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ABSTRACT

We present an axiomatic construction of hierarchical clustering in
asymmetric networks where the dissimilarity from node a to node b
is not necessarily equal to the dissimilarity from node b to node a.
The theory is built on the axioms of value and transformation which
encode desirable properties common to any clustering method. Two
hierarchical clustering methods that abide to these axioms are de-
rived: reciprocal and nonreciprocal clustering. We further show that
any clustering method that satisfies the axioms of value and trans-
formation lies between reciprocal and nonreciprocal clustering in a
well defined sense. We apply this theory to the formation of circles
of trust in social networks.

Index Terms— Clustering, asymmetric networks.

1. INTRODUCTION

There are literally hundreds of methods, techniques, and heuristics
that can be applied to the determination of hierarchical and non-
hierarchical clusters in finite metric (thus symmetric) spaces – see,
e.g., [1]. Methods to identify clusters in a network of asymmetric
dissimilarities, however, are rarer. A number of approaches reduce
the problem to symmetric clustering by introducing symmetrizations
that are justified by a variety of heuristics; e.g., [2]. An idea that is
more honest to the asymmetry in the dissimilarity matrix is the adap-
tation of spectral clustering [3–5] to asymmetric graphs by using a
random walk perspective to define the clustering algorithm [6] or
through the minimization of a weighted cut [7]. This relative rarity
is expected because the intuition of clusters as groups of nodes that
are closer to each other than to the rest is difficult to generalize when
nodes are close in one direction but far apart in the other.

To overcome this generic difficulty we postulate two particular
intuitive statements in the form of the axioms of value and transfor-
mation that have to be satisfied by allowable hierarchical clustering
methods. The Axiom of Value states that for a network with two
nodes the nodes are clustered together at the maximum of the two
dissimilarities between them. The Axiom of Transformation states
that if we consider a network and reduce all pairwise dissimilari-
ties, the level at which two nodes become part of the same cluster is
not larger than the level at which they were clustered together in the
original network. In this paper we study the space of methods that
satisfy the axioms of value and transformation.

Although the theoretical foundations of clustering are not as well
developed as its practice [8–10], the foundations of clustering in
metric spaces have been developed over the past decade [11–14].
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Of particular relevance to our work is the case of hierarchical clus-
tering where, instead of a single partition, we look for a family of
partitions indexed by a resolution parameter; see e.g., [15], [16, Ch.
4], and [17]. In this context, it has been shown in [18] that sin-
gle linkage [16, Ch. 4] is the unique hierarchical clustering method
that satisfies symmetric versions of the axioms considered here and
a third axiom stating that no clusters can be formed at resolutions
smaller than the smallest distance in the given data. One may think
of the work presented here as a generalization of [18] to the case of
asymmetric (non-metric) data.

Our first contribution is the derivation of two hierarchical clus-
tering methods that abide to the axioms of value and transformation.
In reciprocal clustering closeness is propagated through links that are
close in both directions, whereas in nonreciprocal clustering close-
ness is allowed to propagate through loops (Section 4). We further
prove that any clustering method that satisfies the value and transfor-
mation axioms lies between reciprocal and nonreciprocal clustering
in a well defined sense (Section 5).

2. PRELIMINARIES

Consider a finite set of pointsX jointly specified with a dissimilarity
function AX to define the network N = (X,AX). The set X repre-
sent the nodes in the network. The dissimilarity AX(x, x′) between
nodes x ∈ X and x′ ∈ X is assumed to be non negative for all pairs
(x, x′) and null if and only if x = x′. However, dissimilarity values
AX(x, x′) need not satisfy the triangle inequality and, more conse-
quential for the problem considered here, may be asymmetric in that
it is possible to have AX(x, x′) 6= AX(x′, x). We further define N
as the set of all possible networks N .

