
A Distributed Line Search for Network Optimization
Michael Zargham†, Alejandro Ribeiro†, Ali Jadbabaie†

Abstract—Dual descent methods are used to solve network
optimization problems because descent directions can be com-
puted in a distributed manner using information available
either locally or at neighboring nodes. However, choosing a
stepsize in the descent direction remains a challenge because its
computation requires global information. This work presents
an algorithm based on a local version of the Armijo rule that
allows for the computation of a stepsize using only local and
neighborhood information. We show that when our distributed
line search algorithm is applied with a descent direction com-
puted according to the Accelerated Dual Descent method [18],
key properties of standard backtracking line search using the
Armijo rule are recovered. We use simulations to demonstrate
that our algorithm is a practical substitute for its centralized
counterpart.

I. INTRODUCTION

Conventional approaches to distributed network optimiza-
tion are based on iterative descent in either the primal or dual
domain. The reason for this is that for many types of network
optimization problems there exist descent directions that can
be computed in a distributed fashion. Subgradient descent
algorithms, for example, implement iterations through dis-
tributed updates based on local information exchanges with
neighboring nodes; see e.g., [7], [10], [12], [17]. However,
practical applicability of the resulting algorithms is limited
by exceedingly slow convergence rates typical of gradient
descent algorithms. Furthermore, since traditional line search
methods require global information, fixed stepsizes are used,
exacerbating the already slow convergence rate, [14], [15].

Faster distributed descent algorithms have been recently
developed by constructing approximations to the Newton
direction using iterative local information exchanges, [1],
[9], [18]. These results build on earlier work in [2] and
[11] which present Newton-type algorithms for network flow
problems that, different from the more recent versions in [9]
and [18], require access to all network variables. To achieve
global convergence and recover quadratic rates of centralized
Newton’s algorithm [9] and [18] use distributed backtracking
line searches that use average consensus to verify global
exit conditions. Since each backtracking line search step
requires running a consensus iteration with consequently
asymptotic convergence [6], [5], the exit conditions of the
backtracking line search can only be achieved up to some
error. Besides introducing inaccuracies, computing stepsizes
with a consensus iteration is not a suitable solution because
the consensus iteration itself is slow. Thus, the quadratic

This research is supported by Army Research Lab MAST Collaborative
Technology Alliance, AFOSR complex networks program, ARO P-57920-
NS, NSF CAREER CCF-0952867, and NSF CCF-1017454, ONR MURI
N000140810747 and NSF-ECS-0347285.

†Michael Zargham, Alejandro Ribeiro and Ali Jadbabaie are with the De-
partment of Electrical and Systems Engineering, University of Pennsylvania.

convergence rate of the algorithms in [9] and [18] is to some
extent hampered by the linear convergence rate of the line
search. This paper presents a distributed line search algorithm
based on local information so that each node in the network
can solve its own backtracking line search using only locally
available information.

Work on line search methods for descent algorithms can
be found in [16], [20], [8]. The focus in [16] and [20] is on
nonmonotone line searches which improve convergent rates
for Newton and Newton-like descent algorithms. The objec-
tive in [8] is to avoid local optimal solutions in nonconvex
problems. While these works provide insights for developing
line searches they do not tackle the problem of dependence
on information that is distributed through nodes of a graph.

To simplify discussion we restrict attention to the network
flow problem. Network connectivity is modeled as a directed
graph and the goal of the network is to support a single
information flow specified by incoming rates at an arbitrary
number of sources and outgoing rates at an arbitrary number
of sinks. Each edge of the network is associated with a
concave function that determines the cost of traversing that
edge as a function of flow units transmitted across the link.
Our objective is to find the optimal flows over all links.
Optimal flows can be found by solving a concave optimiza-
tion problem with linear equality constraints (Section II).
Evaluating a line search algorithm requires us to choose
a descent direction. We choose to work with the family
of Accelerated Dual Descent (ADD) methods introduced in
[18]. Algorithms in this family are parameterized by the
information dependence between nodes. The N th member
of the family, shorthanded as ADD-N, relies on information
exchanges with nodes not more than N hops away. Similarly,
we propose a group of line searches that can be implemented
through information exchanges with nodes in this N hop
neighborhood.

