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Abstract—Three different families of hierarchical clustering methods sat-
isfying the axioms of value – in a network with two nodes the nodes
cluster together at resolutions at which both can influence each other –
and transformation – when we reduce some pairwise dissimilarities and
increase none, the resolutions at which nodes cluster together may decrease
but not increase – are introduced. The grafting family exchanges branches
between dendrograms generated by different admissible methods. The convex
combination family combines admissible methods using a convex operation
in the space of dendrograms. The semi-reciprocal family is related to the
reciprocal and nonreciprocal clustering methods introduced in [1]. Algorithms
for the computation of hierarchical clusters generated by reciprocal and
nonreciprocal clustering as well as the grafting, convex combination, and semi-
reciprocal families are derived using matrix operations in a dioid algebra.

I. INTRODUCTION

The output of hierarchical clustering methods is a dendrogram consist-

ing of a nested set of partitions indexed by a resolution parameter [2].

We consider the problem of devising methods to construct dendrograms

associated with a given network of asymmetric dissimilarities. While a

large number of methods for determining hierarchical and nonhierarchical

clusters in finite metric spaces exists – see, e.g., [3] –, methods to identify

clusters in a network of asymmetric dissimilarities are rarer [4]–[6]. This

relative scarcity is expected because the intuition for clusters as groups

of nodes that are closer to each other than to the rest is difficult to

generalize when nodes are close in one direction but far apart in the

other. To overcome this generic difficulty we can draw inspiration from

the fundamental underpinnings of clustering, which, although not as well

developed as its practice [7], [8], are by now quite well established in the

case of finite metric spaces [9]–[11]. Of particular relevance to our work is

the case of hierarchical clustering [12]. In this context, it has been shown

in [13] that single linkage [2, Ch. 4] is the unique hierarchical clustering

method that satisfies three reasonable axiomatic statements.

In the context of asymmetric networks, our work in [1] introduces the

axioms of value – in a network with two nodes the nodes cluster together at

resolutions at which both can influence each other – and transformation –

reducing some pairwise dissimilarities and increasing none cannot increase

the resolution at which clusters form – as reasonable behaviors that we

should expect to see in hierarchical clustering methods for asymmetric

networks. These axioms are apparently not stringent but they do result

in the strong conclusion that all methods that abide to these axioms lie

between two particular cases in a well defined sense. The first method

requires that clusters form through arcs in which both dissimilarities are

small and is therefore termed reciprocal clustering. The second method,

termed nonreciprocal clustering, allows clustering if loops of proximity

can be formed. One of our results (Theorem 1) implies that any clustering

method that satisfies the value and transformation axioms forms clusters at

resolutions coarser than those of nonreciprocal clustering and finer than

those of reciprocal clustering. For symmetric networks, reciprocal and

nonreciprocal clustering coincide, recovering the uniqueness result in [13].

In the context of asymmetric networks, the difference between recip-

rocal and nonreciprocal clustering allows the existence of intermediate
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clustering methods. This paper introduces three families of intermediate

clustering methods (Section III). The grafting family is built by exchang-

ing branches between dendrograms generated by different admissible

methods (Section III-A). Convex combinations of dendrograms generated

by admissible methods yield a second family (Section III-B). The semi-

reciprocal family requires part of the influence to be reciprocal and

allows the rest to propagate through loops (Section III-C). We further

derive algorithms to compute dendrograms generated by reciprocal and

nonreciprocal clustering as well as the grafting, convex combination,

and semi-reciprocal families using matrix operations in a dioid algebra

(Section IV).

II. PRELIMINARIES

Define the network N = (X,AX) as a set of n points or nodes X
jointly specified with a real valued dissimilarity function AX : X×X →
R+ defined for all pairs x, x′ ∈ X . Dissimilarities AX(x, x′) from x to

x′ are nonnegative, and null if and only if x = x′, but may not satisfy the

triangle inequality and may be asymmetric, i.e. AX(x, x′) �= AX(x′, x)
for some x, x′ ∈ X . The values AX(x, x′) can be grouped in a matrix

