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Abstract—We present a framework for the estimation of time-

varying random signals with wireless sensor networks. Given a

continuous time model, sensors collect noisy observations according

to the discrete-time equivalent system defined by the sampling period

of observations. Estimation is performed locally using a maximum

a posteriori probability estimator (MAP) within a time window. To

incorporate information from neighboring sensors we introduce La-

grange multipliers to penalize the disagreement between estimates.

We show that the distributed (D-)MAP algorithm is able to track

dynamical signals with an error characterized in terms of problem

constants. This error vanishes with the sampling period if the log-

likelihood function satisfies a smoothness condition.

I. INTRODUCTION

We consider the problem of estimating a time varying signal
with a distributed sensor network collecting noisy observations
of the signal of interest. To track this dynamical system we
implement a distributed estimation algorithm in which sensors
rely on local observations and communication with neighboring
nodes. We meet this goal using maximum a posteriori probability
(MAP) estimates and design a mechanism to incorporate global
information into local estimates. At each time step t sensors
estimate the state of the system at the same time t while coming
close to the optimal centralized MAP that would be computed if
all observations were available at a central location.

The first idea proposed to mediate the incorporation of global
information within local estimates is the consensus algorithm,
relying on iterative averaging of neighboring values. They are
well studied for linear static estimation problems, e.g. [2], [3], and
have also been adapted for linear dynamic estimation [4]. Variants
of consensus algorithms include gossip algorithms in which
data exchanges happen between pairs of neighbors only [5]. As
iterative algorithms, most consensus methods in [2], [4], [5] for
estimation of time varying signals assume that communications
occur in a time scale separate from the timeline of the dynamic
system. An approach that doesn’t suffer from this drawback are
diffusion algorithms [6].

An alternative approach to incorporate global information into
local estimates is to introduce Lagrange multipliers effectively
setting a price on disagreement that sensors try to minimize.
This approach can be rendered optimal by introducing Lagrange
multiplier updates based in dual gradient descent [7] or the
alternating direction method of multipliers [8] – see also [9]
for a tutorial review. This paper generalizes the price mediation
algorithms of [8]–[10] to dynamic nonlinear MAP estimation
problems. Our work also differs from most existing works on
dynamic estimation in that we use a common time scale for
communications and the evolution of the process. When using
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a single time scale each iteration of the price update algorithm
brings the sensors closer to agreement on the MAP estimate
while the process, and as consequence the MAP estimate, drifts
to a new value. The technical contribution of this paper is
to characterize this tradeoff by showing that local estimates
approach the centralized MAP estimator with a small error which
we characterize in terms of problem-specific constants.

Section II starts by introducing the dynamical model in
continuous time and its equivalent sampled model in discrete
time and follows by formulating the global MAP estimation
problem. Under the assumption that log-likelihood functions
are concave, the equivalent constrained optimization problem is
convex allowing us to work in the dual domain. The distributed
(D)-MAP algorithm is then obtained by implementing gradient
descent in the dual function as discussed in Section II-A. To
clarify discussion we particularize D-MAP to the estimation
of a nonlinear, quantized variant of Gaussian AR process in
which estimates rely on quantized observations in Section II-B.
Section III discusses the convergence properties of the D-MAP
algorithm, where our focus lies on studying the distance between
dual iterates and the optimal dual variables. Specifically, we
prove that: (i) The Lagrange multipliers converge in mean to
a close neighborhood around the optimal multipliers. (ii) The
Lagrange multipliers almost surely visit a near optimality region
infinitely often. Finally, numerical experiments for the quantized
observations model of Section II-B are given in Section IV.