Our work is based on the Armijo rule which is the
workhorse condition used in backtracking line searches, [13,
Section 7.5]. We construct a local version of the Armijo
rule at each node by taking only the terms computable at
that node, using information from no more than N hops
away(Section III). Thus the line search always has the same
information requirements as the descent direction computed
via the ADD-N algorithm. Our analytical results (Section
IV) leverage the information dependence properties of the
algorithm to show that key properties of the backtracking line
search are preserved: (i) We guarantee the selection of unit
stepsize within a neighborhood of the optimal value (Section
IV-A). (ii) Away from this neighborhood, we guarantee a
strict decrease in the optimization objective (Section IV-B).
These properties make our algorithm a practical distributed

2012 American Control Conference
Fairmont Queen Elizabeth, Montréal, Canada
June 27-June 29, 2012

978-1-4577-1096-4/12/$26.00 ©2012 AACC 472

alternative to standard backtracking line search techniques.
See [19] for the proofs. Simulations further demonstrate that
our line search is functionally equivalent to its centralized
counterpart (Section V).

II. NETWORK OPTIMIZATION

Consider a network represented by a directed graph G =
(N , E) with node set N = {1, . . . , n}, and edge set E =
{1, . . . , E}. The ith component of vector x is denoted as
xi. The notation x � 0 means that all components xi �
0. The network is deployed to support a single information
flow specified by incoming rates bi > 0 at source nodes and
outgoing rates bi < 0 at sink nodes. Rate requirements are
collected in a vector b, which to ensure problem feasibility
has to satisfy

P
n

i=1 b
i = 1. Our goal is to determine a flow

vector x = [xe]
e2E , with xe denoting the amount of flow on

edge e = (i, j).
Flow conservation implies that it must be Ax = b, with A

the n⇥ E node-edge incidence matrix defined as

[A]
ij

=

8
<

:

1 if edge j leaves node i,
�1 if edge j enters node i,
0 otherwise,

where [A]
ij

denotes the element in the ith row and jth
column of the matrix A. We define the reward as the negative
of scalar cost function �

e

(xe) denoting the cost of xe units
of flow traversing edge e. We assume that the cost functions
�
e

are strictly convex and twice continuously differentiable.
The maximum reward network optimization problem is then
defined as

maximize �f(x) =
P

E

e=1 ��
e

(xe)
subject to: Ax = b.

(1)

Our goal is to investigate a distributed line search technique
for use with Accelerated Dual Descent (ADD) methods
for solving the optimization problem in (1). We begin by
discussing the Lagrange dual problem of the formulation
in (1) in Section II-A) and reviewing the ADD method in
Section II-B.

A. Dual Formulation

Dual descent algorithms solve (1) by descending on the La-
grange dual function q(�). To construct the dual function con-
sider the Lagrangian L(x,�) = �

P
E

e=1 �e

(xe)+�0(Ax�b)
and define

q(�) = sup
x2RE

L(x,�)

= sup
x2RE

�

EX

e=1

�
e

(xe) + �0Ax

!
� �0b

=
EX

e=1

sup
x

e2R

⇣
(�0A)exe � �

e

(xe)
⌘
� �0b, (2)

where in the last equality we wrote �0Ax =
P

E

e=1(�
0A)exe

and exchanged the order of the sum and supremum operators.

It can be seen from (2) that the evaluation of the dual
function q(�) decomposes into the E one-dimensional opti-
mization problems that appear in the sum. We assume that
each of these problems has an optimal solution, which is
unique because of the strict convexity of the functions �

e

.
Denote this unique solution as xe(�) and use the first order
optimality conditions for these problems in order to write

xe(�) = (�0
e

)�1(�i � �j), (3)

where i 2 N and j 2 N respectively denote the source and
destination nodes of edge e = (i, j). As per (3) the evaluation
of xe(�) for each node e is based on local information
about the edge cost function �e and the dual variables of
the incident nodes i and j.

