drawn graph, the D-MAP algorithm was run
for 1000 realizations of s and x, according to (19) and (13), using a sam-
pling time of Ts = 0.16s and a window size fixed at W = 3 sampling
points. The total estimation length is set to 100s, making the most re-
cent iteration time n = 600. To compare the performance of the D-MAP
algorithm with the MAP estimates which would have been computed at
the sensors if only local information was given, i.e. using only the local
MAP, Fig. 1 shows an example of signals where the D-MAP and local-
ized estimates are compared at times t ∈ [32, 56]. For reference, the
centralized estimates as well as the source signal are given as well. More
generally, Fig. 2 compares the MSE of the D-MAP and the local MAP
with the centralized MAP for all estimated times t = 1...100, averaged
over all 1000 simulation runs with randomly generated signals. With a
steady-state MSEs of around 1.02 for the centralized MAP, the D-MAP
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Fig. 2. Difference of mean squared error between D-MAP and central-
ized MAP compared to difference of mean squared error between local
MAP and centralized MAP for the time t ∈ [0, 100]. The D-MAP gives
significant improvement over the local MAP.

shows an average MSE of 1.05 and thusly presents a significant improve-
ment over the local MAP with an MSE of 1.1. Note also that it takes the
local MAP 18 seconds to reach its steady-state performance whereas 9
seconds are enough for the D-MAP.

5. CONCLUSION

This paper proposes an algorithm for the estimation of time-varying sig-
nals with a sensor network collecting noisy observations, which is of
a distributed and adaptive nature while at the same time incorporating
global information from neighboring nodes. We discuss the optimality
of Lagrange multipliers, from which the optimality of primal iterates fol-
lows as a corollary. When certain smoothness and continuity assump-
tions on the primal and dual functions are fulfilled, we claim that (i) the
Lagrange multipliers converge in mean to the optimal multipliers, (ii) the
Lagrange multipliers visit near optimality infinitely often almost surely,
where the proximity to optimality depends on the sampling time. Numer-
ical results corroborate theoretical findings, as the D-MAP improves the
estimate for the current time in comparison to the local MAP.
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