II. PROBLEM FORMULATION

Consider a connected symmetric sensor network G composed
of K sensors and let nk denote the set of neighbors of sensor k.
The network is deployed to estimate a J ⇥ 1 continuous time-
varying vector signal sa(⌧) = [sa1(⌧), sa2(⌧), , . . . , saJ(⌧)]

T .
Each sensor k collects a J ⇥ 1 vector observation which we
denote as xak(⌧) = [xak1(⌧), xak2(⌧), . . . , xakJ(⌧)]

T . We
assume that observations xak(⌧) collected at different sensors
are conditionally independent given the signal sa(⌧) and that the
conditional probability density function (pdf) P (xa(⌧)|sak(⌧)) is
known at each sensor. We further assume that the process of time-
varying signal values sa(⌧) can be described by a differential
equation of the form

˙sa(⌧) = fas(sa(⌧),ua(⌧)), (1)

where ua(⌧) denotes a stationary white driving input signal.
For any time step h and given current state sa(⌧), (1) de-
termines a time-invariant transition pdf which we denote as
P (sa(⌧ + h)|sa(⌧)). We assume that this pdf as well as the
observation model pdf P (xa(⌧)|sa(⌧)) are log-concave, i.e.
the logarithms ln P (xa(⌧)|sa(⌧)) and ln P (sa(⌧ + h) |sa(⌧)) are
concave functions of the signal values sa(⌧) and sa(⌧ + h).
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To estimate sa(⌧) we consider the equivalent discrete time
model sn = sa(nTs) obtained by sampling sa(⌧) at intervals
of length Ts. Likewise, we consider discrete-time observations
xn
k = xak(nTs) = [x

n
k1, x

n
k2, . . . , x

n
kJ ]

T obtained at the same
sampling instances and define the vector xn

= [xn
1
T
, . . . ,xn

K
T
]

T

stacking the observation samples of all nodes for time n. We
use P (xn

k |sn) = P (xak(nTs)|sa(nTs)) and P
�
sn|sn�1

�
=

P (sa((n+ 1)Ts)|sa(nTs)) to denote the kth sensor observation
pdf and the state transition pdf, respectively.

In estimation of time-varying processes the goal is to compute
estimates s0, . . . , st of all observed signals given all collected
observations x0

, . . . ,xt. To avoid excessive memory growth we
introduce a time window of length W and focus instead on
computing estimates st�W+1

, . . . , st during the window length
using the observations xt�W+1

, . . . ,xt collected during the same
window. Let t denote the current time index so that the window
of interest includes observations and signals between times
t � W + 1 and t. Denote as s(t) := [st�W+1T

. . . st
T
]

T and
xk(t) := [xt�W+1

k

T
. . .xt

k
T
]

T the vector containing all signals
and observations during the window for given sensor k respec-
tively, and further define x(t) := [xT

1 (t), . . . ,x
T
K(t)]

T grouping
observations for all sensors and all times during the window.
Define the vector sMAP(t) = [st�W+1

MAP (t)

T
. . . stMAP(t)

T
]

T of all
MAP estimates between times t�W + 1 and t as

sMAP(t) = argmax

s
P (s|x(t)) = argmax

s
P (x(t)|s) P (s) , (2)

where Bayes’ rule is used in the second equality. Recalling the
conditional independence of the observations at different sensors,
the conditional probability in (2) can be rewritten as

P (x(t)|s) =
tY

n=t�W+1

KY

k=1

P (xn
k |sn) . (3)

Similarly, using the Markov property of the continuous model
according to which sn only depends on sn�1 but not on previous
data we can write the prior distribution in (2) as

P (s) =
tY

n=t�W+1

P
�
sn|sn�1

�
. (4)

Substituting (3) and (4) for the corresponding terms in (2) leads
to

sMAP(t) = argmax

s

tY

n=t�W+1

P
�
sn|sn�1

� KY

k=1

P (xn
k |sn) . (5)

Notice that the estimator sMAP(t) is obtained through the max-
imization of a time-varying objective because observations xn

k
shift to the left as time t progresses. Since the logarithm is a
monotonously increasing function we can alternatively write the
MAP estimate in (5) as

sMAP(t) = argmax

s
f(MAP)(s, t)