which, as it doesn’t lead to confusion, we also denote as AX ∈ R
n×n. A

hierarchical clustering of the network N = (X,AX) is a dendrogram DX

which by definition is a nested set of partitions DX(δ) indexed by the

resolution parameter δ ≥ 0. Partitions in DX are such that for δ = 0 each

point x is in a separate cluster, i.e., DX(0) =
{{x}, x ∈ X

}
, and for

some sufficiently coarse resolution δ0 all nodes are in the same partition,

i.e., DX(δ0) =
{
X
}

. The requirement of nested partitions means that if

x and x′ are in the same partition at resolution δ0 they stay co-clustered

for all larger resolution δ > δ0. From these requirements and a technical

condition it follows that dendrograms can be represented as trees [13].

When x and x′ are co-clustered at resolution δ in DX we say that they

are equivalent at that resolution and write x ∼DX (δ) x
′.

An ultrametric uX on the space X is a function that satisfies the sym-

metry uX(x, x′) = uX(x′, x) and identity uX(x, x′) = 0 ⇐⇒ x = x′

properties as well as the strong triangle inequality

uX(x, x′) ≤ max
(
uX(x, x′′), uX(x′′, x′)

)
, (1)

for all x, x′, x′′ ∈ X . For a given dendrogram DX consider the minimum

resolution δ at which x and x′ are clustered together and define

uX(x, x′) := min
{
δ ≥ 0, x ∼DX (δ) x

′}. (2)

It can be shown that the function uX satisfies (1) proving that dendrograms

and finite ultrametric spaces are equivalent, [13, Theorem 9]. While

dendrograms are useful graphical representations, ultrametrics are more

convenient to present the results contained in this paper.

A hierarchical clustering method is a map H : N → D from the space

of networks N to the space of dendrograms D, or, equivalently, a map

H : N → U mapping a network H(X,AX) = (X,uX) into the space

U of networks with ultrametrics. Our goal here is to find methods H that

abide to the following intuitive restrictions:

(A1) Axiom of Value. Consider a two-node network N = (X,AX)
with X = {p, q}, AX(p, q) = α, and AX(q, p) = β. The ultrametric

(X,uX) = H(X,AX) produced by H satisfies

uX(p, q) = max(α, β). (3)



x x1 . . .. . . xr x′

AX(x, x1) AX(x1, x2) AX(xr−1, xr) AX(xr, x′)

AX(x1, x) AX(x2, x1) AX(xr, xr−1) AX(x′, xr)

Fig. 1. Reciprocal clustering. Nodes x, x′ cluster at resolution δ if they can be
joined with a bidirectional chain of maximum dissimilarity δ [cf. (5)]. Reciprocal
ultrametrics are largest among those produced by clustering methods satisfying the
value and transformation axioms.

(A2) Axiom of Transformation. Given networks NX = (X,AX) and

NY = (Y,AY ) and a dissimilarity reducing map φ : X → Y , that is a

map φ such that for all x, x′ ∈ X it holds AX(x, x′) ≥ AY (φ(x), φ(x′)),
the outputs (X,uX) = H(X,AX) and (Y, uY ) = H(Y,AY ) satisfy

uX(x, x′) ≥ uY (φ(x), φ(x′)). (4)

Axiom (A1) says that in a network with two nodes p and q, the

dendrogram DX has them merging at the maximum value of the two

dissimilarities AX(p, q) = α and AX(q, p) = β. This is reasonable

because at resolutions δ < max(α, β) one node can influence the other

but not vice versa, which in most situations means that the nodes are not

alike. Axiom (A2) states that a contraction of the dissimilarity matrix AX

entails a contraction of the ultrametric uX .

A hierarchical clustering method H is admissible if it satisfies axioms

(A1) and (A2). Two admissible methods of interest are reciprocal and

nonreciprocal clustering. The reciprocal clustering method HR with output

(X,uR
X) = HR(X,AX) is the one for which the ultrametric uR

X(x, x′)
between points x and x′ is given by

uR
X(x, x′) := min

C(x,x′)
max

i|xi∈C(x,x′)
ĀX(xi, xi+1), (5)

where ĀX(x, x′) := max(AX(x, x′), AX(x′, x)) for all x, x′ ∈ X . In

(5), the chain C(x, x′) = [x = x0, x1, . . . , xr+1 = x′] is defined as an

ordered sequence of nodes linking x and x′. Definition (5) is illustrated

in Fig. 1. Intuitively, search for chains C(x, x′) linking nodes x and x′.
Then, for a given chain, walk from x to x′ and determine the maximum

dissimilarity, in either the forward or backward direction, across all links

in the chain. The reciprocal ultrametric uR
X(x, x′) is the minimum of this

value across all possible chains.