A clustering of the setX is a partition PX defined as a collection
of sets PX = {B1, . . . , BJ} that are nonintersecting, Bi ∩ Bj = ∅
for i 6= j, and are required to cover X , ∪Ji=1Bi = X . In this paper
we focus on hierarchical clustering methods whose outcomes are not
single partitions PX but nested collections DX of partitions DX(δ)
indexed by a resolution parameter δ ≥ 0. For a givenDX , whenever
at resolution δ nodes x and x′ are in the same cluster of DX(δ), we
say that they are equivalent at resolution δ and write x ∼DX (δ) x

′.
The nested collection DX is termed a dendrogram and is required
to satisfy the following two properties plus an additional technical
property (see [18]):

(D1) Boundary conditions. For δ = 0 the partition DX(0) clusters
each x ∈ X into a separate singleton and for some δ0 sufficiently
large DX(δ0) clusters all elements of X into a single set,

DX(0) =
{
{x}, x ∈ X

}
, DX(δ0) =

{
X
}

for some δ0.
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Fig. 1. Axiom of value. Nodes in a two-node network cluster at the
minimum resolution at which both can influence each other.

(D2) Resolution. As δ increases, clusters can be combined but not
separated. I.e., for any δ1 < δ2 if we have x ∼DX (δ1) x

′ for some
pair of points we must have x ∼DX (δ2) x

′.

As the resolution δ increases, partitions DX(δ) become coarser im-
plying that dendrograms are equivalent to trees; see figs. 1 and 2.

Denoting by D the space of all dendrograms we define a hierar-
chical clustering method as a function H : N → D from the space
of networks N to the space of dendrograms D. For the network
NX = (X,AX) we denote by DX = H(X,AX) the output of
clustering methodH. When dissimilarities AX conform to the defi-
nition of a finite metric space, it is possible to show that there exists a
hierarchical clustering method satisfying axioms similar to the ones
proposed in this paper [18]. Furthermore, this method is unique and
corresponds to single linkage. For resolution δ, single linkage makes
x and x′ part of the same cluster if they can be linked through a path
of cost not exceeding δ. Formally, equivalence classes at resolution
δ in the single linkage dendrogram SLX are defined as

x ∼SLX (δ) x
′ ⇐⇒ min

C(x,x′)
max

i|xi∈C(x,x′)
AX(xi, xi+1) ≤ δ. (1)

In (1), C(x, x′) denotes a chain between x and x′, i.e., an or-
dered sequence of nodes connecting x and x′. We interpret
maxi|xi∈C(x,x′)AX(xi, xi+1) as the maximum dissimilarity cost
we need to pay when traversing the chain C(x, x′). The right hand
side of (1) is this maximum cost for the best selection of the chain
C(x, x′). Recall that in (1) we are assuming metric data, which in
particular implies AX(xi, xi+1) = AX(xi+1, xi).

2.1. Dendrograms as ultrametrics
Dendrograms are convenient graphical representations but otherwise
cumbersome to handle. A mathematically more convenient repre-
sentation is to identify dendrograms with finite ultrametric spaces.
An ultrametric defined on the space X is a function uX : X×X →
R that satisfies the strong triangle inequality

uX(x, x′) ≤ max
(
uX(x, x′′), uX(x′′, x′)

)
, (2)

on top of the reflexivity uX(x, x′) = uX(x′, x), non negativity and
identity properties uX(x, x′) = 0 ⇔ x = x′. Hence, an ultra-
metric is a metric that satisfies (2), a stronger version of the triangle
inequality.

As shown in [18], it is possible to establish a bijective mapping
between dendrograms and ultrametrics.
Theorem 1 ( [18] ) For a given dendrogram DX define uX(x, x′)
as the smallest resolution at which x and x′ are clustered together

uX(x, x′) := min
{
δ ≥ 0, x ∼DX (δ) x

′
}
. (3)

The function uX is an ultrametric in the space X . Conversely, for a
given ultrametric uX define the relation ∼UX (δ) as

x ∼UX (δ) x
′ ⇐⇒ uX(x, x′) ≤ δ. (4)
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Fig. 2. Axiom of transformation. If network NX can be mapped to
network NY using a dissimilarity reducing map φ, nodes clustered
together in DX(δ) at arbitrary resolution δ must also be clustered in
DY (δ). For example, x1 and x2 are clustered together at resolution
δ′, therefore y1 and y2 must also be clustered at this resolution.