= argmax

s

tX

n=t�W+1

✓ KX

k=1

�
ln P (xn

k |sn)
�
+lnP

�
sn|sn�1

�◆
,

(6)

where we defined the function f(MAP)(s, t) to denote the central-
ized log-likelihood function at time t whose maximization yields
MAP estimates sMAP(t). Since we assume that the probability

distributions P (xn
k |sn) and P

�
sn|sn�1

�
are log-concave, the like-

lihood function f(MAP)(s, t) is concave. Thus, the computational
complexity of solving (6) is approximately cubic in the window
size and the dimension of the signal vector sn. This means that
computation of MAP estimates at a centralized location can be
carried at manageable computational complexity even for large
window sizes. Concavity of f(MAP)(s, t) also permits devising a
distributed implementation as we discuss in the next section.

A. Distributed maximum a posteriori probability estimators

Formulated as in (6), the MAP estimator cannot be im-
plemented in a distributed manner because the MAP estimate
sMAP(t) is a variable global to the network. In order to propose
a distributed algorithm, we rely on dual reformulations that
are standard in convex optimization. Start by introducing local
estimates snk (t) for all sensors k and times n 2 [t � W + 1, t]

within the current window and reformulate (6) as the time-
varying constrained optimization problem

s⇤(t) = argmax

s

tX

n=t�W+1

KX

k=1

ln P (xn
k |snk ) + ln P

�
snk |sn�1

k

�

(7)
s.t. snk = snl , for all l 2 nk,

for all n = t�W + 1, . . . , t

where we introduced the vector s⇤(t) stacking local estimates
snk

⇤
(t) for all sensors and times. For a connected network

the constraints snk = snl reduce the feasible space of (7) to
configurations that have the same values at all sensors, i.e., they
require snk = snl for all pairs of sensors k, l and times n. Then the
centralized problem (6) and the constrained optimization problem
(7) are equivalent, i.e. s⇤k(t) = sMAP(t) if the latter exists.

If we denote the edge incidence matrix of the directed network
as Ck, we can define a replicated version as C where each
1,�1 and 0 in the matrix are replaced by the identity matrix
I,�I and the zero matrix 0 of size J respectively. Then the
equality constraints in (7) can be written in the more compact
notation Cs = 0. Further defining local objectives fk(sk, t) =Pt

n=t�W+1 ln P (xn
k |snk ) + (1/K) lnP

�
snk |s

n�1
k

�
and global D-

MAP objectives f0(s, t) =
P

k fk(sk, t) we can rewrite (7) as

s⇤(t) = argmax

s
f0(s, t) =

KX

k=1

fk(sk, t),

s.t. Cs = 0. (8)

Since the equality constraints are linear and the maximand is
concave in the variables snk , the optimization problem in (7) is
convex. Thus, we can equivalently work with the Lagrangian dual
problem of (7). To do so, associate the Lagrange multiplier �n

kl

with the constraint snk = snl for the optimization problem at time
t and define the Lagrangian as

L(s,�, t) =
tX

n=t�W+1

KX

k=1


ln P (xn

k |snk ) +
1

K

ln P
�
snk |sn�1

k

�

+

X

l2nk

�n
kl

T
(snk � snl )

�
(9)

where � stacks the Lagrange multipliers for all links k, l and
times n. Observe that the Lagrangian in (9) is time-varying
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because it depends on the observations x(t) collected during the
current window. The dual function, which is also time-varying, is
defined as the maximum of the Lagrangian with respect to primal
variables, g(�, t) = argmaxs L(s,�, t), and the dual problem is
defined as the minimization of the dual function. We denote as
⇤⇤

(t) the set of optimal dual variables for the dual function
g(�, t).