The dual problem of (1) is defined as min
�2Rn q(�).

The dual function is convex, because all dual functions of
minimization problems are, and differentiable, because the
�
e

functions are strictly convex. Therefore, the dual problem
can be solved using any descent algorithm of the form

�
k+1 = �

k

+ ↵
k

d
k

for all k � 0, (4)

where the descent direction d
k

satisfies g0
k

d
k

< 0 for all
times k with g

k

= g(�
k

) = rq(�
k

) denoting the gradient of
the dual function q(�) at � = �

k

. An important observation
here is that we can compute the elements of g

k

as

gi
k

=
X

e=(i,j)

xe(�
k

)�
X

e=(j,i)

xe(�
k

)� b
i

. (5)

with the vector x(�
k

) having components xe(�
k

) as deter-
mined by (3) with � = �

k

, [3, Section 6.4]. An important
fact that follows from (5) is that the ith element gi

k

of
the gradient g

k

can be computed using information that
is either locally available x(i,j) or available at neighbors
x(j,i). Thus, the simplest distributed dual descent algorithm,
known as subgradient descent takes d

k

= �g
k

. Subgradient
descent suffers from slow convergence so we work with an
approximate Newton direction.

B. Accelerated Dual Descent
The Accelerated Dual Descent (ADD) method is a param-

eterized family of dual descent algorithms developed in [18].
An algorithm in the ADD family is called ADD-N and each
node uses information from N -hop neighbors to compute
its portion of an approximate Newton direction. Two nodes
are N -hop neighbors if the shortest undirected path between
those nodes is less than or equal to N .

The exact Newton direction d
k

is defined as the solution
of the linear equation H

k

d
k

= �g
k

where H
k

= H(�
k

) =
r2q(�

k

) denotes the Hessian of the dual function. We
approximate d

k

using the ADD-N direction defined as

d
(N)
k

= �H̄
(N)
k

g
k

(6)

where the approximate Hessian inverse, H̄(N)
k

is defined

H̄
(N)
k

=
NX

r=0

D
� 1

2
k

⇣
D

� 1
2

k

B
k

D
� 1

2
k

⌘
r

D
� 1

2
k

(7)

473

using a Hessian splitting: H
k

= D
k

� B
k

where D
k

is the
diagonal matrix [D

k

]
ii

= [H
k

]
ii

. The resulting accelerated
dual descent algorithm

�
k+1 = �

k

+ ↵
k

d
(N)
k

for all k � 0, (8)

can be computed using information from N -hop neighbors
because the dependence structure of g

k

shown in equation
(5) causes the Hessian to have a local structure as well:
[H

k

]
ij

6= 0 if and only if (i, j) 2 E . since H
k

has the
sparsity pattern of the network, B

k

and thus D
� 1

2
k

B
k

D
� 1

2
k

must also have the sparsity pattern of the graph. Each term
D

� 1
2

k

⇣
D

� 1
2

k

B
k

D
� 1

2
k

⌘
r

D
� 1

2
k

is a matrix which is non-zero
only for r-hop neighbors so the sum is non-zero only for
N -hop neighbors.

Analysis of the ADD-N algorithm fundamentally depends
on a network connectivity coefficient ⇢̄, which is defined in
[18] as the bound

⇢
�
B

k

D�1
k

�
 ⇢̄ 2 (0, 1) (9)

where ⇢(·) denotes the second largest eigenvalue modulus.
When ⇢̄ is small, information in the network spreads effi-
ciently and d

(N)
k

is a more exact approximation of d
k

. See
[18] for details.

III. DISTRIBUTED BACKTRACKING LINE SEARCH

Algorithms ADD-N for different N differ in their in-
formation dependence. Our goal is to develop a family
of distributed backtracking line searches parameterized by
the same N and having the same information dependence.
The idea is that the N th member of the family of line
searches is used in conjunction with the N th member of
the ADD family to determine the step and descent direction
in (8). As with the ADD-N algorithm, implementing the
distributed backtracking line search requires each node to
get information from its N -hop neighbors.