The relation∼UX (δ) is an equivalence relation and the collection of
partitions of equivalence classes induced by ∼UX (δ), i.e. UX(δ) :={
X mod ∼UX (δ)

}
, is a dendrogram.

Given the equivalence between dendrograms and ultrametrics estab-
lished by Theorem 1 we can think of hierarchical clustering methods
H as inducing ultrametrics in the set of nodes X based on dissim-
ilarity functions AX . The distance uX(x, x′) induced by H is the
minimum resolution at which x and x′ are co-clustered byH.

3. VALUE AND TRANSFORMATION

To study hierarchical clustering algorithms in the context of asym-
metric networks, we start from two intuitive notions that we translate
into the axioms of value and transformation. The Axiom of Value
is obtained from considering a two-node network with dissimilari-
ties α and β; see Fig. 1. In this case, it makes sense for nodes p
and q to be in separate clusters at resolutions δ < max(α, β). For
these resolutions we have either no influence between the nodes, if
δ < min(α, β), or unilateral influence from one node over the other,
when min(α, β) ≤ δ < max(α, β). In either case both nodes are
different in nature. E.g., if we think of the network as a Markov
chain, nodes p and q form separate classes. We thus require nodes p
and q to cluster at resolution δ = max(α, β). This is somewhat arbi-
trary, as any number larger than max(α, β) would work. As a value
claim, however, it means that the clustering resolution parameter δ is
expressed in the same units as the elements of the dissimilarity func-
tion. A formal statement in terms of ultrametric distances follows.

(A1) Axiom of Value. Consider a two-node network N = (X,AX)
with X = {p, q}, AX(p, q) = α, and AX(q, p) = β. The ultramet-
ric (X,uX) = H(X,AX) produced byH satisfies

uX(p, q) = max(α, β). (5)

The second restriction on the space of allowable methods H for-
malizes the expected behavior upon a modification of the dissim-
ilarity function; see Fig. 2. Consider networks NX = (X,AX)
and NY = (Y,AY ) and denote by DX = H(X,AX) and DY =
H(Y,AY ) the corresponding dendrogram outputs. If we map all the
nodes of the network NX = (X,AX) into nodes of the network
NY = (Y,AY ) in such a way that no pairwise dissimilarity is in-
creased we expect the network to become more clustered. In terms
of the respective clustering dendrograms we expect that nodes co-
clustered at resolution δ in DX are mapped to nodes that are also
co-clustered at this resolution in DY . The Axiom of Transformation
is a formal statement of this requirement as we introduce next.
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x x1 . . .. . . xl−1 x′

AX(x, x1) AX(x1, x2) AX(xl−2, xl−1)AX(xl−1, x
′)

AX(x1, x) AX(x2, x1) AX(xl−1, xl−2)AX(x′, xl−1)

Fig. 3. Reciprocal clustering. Nodes x and x′ are clustered together
at resolution δ if they can be joined with a (reciprocal) chain whose
maximum dissimilarity is smaller than δ in both directions [cf. (7)].
Of all methods that satisfy the axioms of value and transformation,
the reciprocal ultrametric is the largest between any pair of nodes.