Because the dual function is convex, we can use a gradient
descent algorithm to update multipliers � so that they approach
the optimal multiplier set ⇤⇤

(t). Since we want to handle
communications in the same timeline as the samples of the signal
we consider dual iterates �(t) which we want to update according
to the gradient descent algorithm

�(t+ 1) = �(t)� ✏rg(�(t), t), (10)

with some given stepsize ✏. Notice that in (10), �(t+1) is updated
according to the gradient of the dual function g(�(t), t) at time
t, but we are interested in its optimality with respect to the dual
function g(�, t+1) at time t+1. To compute the gradient of the
dual function consider the Lagrangian primal maximizers s(t) :=
argmaxL(s,�(t), t) for given dual iterate �(t). The gradient
component associated with link k, l and time n is then given by
the corresponding constraint slack

h
rg(�(t), t)

in
kl

= snk (t)� snl (t). (11)

Further notice that because of the symmetry of the network, the
last sum in (9) can be rearranged so that it is expressed as a sum
of primal variables snk instead of as a sum of dual variables �n

kl.
If we do so, the Lagrangian can be separated into a sum of local
Lagrangians, i.e., we can write L(s,�, t) =

PK
k=1 Lk(sk,�, t)

with

Lk(sk,�, t) =
tX

n=t�W+1


ln P (xn

k |snk ) +
1

K

ln P
�
snk |sn�1

k

�

+

X

l2nk

snk
T
(t)(�n

kl � �n
lk)

�
. (12)

Since separate maximization of the local Lagrangians in (12)
results in the maximization of their sum, it follows that the
Lagrangian maximizers snk (t) necessary to compute the dual
gradient components in (11) can be determined in a distributed
manner. This permits the definition of a distributed MAP (D-
MAP) algorithm which we formulate as an iterative application
of the following items.

Primal iteration. Given dual iterate �(t) at time t, determine
primal Lagrangian maximizers as

sk(t) = argmax

sk

tX

n=t�W+1


ln P (xn

k |snk ) +
1

K

ln P
�
snk |sn�1

k

�

+

X

l2nk

snk
T
(�n

kl(t)� �n
lk(t))

�
. (13)

Dual iteration. Given primal iterates s(t) update dual iterates as

�n
kl(t+ 1) = �n

kl(t)� ✏

�
snk (t)� snl (t)

�
(14)

To implement the primal iteration, sensor k needs access to the
local multipliers �n

k (t) and the multipliers �n
l (t) for neighboring

sensors l 2 nk. Likewise, to implement the dual iteration, only
local snk (t) and neighboring snl (t) primal variables are needed.

B. Quantized observations

To illustrate the D-MAP algorithm in (13) and (14) consider its
application to a quantized model based on the following Gaussian
AR model. Consider the case where the state sa(⌧) and signal
xak(t) evolve and are related according to

˙sa(⌧) = Aa sa(⌧) + ua(⌧) (15)
xak(⌧) = Hak sa(⌧) + nak(⌧) (16)

where ua(⌧) is the driving noise drawn from a zero-mean
Wiener process with covariance matrix Qa, and na(⌧) represents
Gaussian observation noise drawn from a zero-mean Wiener
process with covariance matrix Ra. An equivalent discrete-time
model can be obtained by solving the differential equation (15)
between times nTs and (n + 1)Ts with initial condition sn to
get [1]

sn+1
= Asn + un (17)

xn
k = Hk s

n
+ nn

k (18)

where the discrete model parameters depend on the sampling time
Ts and can be explicitly computed. The matrices in (17)-(18) are
given by A = exp(Aa Ts), Hk = Hak, while the driving and
observation noises are white Gaussian with covariance matrices
Q = E

h
unT

un
i
= (Qa/2)A

�1
a (exp(2Aa Ts) � I) and Rk =

E
h
nnT

k nn
k

i
= Rak/Ts. Consider the quantization of the linear

model in (17)-(18) where sensors are attached to a single-level
quantizer that produces binary observations yn

k = [y

n
k1, . . . , y

n
kJ ]