Centralized backtracking line searches are typically in-
tended as method to find a stepsize ↵ that satisfies Armijo’s
rule. This rule requires the stepsize ↵ to satisfy the inequality

q(�+ ↵d) q(�) + �↵d0g, (10)

for given descent direction d and search parameter � 2
(0, 1/2). The backtracking line search algorithm is then
defined as follows:

Algorithm 1. Consider the objective function q(·) and given
variable value � and corresponding descent direction d and
dual gradient g. The backtracking line search algorithm is:

Initialize ↵ = 1
while q(�+ ↵d) > q(�) + �↵d0g

↵ = ↵�
end

The scalars � 2 (0, 1) and � 2 (0, 1/2) are given parame-
ters.

This line search algorithm is commonly used with New-
ton’s method because it guarantees a strict decrease in the

objective and once in an error neighborhood it always selects
↵ = 1 allowing for quadratic convergence, [4, Section 9.5].

In order to create a distributed version of the backtracking
line search we need a local version of the Armijo Rule. We
start by decomposing the dual objective q(�) =

P
n

i=1 qi(�)
where the local objectives takes the form

q
i

(�) =
X

e=(j,i)

�
e

(xe)� �
i

(a0
i

x� b
i

). (11)

The vector a0
i

is the ith row of the incidence matrix A. Thus
the local objective q

i

(�) depends only on the flows adjacent
to node i and �i.

An N -parameterized local Armijo rule is therefore given
by

q
i

(�+ ↵
i

d) q
i

(�) + �↵
i

X

j2N (N)
i

djgj , (12)

where N (N)
j

is the set of N -hop neighbors of node j. The
scalar � 2 (0, 1/2) is the same as in (10), g = rq(�) and
d is a descent direction. Each node is able to compute a
stepsize ↵

i

satisfying (12) using N -hop information. The
stepsize used for the dual descent update (4) is

↵ = min
i2N

↵
i

. (13)

Therefore, we define the distributed backtracking line search
according to the following algorithm.

Algorithm 2. Given local objectives q
i

(·), descent direction
d and dual gradient g.

for i = 1 : n
Initialize ↵

i

= 1
while q

i

(�+ ↵
i

d) > q
i

(�) + �↵
i

P
j2N (N)

i
djgj

↵
i

= ↵
i

�
end

end
↵ = min

i

↵
i

The scalars � 2 (0, 1), � 2 (0, 1/2� ⇢̄N+1/2) and N 2 Z+

are parameters.

The distributed backtracking line search described in Al-
gorithm 2 works by allowing each node to execute its own
modified version of Algorithm 1 using only information from
N -hop neighbors. Minimum consensus of ↵

i

requires at most
diameter of G iterations. If each node shares its current
↵
i

along with gi
k

with its N -hop neighbors the maximum
number of iterations drops to ddiam(G)/Ne.

The parameter � is restricted by the network connectivity
coefficient ⇢̄ and the choice of N because these are scalars
which encode information availability. Smaller ⇢̄N+1 indi-
cates more accessible information and thus allows for greater
� and thus a more aggressive search. As ⇢̄N+1 approaches
zero, we recover the condition � 2 (0, 1) from Algorithm 1.

IV. ANALYSIS

In this section we show that when implemented with
the Accelerated Dual Descent update in (8) the distributed
backtracking line search defined in Algorithm 2 recovers

474

the key properties of Algorithm 1: strict decrease of the
dual objective and selection of ↵ = 1 within an error
neighborhood.

We proceed by outlining our assumptions. The standard
Lipshitz and strict convexity assumptions regarding the dual
Hessian are defined here.

Assumption 1. The Hessian H(�) of the dual function q(�)
satisfies the following conditions
(Lipschitz dual Hessian) There exists some constant L > 0

such that

kH(�)�H(�̄)k Lk�� �̄k 8�, �̄ 2 Rn.

(Strictly convex dual function) There exists some constant
M > 0 such that kH(�)�1k M 8� 2 Rn.

In addition to assumptions about the dual Hessian we
assume that key properties of the inverse Hessian carry
forward to our approximation.