(A2) Axiom of Transformation. Consider two networks NX =
(X,AX) and NY = (Y,AY ) and a dissimilarity reducing map
φ : X → Y , i.e. a map φ such that for all x, x′ ∈ X it holds
AX(x, x′) ≥ AY (φ(x), φ(x′)). Then, the output ultrametrics
(X,uX) = H(X,AX) and (Y, uY ) = H(Y,AY ) satisfy

uX(x, x′) ≥ uY (φ(x), φ(x′)). (6)

A hierarchical clustering method H is admissible if it satisfies Ax-
ioms (A1) and (A2). Axiom (A1) states that units of the clustering
resolution parameter δ are the same units of the elements of the dis-
similarity matrix. Axiom (A2) states that if we reduce dissimilari-
ties, clusters may be combined but cannot be separated.

4. RECIPROCAL AND NONRECIPROCAL CLUSTERING

An admissible clustering method satisfying axioms (A1)-(A2)
can be constructed by considering the symmetric dissimilarity
ĀX(x, x′) = max

(
AX(x, x′), AX(x′, x)

)
, for all x, x′ ∈ X .

This effectively reduces the problem to clustering of symmetric
data, a scenario in which single linkage (1) is known to satisfy ax-
ioms similar to (A1)-(A2), [18]. Drawing upon this connection we
define the reciprocal clustering method HR with ultrametric out-
puts (X,uRX) = HR(X,AX) as the one for which the ultrametric
uRX(x, x′) between nodes x and x′ is given by

uRX(x, x′) = min
C(x,x′)

max
i|xi∈C(x,x′)

ĀX(xi, xi+1). (7)

An illustration of the definition in (7) is shown in Fig. 3. We search
for chains C(x, x′) linking nodes x and x′. For a given chain we
walk from x to x′ and determine the maximum dissimilarity, in ei-
ther the forward or backward direction, across all the links in the
chain. The reciprocal ultrametric uRX(x, x′) between nodes x and x′

is the minimum of this value across all possible chains. Recalling
the equivalence of dendrograms and ultrametrics in Theorem 1 we
know that the dendrogram produced by reciprocal clustering clus-
ters x and x′ together for resolutions δ ≥ uRX(x, x′). Combining
this latter observation with (7) and denoting by RX the reciprocal
dendrogram we write the reciprocal equivalence classes as

x ∼RX (δ) x
′ ⇐⇒ min

C(x,x′)
max

i|xi∈C(x,x′)
ĀX(xi, xi+1) ≤ δ. (8)

Comparing (8) with the definition in (1), we see that reciprocal clus-
tering is equivalent to single linkage for the network N = (X, ĀX).

For the method HR specified in (7) to be a proper hierarchical
clustering method we need to show that uRX is an ultrametric. For
HR to be admissible it needs to satisfy axioms (A1)-(A2). Both of
these properties are true as stated in the following proposition.
Proposition 1 The reciprocal clustering method HR is valid and
admissible. I.e., uRX as defined by (7) is a valid ultrametric and the
method satisfies axioms (A1)-(A2).

x

x1 . . .. . . xl−1

x′

x′
l′−1

. . .. . . x′1

AX(x, x1)
AX(x1, x2) AX(xl−2, xl−1)

AX(xl−1, x
′)

AX(x′, x′1)AX(x′1, x
′
2)AX(x′

l′−2
, x′
l′−1

)
AX(x′

l′−1
, x)

Fig. 4. Nonreciprocal clustering. Nodes x and x′ are co-clustered
at resolution δ if they can be joined in both directions with possi-
bly different (nonreciprocal) chains of maximum dissimilarity not
greater than δ [cf. (10)]. The nonreciprocal ultrametric is the small-
est among all that abide to the value and transformation axioms.