Reciprocal clustering joins x to x′ by going back and forth at maximum

cost δ through the same chain. Nonreciprocal clustering HNR permits

different chains. Define the minimum directed cost as

ũNR
X (x, x′) := min

C(x,x′)
max

i|xi∈C(x,x′)
AX(xi, xi+1), (6)

and the nonreciprocal ultrametric as the maximum of the two minimum

directed costs from x to x′ and x′ to x

uNR
X (x, x′) := max

(
ũNR
X (x, x′), ũNR

X (x′, x)
)
. (7)

Definition (7) is illustrated in Fig. 2. We consider forward chains C(x, x′)
going from x to x′ and backward chains C(x′, x) going from x′ to x.

We then determine the respective maximum dissimilarities and search

independently for the best forward and backward chains that minimize

the respective maximum dissimilarities. The nonreciprocal ultrametric

uNR
X (x, x′) is the maximum of these two minimum values. Observe that

since reciprocal chains are particular cases of nonreciprocal chains we

must have uNR
X (x, x′) ≤ uR

X(x, x′) for all pairs of nodes x, x′ ∈ X .

Reciprocal and nonreciprocal clustering are of importance because they

bound the range of ultrametrics generated by any other admissible method

H in the sense stated in the following theorem.

Theorem 1 ([1]) Consider an arbitrary network N = (X,AX) and let
uR
X(x, x′) and uNR

X (x, x′) be the associated reciprocal and nonreciprocal
ultrametrics as defined in (5) and (7). Then, for any admissible method
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′
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r′−1
, x′

r′ )
AX(x′

r′ , x)

Fig. 2. Nonreciprocal clustering. Nodes x, x′ cluster at resolution δ if they can be
joined in both directions with possibly different chains of maximum dissimilarity
δ [cf. (7)]. Nonreciprocal ultrametrics are smallest among those produced by
clustering methods that satisfy the value and transformation axioms.

H the output ultrametric (X,uX) = H(X,AX) is such that for all pairs
x, x′,

uNR
X (x, x′) ≤ uX(x, x′) ≤ uR

X(x, x′). (8)

In particular, uNR
X = uR

X whenever N = (X,AX) is symmetric.

According to Theorem 1, nonreciprocal clustering yields uniformly min-

imal ultrametrics while reciprocal clustering yields uniformly maximal

ultrametrics among all methods satisfying (A1)-(A2). Section III presents

intermediate methods lying in the space between HNR and HR. Section IV

develops algorithms for the computation of uNR
X , uR

X , and the intermediate

output ultrametrics of the methods derived in Section III.

III. INTERMEDIATE CLUSTERING METHODS

Fig. 3 shows an example network as well as its corresponding reciprocal

and nonreciprocal dendrograms. Since these two are different, Theorem 1

allows the existence of intermediate admissible methods, which we study

in this section.

A. Grafting and related constructions

A family of admissible methods can be constructed by grafting branches

of the nonreciprocal dendrogram into corresponding branches of the

reciprocal dendrogram; see Fig. 3. To be precise consider a given positive

constant β > 0. For any given network N = (X,AX) compute the

reciprocal and nonreciprocal dendrograms and cut all branches of the

reciprocal dendrogram at resolution β. For each of these branches define

the corresponding branch in the nonreciprocal tree as the one whose

leaves are the same. Replacing the severed branches of the reciprocal

tree by the corresponding branches of the nonreciprocal tree yields the

HR/NR(β) method. Grafting is equivalent to providing the following

piecewise definition of the output ultrametric. For x, x′ ∈ X let

u
R/NR

X (x, x′;β) :=

{
uNR
X (x, x′), if uR

X(x, x′) ≤ β,

uR
X(x, x′), if uR

X(x, x′) > β.
(9)