with elements y

n
kj 2 {0, 1}. To model the quantization process

we introduce the threshold level ✓0,kj used to quantize the jth
component xn

kj of the vector observation xn
k in (18). The binary

variable ynkj indicates whether the analog observation x

n
kj exceeds

the threshold ✓0,kj , i.e. y

n
kj = I{xn

kj � ✓0,kj}. For simplicity
of exposition assume the observation noise is uncorrelated so
that the covariance matrix Rk takes on the diagonal form Rk =

diag(rk1, rk2..., rkJ). Then the log-likelihood ln P
�
yn
k |sn

�
can be

computed as

ln P (yn
k |sn) =

JX

j=1

⇣
y

n
kj ln P

�
y

n
kj = 1|sn

�

+ (1� y

n
kj) ln

�
1� P

�
y

n
kj = 1|sn

�� ⌘
. (19)

Let hT
k denote the k-th row of the observation matrix Hk, then

P
�
y

n
kj = 1|sn

�
can be computed by noting that the pdf of xn

kj is
normal with mean hT

k s
n and variance rkj ,

P
�
y

n
kj = 1|sn

�
=

1p
2⇡rkj

Z 1

✓0,kj

exp

✓
�1

2

(x� hT
k s

n
)r

�1
kj (x� hT

k s
n
)

◆
dx.

(20)

The resulting primal iteration in (13) then takes the form

sk(t) = argmax

sk

tX

n=t�W+1

ln P (yn
k |sn) +

1

K

(snk�Asn�1
k )

TQ�1

(snk�Asn�1
k ) +

X

l2nk

snk
T
(�n

kl(t)��n
lk(t)), (21)

with ln P (yn
k |sn) as given in (19). The dual iteration is given by

(14). It is not possible to get a closed form expression for the
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primal iteration, but the maximand in (21) is a concave function
of sn. The maximum arguments sk(t) can then be numerically
determined using Newton’s method.

III. CONVERGENCE PROPERTIES

To determine the optimality of (13)-(14), we want to assess
how the D-MAP algorithm compares to the centralized MAP.
Therefore we want to compare the distance ksk(t)�sMAP(t)k be-
tween the primal iterate sk(t) computed by sensor k at time t with
the corresponding centralized MAP estimator sMAP(t). Given the
equivalence of (6) and (7) we know that sMAP(t) = s⇤k(t) from
where it follows that the distance of interest satisfies

ksk(t)� sMAP(t)k = ksk(t)� s⇤k(t)k  ks(t)� s⇤(t)k. (22)

The rightmost term in (22) is the distance between the current
primal iterate s(t) and the optimal primal arguments s⇤(t) of
(7). As such it can be related to the distance between the current
dual iterate �(t) and the set of optimal dual variables ⇤⇤

(t).
This section is devoted to the characterization of the distance
k�(t)��⇤

0(t)k between �(t) and a specific sequence of optimal
dual variables �⇤

0(t) 2 ⇤⇤
(t). The derivation of these results

requires making the following assumptions on the edge incidence
matrix Ck, the log-likelihood functions f0(s, t) and the initial
Lagrange multipliers �(0).

(A1) The sensor network is connected. Equivalently, the edge-
incidence matrix Ck has K � 1 nonzero singular values
0 < �2 = �  · · ·  �K = �.

(A2) The eigenvalues of the Hessians r2
f0(s, t) of the dis-

tributed log-likelihood functions f0(s, t) are upper bounded
by the Lipschitz constant 1/m so that for arbitrary vectors
s and r and all times t we can write

f0(s, t)  f0(r, t)+rf0(r, t)
T
(s�r)+

1

2m

ks�rk2. (23)

(A3) The eigenvalues of the Hessians r2
f0(s, t) of the dis-

tributed log-likelihood functions f0(s, t) are lower bounded
by the strong convexity constant 1/M so that for arbitrary
vectors s and r and all times t it holds

f0(s, t) � f0(r, t)+rf0(r, t)
T
(s�r)+

1

2M

ks�rk2. (24)

(A4) The Lagrange multipliers are initialized at some value
�(0) 2 Im(CT

) in the image of the transpose edge
incidence matrix CT .