Assumption 2. The approximate inverse Hessian remains
well conditioned,

m kH̄(N)k M.

within the subspace 1?.

These assumptions make sense because H̄(N) is a trun-
cated sum whose limit as N approaches infinity is H�1,
a matrix we already assume to be well conditioned on 1?

even when solving this problem in the centralized case.
Furthermore the first term in the sum is D�1 which is well
conditioned by construction.

We begin our analysis by characterizing the stepsize ↵
chosen by Algorithm 2 when the descent direction d is chosen
according the the ADD-N method.

Lemma 1. For any ↵
i

satisfying the distributed Armijo rule
in equation (12) with descent direction d = �H̄(N)g we have

q
i

(�+ ↵
i

d)� q
i

(�) 0.

Lemma 1 tells us that when using the distributed back-
tracking line search with the ADD-N algorithm, we achieve
improvement in each element of the decomposed objective
q
i

(�). From the quadratic form in equation (??) it also
follows that if equation (12) is satisfied by a stepsize ↵

i

,
then it is also satisfied by any ↵ ↵

i

and in particular
↵ = min

i

↵
i

satisfies equation (12) for all i.

A. Unit Stepsize Phase

A fundamental property of the backtracking line search us-
ing Armijo’s rule summarized in Algorithm 1is that it always
selects ↵ = 1 when iterates � are within a neighborhood of
the optimal argument. This property is necessary to ensure
quadratic convergence of Newton’s method and is therefore a
desirable property for the distributed line search summarized
in Algorithm 2. We prove here that this is true as stated in
the following theorem.

Theorem 1. Consider the distributed line search in Algo-
rithm 2 with parameter N , starting point � = �

k

, and descent
direction d = d

(N)
k

= �H̄
(N)
k

g
k

computed by the ADD-N
algortihm [cf. (6) and (7). If the search parameter � is chosen
such that

� 2
✓
0,

1� ⇢̄N+1

2

◆

and the norm of the dual gradient satisfies

kg
k

k 3m

LM3

�
1� ⇢̄N+1 � 2�

�
,

then Algorithm 2 selects stepsize ↵ = 1.

Theorem 1 guarantees that for an appropriately chosen line
search parameter � the local backtracking line search will
always choose a step size of ↵ = 1 once the norm of the
dual gradient becomes small. Furthermore, the condition on
the line search parameter tells us that ⇢̄ and our choice of N
fully capture the impact of distributing the line search. The
distributed Armijo rule requires

�
1� ⇢̄N+1 � 2�

�
> 0 while

the standard Armijo rule requires (1 � 2�) > 0. It is clear
that in the limit N ! 1 these conditions become the same
with a rate controlled by ⇢̄.

B. Strict Decrease Phase
A second fundamental property of the backtracking line

search with the Armijo rule is that there is a strict decrease
in the objective when iterates are outside of an arbitrary
noninfinitesimal neighborhood of the optimal solution. This
property is necessary to ensure global convergence of New-
ton’s algorithm as it ensures the quadratic convergence phase
is eventually reached. Our goal here is to prove that this
strict decrease can be also achieved using the distributed
backtracking line search specified by Algorithm 2.

Traditional analysis of the centralized backtracking line
search of Algorithm 1 leverages a lower bound on the stepsize
↵ to prove strict decrease. We take the same approach here
and begin by finding a global lower bound on the stepsize
↵̂ ↵

i

that holds for all nodes i. We do this in the following
lemma.

Lemma 2. Consider the distributed line search in Algorithm
2 with parameter N , starting point � = �

k

, and descent
direction d = d

(N)
k

= �H̄
(N)
k

g
k

computed by the ADD-N
algortihm [cf. (6) and (7). The stepsize

↵̂ = 2(1� �)
m2

M2

satisfies the local Armijo rule in (12), i.e.,

q
i

(�
k+1) q

i

(�
k

) + �↵̂
X

j2n

(N)
i

dj
k

gj
k

for all network nodes i and all k.

We proceed with the second main result using Lemma 2,
in the same manner that strict decrease is proven for the
Newton method with the standard backtracking line search
in [4][Section 9.5].