For pairs x, x′ having large reciprocal ultrametric uR
X(x, x′) > β we keep

the reciprocal ultrametric value u
R/NR

X (x, x′;β) = uR
X(x, x′). For pairs

x, x′ with small reciprocal ultrametric uR
X(x, x′) ≤ β we replace the

reciprocal by the nonreciprocal ultrametric and make u
R/NR

X (x, x′;β) =
uNR
X (x, x′).
To show that HR/NR(β) is an admissible method we need to show that

(9) defines an ultrametric in the space X and that HR/NR(β) satisfies

axioms (A1) and (A2). This is asserted in the following proposition.

Proposition 1 The hierarchical clustering method HR/NR(β) with ultra-
metrics as in (9) satisfies axioms (A1) and (A2).

Proof: See [14]. �

Since u
R/NR

X (x, x′;β) coincides with either uNR
X (x, x′) or uR

X(x, x′),
it then satisfies (8) as it should by the combination of Theorem 1 and

Proposition 1.
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Fig. 3. Dendrogram grafting. Dendrograms resulting from three different clustering
methods applied on the network on the left. Undrawn edges have dissimilarities
greater than 5. The first two dendrograms correspond to the reciprocal and the
nonreciprocal methods respectively. The third dendrogram is the result of grafting
the first two as defined in (9) with β = 4. The third dendrogram is constructed by
replacing the colored branches of the reciprocal dendrogram with the corresponding
branches of the nonreciprocal dendrogram.

In the method HR/NR(β) we use the reciprocal ultrametric as a decision

variable and use nonreciprocal ultrametrics for nodes having small recip-

rocal ultrametrics. There are three other grafting combinations HR/R(β),
HNR/R(β) and HNR/NR(β) but none of them outputs a valid ultrametric.

In HR/R(β), we use reciprocal ultrametrics as decision variables and as

the choice for small values of reciprocal ultrametrics,

u
R/R

X (x, x′;β) :=

{
uR
X(x, x′), if uR

X(x, x′) ≤ β,

uNR
X (x, x′), if uR

X(x, x′) > β.
(10)

The method HR/R(β) as defined in (10) is not valid, however, because

the function u
R/R

X (β) is not an ultrametric as it violates the strong

triangle inequality in (1). E.g., focusing on the network in Figure 3,

we use (10) to compute u
R/R

X (a, b; 4) = 3, since uR
X(a, b) = 3 and

the reciprocal ultrametric between a and b is uR
X(a, b) ≤ β = 4.

Similarly, u
R/R

X (b, c; 4) = 1 and u
R/R

X (a, c; 4) = 1. Hence, we obtain

u
R/R

X (a, b; 4) > max(u
R/R

X (a, c; 4), u
R/R

X (b, c; 4)), violating (1).

In HNR/NR(β) we use nonreciprocal ultrametrics as decision variables

and as the choice for small values of nonreciprocal ultrametrics. In

HNR/R(β) nonreciprocal ultrametrics are used as decision variables and

reciprocal ultrametrics are used for small values of nonreciprocal ultra-

metrics. Both of these methods can be seen to also violate the strong

triangle inequality.

A second valid grafting alternative can be obtained as a modification

of HR/R(β) in which reciprocal ultrametrics are kept for pairs having

small reciprocal ultrametrics, nonreciprocal ultrametrics are used for pairs

having large reciprocal ultrametrics, but all nonreciprocal ultrametrics

smaller than β are saturated to this value. Denoting the method as

HR/Rmax(β) the output ultrametrics are thereby given as

u
R/Rmax
X (x, x′;β) :=

{
uR
X(x, x′), if uR

X(x, x′) ≤ β,

max
(
β , uNR

X (x, x′)
)
, if uR

X(x, x′) > β.
(11)

This alternative definition entails a valid clustering method satisfying

axioms (A1)-(A2) as we claim in the following proposition.

Proposition 2 The hierarchical clustering method HR/Rmax(β) with ul-
trametrics as in (11) satisfies axioms (A1) and (A2).