(A5) Consider the gradients rf0(s
⇤
(t), t) and rf0(s

⇤
(t+1), t+

1) of the log-likelihood functions f0(s, t) and f0(s, t+ 1)

at subsequent times t and t+1 evaluated at corresponding
optimal points s⇤(t) and s⇤(t+ 1). The expected value of
the norm of this difference given past observations up to
time t is bounded by a vanishing constant �(Ts). Denoting
by x(0 : t) = x0

. . .xt the past observations, it holds

lim

Ts!0
E
⇥��rf0

�
s⇤(t), t

�
�rf0

�
s⇤(t+ 1), t+ 1

���
��x(0 : t)

⇤
 �(Ts), (25)

for some �(Ts) function with limTs!0 �(Ts) = 0.
Assumption (A1) is typical in distributed algorithms, where

�

2 is the spectral gap of the network graph characterizing the
diffusion of information in distributed algorithms. Assumptions
(A2) and (A3) are customary in the analysis of descent algorithms

except that we require them of the primal objectives f0(s, t)
while we descend on the dual functions g(�, t). They can be
translated into similar statements of the dual Hessian using the
extremal singular values � and �. Assumption (A4) is easy to
ensure as it suffices to make �(0) = 0. Assumption (A5) limits
the variability of the log-likelihood function f0(s, t). This is a
reasonable requirement because descending along the gradient
rg(�(t), t) of the dual function g(�, t) corresponding to time
t is sensible only if this function is close to the dual function
g(�, t + 1) corresponding to time t + 1. Having close dual
functions can be satisfied if the primal functions f0(s, t) and
f0(s, t+ 1) are close.

The main result of this paper concerns the difference between
dual iterates �(t) to some optimal dual variables �⇤

0(t) 2 ⇤⇤
(t).

Theorem 1 states two asymptotic stochastic bounds on the
distance k�(t) � �⇤

0(t)k (see [1] for the proof). The first is a
mean bound that holds across ensemble averages, and the second
bound holds almost surely for individual realizations.

Theorem 1 Let �(t) denote the vector with current dual iterates

obtained at time t from (14) and �⇤
0(t) 2 Im(CT

) denote the

unique optimal argument of the dual function g(�, t) that lies in

the image of the transposed replicated edge incidence matrix CT
.

Assume the step size ✏ < 1/�

2
M . If assumptions (A1)-(A5) hold,

the expected value of the distance between the dual multipliers

�(t) and the optimal multipliers �⇤
0(t) at time t satisfies

lim inf

t!1
E [k�(t)� �⇤

0(t)k] 
1 + ✏m�

2

✏m�

3
�(Ts). (26)

Furthermore, for almost all realizations of the observation pro-

cess x(t) it holds

lim inf

t!1
k�(t)� �⇤

0(t)k  1 + ✏m�

2

✏m�

3
�(Ts) a.s. (27)

The first result in (26) states that the mean across different
realizations of the process k�(t) � �⇤

0(t)k becomes small. The
second result states that all processes eventually reach the same
small value although they may deviate from this value with
some probability. Further notice that for smooth log-likelihood
functions having continuous gradients, the gradient difference
(25) vanishes with decreasing sampling time. It is therefore
possible to approximate �⇤

0 arbitrarily by reducing the sampling
time. We can then interpret Theorem 1 as a means for selecting
Ts to achieve a prescribed error tolerance in the difference
k�(t)� �⇤

0(t)k.
Coming back to the original goal, the distance between D-

MAP estimates s(t) and MAP estimates s⇤(t) can be bounded
by the dual suboptimality distance k�(t) � �⇤

0(t)k. Combining
this result with the bounds in Theorem 1 characterizes the steady
state behavior of D-MAP. D-MAP estimates are close to MAP
estimates on average [cf. (26)] and for almost all realizations of
the dynamic system of interest D-MAP estimates are close to
MAP estimates infinitely often [cf. (27)]. The bound depends
on the condition number m/M of the primal objective, the
spectral radius � of the edge incidence matrix, and the objective
smoothness parameter �(Ts).