Proof: See [19]. �

In reciprocal clustering, nodes x and x′ are joined together if we
can go back and forth from x to x′ at a maximum cost δ through
the same chain. In nonreciprocal clustering we relax the restriction
that the chain achieving the minimum cost must be the same in both
directions and cluster nodes x and x′ together if there are, possibly
different, chains linking x to x′ and x′ to x. To state this definition
in terms of ultrametrics, consider a given network N = (X,AX)
and define the unidirectional minimum chain cost

ũNRX (x, x′) = min
C(x,x′)

max
i|xi∈C(x,x′)

AX(xi, xi+1). (9)

We define the nonreciprocal clustering methodHNR with ultramet-
ric outputs (X,uNRX ) = HNR(X,AX) as the one for which the ul-
trametric uNRX (x, x′) between nodes x and x′ is given by the max-
imum of the unidirectional minimum chain costs ũNRX (x, x′) and
ũNRX (x′, x) in each direction,

uNRX (x, x′) = max
(
ũNRX (x, x′), ũNRX (x′, x)

)
. (10)

An illustration of the definition in (10) is shown in Fig. 4. We
consider forward chains C(x, x′) going from x to x′ and backward
chains C(x′, x) going from x′ to x. For each of these chains we de-
termine the maximum dissimilarity across all the links in the chain.
We then search independently for the best forward chain C(x, x′)
and the best backward chain C(x′, x) that minimize the respective
maximum dissimilarities across all possible chains. The nonrecipro-
cal ultrametric uNRX (x, x′) between nodes x and x′ is the maximum
of these two minimum values.

As in the case with reciprocal clustering we can verify that uNRX
is a properly defined ultrametric. We also show thatHNR is admis-
sible in the following proposition.

Proposition 2 The nonreciprocal clustering method HNR is valid
and admissible. That is, uNRX as defined by (10) is a valid ultrametric
and the method satisfies axioms (A1)-(A2).

Proof: See [19]. �

Remark 1 Reciprocal and nonreciprocal clustering are different in
general. However, for symmetric networks, they are equivalent and
coincide with single linkage as defined by (1). To see this, note that
in the symmetric case ũNRX (x, x′) = ũNRX (x′, x). Therefore, from
(10), uNRX (x, x′) = ũNRX (x, x′). Comparing (9) and (7) we get
the equivalence of nonreciprocal and reciprocal clustering by noting
that dissimilarities AX = ĀX for the symmetric case. By further
comparison with (1) the equivalence with single linkage follows.
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5. EXTREMAL ULTRAMETRICS

Given that we have constructed two admissible methods satisfying
axioms (A1)-(A2), the question arises of whether these two construc-
tions are the only possible ones and if not whether they are special in
some sense, if any. One can find constructions other than reciprocal
and nonreciprocal clustering that satisfy axioms (A1)-(A2). How-
ever, we prove in this section that reciprocal and nonreciprocal clus-
tering are a peculiar pair in that all possible admissible clustering
methods are contained between them in a well defined sense. To
explain this sense properly, observe that since reciprocal chains (see
Fig. 3) are particular cases of nonreciprocal chains (see Fig. 4) we
must have that for all pairs of nodes x, x′

uNRX (x, x′) ≤ uRX(x, x′). (11)

I.e., nonreciprocal clustering distances do not exceed reciprocal clus-
tering distances. An important characterization is that any method
H satisfying axioms (A1)-(A2) yields ultrametrics that lie between
uNRX (x, x′) and uRX(x, x′) as we formally state next.

Theorem 2 Consider an admissible clustering method H, that is a
clustering method satisfying axioms (A1)-(A2). For arbitrary given
network N = (X,AX) denote by (X,uX) = H(X,AX) the out-
come ofH applied to N . Then, for all pairs of nodes x, x′

uNRX (x, x′) ≤ uX(x, x′) ≤ uRX(x, x′), (12)

where uNRX (x, x′) and uRX(x, x′) denote the nonreciprocal and re-
ciprocal ultrametrics as defined by (10) and (7), respectively.