Proof: See [14]. �

Remark 1 The grafting combination HR/NR(β) allows nonreciprocal

propagation of influence for resolutions smaller than β while requiring

reciprocal propagation for higher resolutions. This is of interest if we

want tight clusters of small dissimilarity to be formed through loops

of influence while looser clusters of higher dissimilarity are required to

form through links of bidirectional influence. Conversely, the clustering

method HR/Rmax(β) requires reciprocal influence within tight clusters of

resolution smaller than β but allows nonreciprocal influence in clusters

of higher resolutions. This latter behavior is desirable in, e.g., trust

propagation in social interactions, where we want tight clusters to be

formed through links of mutual trust but allow looser clusters to be formed

through unidirectional trust loops.

B. Convex combinations

Intermediate admissible methods can also be obtained by performing a

convex combination of methods known to satisfy axioms (A1) and (A2).

Indeed, consider two admissible clustering methods H1 and H2 and a

given parameter 0 ≤ θ ≤ 1. For arbitrary network N = (X,AX) denote

as (X,u1
X) = H1(N) and (X,u2

X) = H2(N) the respective outcome

ultrametrics of methods H1 and H2. Construct then the dissimilarity

function A12
X (θ) as the convex combination of ultrametrics u1

X and u2
X ,

A12
X (x, x′; θ) := θ u1

X(x, x′) + (1− θ)u2
X(x, x′), (12)

for all x, x′ ∈ X . While the dissimilarity function A12
X (θ) is not

an ultrametric in general because it may violate the strong triangle

inequality, we can recover the ultrametric structure by applying an

admissible clustering method H to the network N12
θ = (X,A12

X ) to

obtain (X,uX) = H(N12
θ ). Notice however that the network N12

θ is

symmetric because the ultrametrics u1
X and u2

X are symmetric and that,

in such case, by Theorem 1 reciprocal and nonreciprocal clustering yield

the same outcome [1]. It then follows from (8) that the ultrametric uX is

independent of the admissible method H applied to N12
θ . Thus, we define

the convex combination method H12
θ as the one where the ultrametric

(X,u12
X (θ)) = H12

θ (N) corresponding to N = (X,AX) is given by

u12
X (x, x′; θ) := min

C(x,x′)
max

i|xi∈C(x,x′)
A12

X (xi, xi+1; θ), (13)

for all x, x′ ∈ X and A12
X as given in (12). The operation in (13) is

equivalent to the definition of single linkage applied to the symmetric

network N12
θ . It can be shown that (13) defines a valid ultrametric and

fulfills axioms (A1) and (A2) as stated in the following proposition.

Proposition 3 Given two admissible hierarchical clustering methods H1

and H2, the convex combination method H12
θ with ultrametrics as in (13)

satisfies axioms (A1) and (A2).

Proof: See [14]. �

The construction in (13) can be generalized to a family of intermediate

clustering methods generated by arbitrary convex combinations of recip-

rocal, nonreciprocal, members of the grafting family of Section III-A,

members of the semi-reciprocal family to be introduced in Section III-C,

or any other admissible method. These arbitrary combinations can be

seen to satisfy axioms (A1) and (A2) through recursive application of

Proposition 3.

Remark 2 Since (13) is equivalent to single linkage applied to the

symmetric network N12
θ , it follows that the ultrametric u12

X (θ) in (13)

is the largest ultrametric uniformly bounded by A12
X (θ), i.e., the largest

ultrametric for which u12
X (x, x′; θ) ≤ A12

X (x, x′; θ) for all pairs x, x′.
We can then think of (13) as an operation ensuring a valid ultrametric

definition while retaining as much information as possible in the convex

combination of u1
X and u2

X .

C. Semi-reciprocal ultrametrics

In reciprocal clustering we require influence to propagate through

bidirectional chains; see Fig. 1. We could reinterpret bidirectional propa-

gation as allowing loops of node length two in both directions. E.g., the

bidirectional chain between x and x1 in Fig. 1 can be interpreted as a loop

between x and x1 composed by two chains [x, x1] and [x1, x] of node
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Fig. 4. Semi-reciprocal chains. The main chain joining x and x′ is formed
by [x, x1, ..., xr, x′]. Between two consecutive nodes of the main chain xi and
xi+1, we have a secondary chain in each direction [xi, yi1, ..., yiki

, xi+1] and

[xi+1, y
′
i1, ..., y

′
ik′

i
, xi]. For u

SR(l)
X (x, x′), the maximum allowed node length of

secondary chains is l, i.e., ki, k
′
i ≤ l − 2 for all i.

length two. Semi-reciprocal clustering is a generalization of this concept

where loops consisting of at most l nodes in each direction are allowed.