IV. SIMULATION RESULTS

We implement the D-MAP algorithm in (13)-(14) for the
quantized observations model of Section II-B. We compare
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Fig. 1. Empirical mean squared error (MSE) for centralized MAP, D-MAP,
and L-MAP and worst empirical MSE for times ⌧ 2 [0, 30 s], averaged over
103 simulation runs for a binary quantized model. The empirical MSE of D-
MAP estimates is closer than that of L-MAP estimates to the empirical MSE of
centralized MAP estimates.

performance of D-MAP estimates sk(t) to the centralized MAP
estimator sMAP(t) in (6), which would be computed if all
observations were available at a common location, and local
(L-) MAP estimates ˆsk(t) computed using local observations
only. Consider a WSN with K = 8 sensors and edges between
any two sensors k and l present with probability 1/2. Sensors
collect quantized binary observations as dictated by the model
in Section II-B. The signal s(⌧) = s(⌧) is a scalar temperature
reading and the parameters of the linear model serving as basis
to the quantized model correspond to the state transition matrix
Aa = aa� 0.01/s, signal noise variance Qa = qa = 0.5

�
C

2
/s2,

observation noise covariances Rak = rak = 1

�
C

2 for every
sensor k, and observation matrices Hak = hak = 1 for all sensors
k. We set the sampling time to Ts = 0.166 s and the initial
temperature to s(0) = 20

�
C. Quantization thresholds are set to

✓0,k1 = ✓0,k = 20

�
C for all sensors k. The system is simulated

for 180 observation slots corresponding to a total elapsed time of
30 s. The estimation window is again set to W = 3. For D-MAP
the Lagrange multipliers are initialized to �kl(0) = 0 for all
links (k, l). D-MAP estimates are computed according to (21).
The stepsize for D-MAP for each edge (k, l) and signal j set to
0.1 times the inverse of its respective diagonal entry in the dual

Hessian of the corresponding Gaussian linear model.
Fig. 1 shows simulation results for the described setup. Fig.

1 compares the MSEs over 10

3 simulation runs. The empirical
MSE of the centralized MAP is shown along with the average
empirical MSEs of D-MAP (left) and L-MAP (right) as well
as the worst empirical MSE for D-MAP and L-MAP for times
⌧ 2 [0, 30 s]. At steady state the MSE of the centralized MAP
is 1.00

�
C

2. The steady state MSE of D-MAP is about 1.05�C2

whereas it is 1.1

�
C

2 for the L-MAP. A better transient behavior
of the D-MAP can also be observed by the time it takes to reach
the steady state MSE which is 9 s for the D-MAP and 12 s for
the L-MAP. This improvement in performance is stronger for the
worst empirical MSE. While the worst empirical MSE for D-
MAP attains a steady-state value of 1.15�C2 after time ⌧ = 10 s,
the L-MAP takes ⌧ = 20 s to approach a worst steady-state MSE
of 1.3�C2.

V. CONCLUSION

This paper proposes an algorithm for the estimation of time-
varying signals with a sensor network collecting noisy obser-
vations, which is of a distributed and adaptive nature while at
the same time incorporating global information from neighboring
nodes. We discuss the optimality of Lagrange multipliers, from
which the optimality of primal iterates follows as a corollary.
When certain smoothness and continuity assumptions on the
primal and dual functions are fulfilled, we claim that (i) the
Lagrange multipliers converge in mean to the optimal multipliers,
(ii) the Lagrange multipliers visit near optimality infinitely often
almost surely, where the proximity to optimality depends on the
sampling time. Numerical results corroborate theoretical findings,
as the D-MAP improves the estimate for the current time in
comparison to the local MAP.
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