475

0 5 10 15
200

202

204

206

208

210
Primal Objective

iteration

�
ex

p(
x)

+
ex

p(
-x

)

0 5 10 15
10

-4

10
-2

10
0

10
2

Primal Feasibility

iteration

||A
x-

b|
|

0 5 10 15
0

0.5

1

1.5

2
Stepsize

iteration

�

Centralized
Distributed

Fig. 1. The distributed line search results in solution trajectories nearly
equivalent to those of the centralized line search. Top: the Primal Objective
follows a similar trajectory in both cases. Middle: Primal Feasibility is
achieved asymptotically. Bottom: unit stepsize is achieved in roughly the
same number of steps.

Theorem 2. Consider the distributed line search in Algo-
rithm 2 with parameter N , starting point � = �

k

, and descent
direction d = d

(N)
k

= �H̄
(N)
k

g
k

computed by the ADD-N
algortihm [cf. (6) and (7)]. If the norm of the dual gradient
is bounded away from zero as kg

k

k � ⌘, the function value
at �

k+1 = �
k

+ ↵
k

d
(N)
k

satisfies

q(�
k+1)� q(�

k

) ��↵̂�mN⌘2

I.e., the dual function decreases by at least ↵�mN⌘2

Theorem 2 guarantees global convergence into any error
neighborhood kg

k

k ⌘ around the optimal value because
the dual objective is strictly decreasing by, at least, the
noninfinitesimal quantity �↵̂�mN⌘2 while we remain out-
side of this neighborhood. In particular, we are guaranteed
to reach a point inside the neighborhood kg

k

k ⌘ =
3m/(LM3)

�
1� ⇢̄N+1 � 2�

�
at which point Theorem 1 will

be true and the ADD-N algorithm with the local line search
becomes simply

�
k+1 = �

k

� H̄
(N)
k

g
k

.

This iteration is shown to have quadratic convergence prop-
erties in [18].

V. NUMERICAL RESULTS

Numerical experiments demonstrate that the distributed
version of the backtracking line search is functionally equiv-
alent to the centralized backtracking line search when the
descent direction is chosen by the ADD method. The simu-
lations use networks generated by selecting edges are added
uniformly at random but are restricted to connected networks.
The primal objective function is given by �e(x) = ecx

e
+

e�cx

e
where c captures the notion of edge capacity. For

simplicity we let c = 1 for all edges.

1 2 3

0

2

4

6

8

10

12

Steps Required to Reach Unit Step

Algorithm Parameter N

A
v
e
r
a
g
e

#

o
f

s
t
e
p
s

Centralized (small)

Distributed (small)

Centralized (medium)

Distributed (medium)

Centralized (large)

Distributed (large)

Fig. 2. The distributed line search reaches unit stepsize in 2 to 3 iterations.
Fifty simulations were done for each algorithm with N=1, N=2 and N=3
and for Networks with 25 nodes and 100 edges (small), 50 nodes and 200
edges (medium) and 100 nodes and 400 edges (large).

Figure 1 shows an example of a network optimization
problem with 25 nodes and 100 edges being solved using
ADD-1 with the centralized and distributed backtracking line
searches. The top plot shows that the trajectory of primal ob-
jective is not significantly affected by the choice line search.
The middle plot shows that primal feasibility is approached
asymptotically at the same rate for both algorithms. The
bottom plot shows that a unit stepsize is achieved in roughly
the same number of steps.

In Figure 2 we look closer at the number of steps required
to reach a unit stepsize. We compare the distributed back-
tracking line search to its centralized counterpart on networks
with 25 nodes and 100 edges, 50 nodes and 200 edges and
100 nodes and 400 edges. For each network optimization
problem generated we implemented distributed optimization
using ADD-1, ADD-2, and ADD-3. Most trials required only
2 or 3 iterations to reach ↵ = 1 for both the centralized
and distributed line searches. The variation came from the
few trials which required significantly more iterations. As
might be expected, increasing N causes the distributed and
centralized algorithms to behave closer to each other. When
we increase the size of the network most trials still only
require 2 to 3 iterations to reach ↵ = 1 but for the cases
which take more than 2 iterations we jump from around 10
iterations in the 25 nodes networks to around 40 iterations
in 100 node networks.