Proof: See [19]. �

According to Theorem 2, nonreciprocal clustering applied to the
network N = (X,AX) yields a uniformly minimal ultrametric that
satisfies axioms (A1)-(A2). Reciprocal clustering yields a uniformly
maximal ultrametric. Any other clustering method abiding to (A1)-
(A2) yields an ultrametric such that the distances uX(x, x′) between
any two pairs of nodes lie between the distances uNRX (x, x′) and
uRX(x, x′) assigned by reciprocal and nonreciprocal clustering. In
terms of dendrograms, (12) implies that among all possible clus-
tering methods, the smallest possible resolution at which nodes are
clustered together is the one corresponding to nonreciprocal cluster-
ing. The highest possible resolution is the one that corresponds to
reciprocal clustering.

Remark 2 From Remark 1, the upper and lower bounds in (12) co-
incide with single linkage for symmetric networks. Thus, (12) be-
comes an equality in such context. Since metric spaces are particular
cases of symmetric networks, Theorem 2 recovers the uniqueness re-
sult in [18] and extends it to symmetric – but not necessarily metric
– data. Further, the result in [18] is based on three axioms, two of
which are the symmetric particular cases of the axioms of value and
transformation. It then follows that one of the three axioms in [18]
is redundant. See [19] for details.

6. CIRCLES OF TRUST

We apply the theory developed to the formation of trust clusters –
circles of trust – in social networks [20]. Recalling the equivalence
between dendrograms and ultrametrics, it follows that we can think
of trust propagation in a network as inducing a trust ultrametric TX .
The induced trust distance bound TX(x, x′) ≤ δ signifies that, at
resolution δ, individuals x and x′ are part of a circle of trust. Since

Fig. 5. Nonreciprocal (left) and reciprocal (right) clustering for an
online social network [21]. Dissimilarities are inversely proportional
to the number of messages sent between any two users. Dendrogram
closeups shown in second row.

axioms (A1)-(A2) are reasonable requirements in the context of trust
networks Theorem 2 implies that the trust ultrametric must satisfy

uNRX (x, x′) ≤ TX(x, x′) ≤ uRX(x, x′), (13)

which is just a reinterpretation of (12). While (13) does not give a
value for trust ultrametrics, reciprocal and nonreciprocal clustering
provide lower and upper bounds in the formation of circles of trust.

As a numerical application consider an online social network of
a community of students at the University of California at Irvine,
[21]. In Fig. 5-top, we depict both clustering algorithms for a subset
of the users of the social network. The dissimilarity between nodes
has been normalized as a function of the messages sent between any
two users where lower distances represent more intense exchange.
Note that although the ultrametrics are lower for the nonreciprocal
case – as they should (11) –, the overall structure is similar. The
similarity between both dendrograms could be interpreted as an in-
dicator of symmetry in the communication. Indeed, in a completely
symmetric case both dendrograms would coincide. However, there
is another source of similarity between the two proposed algorithms
which can be interpreted as consistent asymmetry. For example,
someone who rarely replies to a message regardless of the sender
or someone who sends messages but gets few replies regardless of
the receiver. The similarity between both dendrograms hints that
answering all messages of some people but none of others is not
ubiquitous.

Fig. 5-bottom presents a closeup of the dendrograms in Fig. 5-
top and the major cluster at resolution δ = 0.3 is highlighted in red.
We see that this cluster has a different hierarchical genesis in both
methods. I.e., the two clustering methods alter the clustering order
between nodes, which in terms of ultrametrics corresponds to an in-
version of the nearest neighbors ordering. Nonetheless, at δ = 0.3
the red cluster contains the same nodes in both clustering methods.
This implies that, for the given resolution, this cluster constitutes a
circle of trust for any choice of admissible trust metric TX [cf. (13)].

7. CONCLUSION

An axiomatic construction of hierarchical clustering in asymmetric
networks was presented. Based on two axioms proposed, the axioms
of value and transformation, two particular clustering methods were
developed: reciprocal and nonreciprocal clustering. Furthermore,
these methods were shown to be well-defined extremes of all possi-
ble clustering methods satisfying the proposed axioms. Finally, the
theoretical developments were applied to real data in order to study
the formation of circles of trust in social networks.
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