VI. CONCLUSION

We presented an alternative version of the backtracking
line search using a local version of the Armijo rule which
allows the stepsize for the dual update in the single com-
modity network flow problem to be computed using only
local information. When this distributed backtracking line
search technique is paired with the ADD method for selecting
the dual descent direction we recover the key properties of

476

the standard centralized backtracking line search: a strict
decrease in the dual objective and unit stepsize in a region
around the optimal. We use simulations to demonstrate
that the distributed backtracking line search is functionally
equivalent to its centralized counterpart.

This work focuses on line searches when the ADD-N
method is used to select the descent direction, however the
proof method relies primarily on the sparsity structure of
the inverse hessian approximation. This implies that our line
search method could be applied with other descent directions
provided they have are themselves depend only on local
information.

REFERENCES

[1] S. Authuraliya and S. Low, Optimization flow control with newton-like
algorithm, Telecommunications Systems 15 (2000), 345–358.

[2] Bertsekas and Gafni, Projected newton methods and optimization of
multi-commodity flow, IEEE Transactions on Automatic Control 28
(1983), 1090–1096.

[3] D.P. Bertsekas, Nonlinear programming, Athena Scientific, Cambridge,
Massachusetts, 1999.

[4] S. Boyd and L. Vandenberghe, Convex optimization, Cambridge Uni-
versity Press, Cambridge, UK, 2004.

[5] M. Cao, D.A. Spielman, and A.S. Morse, A lower bound on conver-
gence of a distributed network consensus algorithm, Proceedings of
IEEE CDC, 2005.

[6] R. Carli, F. Fagnani, A. Speranzon, and S. Zampieri, Communication
constraints in coordinated consensus problems, Proceedings of IEEE
ACC, 2006.

[7] M. Chiang, S.H. Low, A.R. Calderbank, and J.C. Doyle, Layering
as optimization decomposition: A mathematical theory of network
architectures, Proceedings of the IEEE 95 (2007), no. 1, 255–312.

[8] W. Hager and H. Zhang, A new conjugate gradient method with
guaranteed descent and an efficient line search, SIAM journal of
Optimization 16 (2005), 170–192.

[9] A. Jadbabaie, A. Ozdaglar, and M. Zargham, A distributed newton
method for network optimization, Proceedings of IEEE CDC, 2009.

[10] F.P. Kelly, A.K. Maulloo, and D.K. Tan, Rate control for communi-
cation networks: shadow prices, proportional fairness, and stability,
Journal of the Operational Research Society 49 (1998), 237–252.

[11] J. G. Klincewicz, A newton method for convex separable network flow
problems, Bell Laboratories (1983).

[12] S. Low and D.E. Lapsley, Optimization flow control, I: Basic algorithm
and convergence, IEEE/ACM Transactions on Networking 7 (1999),
no. 6, 861–874.

[13] D. G. Luenberger, Linear and nonlinear programming, Klewer Aca-
demic Publishers, Boston, 2003.

[14] A. Nedić and A. Ozdaglar, Approximate primal solutions and rate
analysis for dual subgradient methods, SIAM Journal on Optimization,
forthcoming (2008).

[15] , Subgradient methods in network resource allocation: Rate
analysis, Proc. of CISS, 2008.

[16] G. Di Pillo, On nonmonotone line search, Journal of Optimization
Theory and its Applications 112, 315–330.

[17] R. Srikant, Mathematics of Internet congestion control, Birkhauser,
2004.

[18] M. Zargham, A. Ribeiro, A. Ozdaglar, and A. Jadbabaie, Accelerated
dual descent for network optimization, Proceedings of IEEE ACC,
2011.

[19] , Accelerated dual descent for network optimization, IEEE
Transactions on Automatic Control ((submitted)).

[20] H. Zhang and W. Hager, a nonmonotone line search technique and its
application to unconstrained optimization, SIAM journal of Optimiza-
tion 14 (2004), 1043–1056.

477