Define as Cl(x, x
′), l ∈ N, a chain [x = x0, x1, ... , xk−1 = x′] where

k ∈ N, 2 ≤ k ≤ l. In other words, Cl(x, x
′) is a chain starting at x and

finishing at x′ with at most l nodes. For consistency, we require l ≥ 2,

since a chain joining two nodes must at least contain both extremes. We

reserve the notation C(x, x′) to represent a chain linking x with x′ where

no maximum is imposed on the amount of nodes in the chain. Given an

arbitrary network N = (X,AX), define as A
SR(l)
X (x, x′) the minimum

cost of going from node x to node x′ using a chain of at most l nodes,

A
SR(l)
X (x, x′) := min

Cl(x,x
′)

max
k|xk∈Cl(x,x

′)
AX(xk, xk+1). (14)

We define the family of semi-reciprocal clustering methods HSR(l) with

output (X,u
SR(l)
X ) = HSR(l)(X,AX) as the one for which the ultrametric

value u
SR(l)
X (x, x′) between points x and x′ is

u
SR(l)
X (x, x′) := min

C(x,x′)
max

i|xi∈C(x,x′)
Ā

SR(l)
X (xi, xi+1) (15)

where the function Ā
SR(l)
X (xi, xi+1) is defined as

Ā
SR(l)
X (xi, xi+1) := max

(
A

SR(l)
X (xi, xi+1), A

SR(l)
X (xi+1, xi)

)
.

The chain C(x, x′) of unconstrained length in (15) is denoted as the main
chain, represented by [x = x0, x1, ..., xr, xr+1 = x′] in Fig. 4. Between
consecutive nodes of the main chain xi and xi+1, we build loops con-
sisting of secondary chains in each direction, represented in Fig. 4 by
[xi, yi1, ..., yiki

, xi+1] and [xi+1, y
′
i1, ..., y

′
ik′

i
, xi] for all i. For the compu-

tation of u
SR(l)
X (x, x′), the maximum allowed length of secondary chains is

equal to l nodes, i.e., ki, k
′
i ≤ l−2 for all i. In particular, for l = 2 we recover

the reciprocal chain depicted in Fig. 1.
We can reinterpret (15) as the application of reciprocal clustering [cf.

(5)] to a network with dissimilarities A
SR(l)
X as in (14), i.e., a network

with dissimilarities given by the optimal choice of secondary chains. Semi-
reciprocal clustering methods are valid and satisfy axioms (A1)-(A2) as shown
in the following proposition.

Proposition 4 The semi-reciprocal clustering method HSR(l) with ultramet-
rics as in (15) satisfies axioms (A1) and (A2) for all integers l ≥ 2.

Proof: See [14]. �

The semi-reciprocal is a countable family of clustering methods parameter-
ized by integer l representing the allowed maximum node length of secondary
chains. Reciprocal and nonreciprocal ultrametrics are equivalent to semi-

reciprocal ultrametrics for specific values of l. For l = 2 we have u
SR(2)
X = uR

X
meaning that we recover reciprocal clustering. To see this formally, note that

ũ
SR(2)
X (x, x′) = AX(x, x′) [cf. (14)] since the only chain of length two joining

x and x′ is [x, x′]. Hence, for the case where l = 2, (15) reduces to

u
SR(2)
X (x, x′) = min

C(x,x′)
max

i|xi∈C(x,x′)
ĀX(xi, xi+1), (16)

which is the definition of the reciprocal ultrametric [cf. (5)]. Nonreciprocal

ultrametrics can be obtained as u
SR(l)
X = uNR

X for any parameter l ≥ n

exceeding the number of nodes in the network. To see this, notice that
minimizing over C(x, x′) is equivalent to minimizing over Cl(x, x

′) for all

x
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Fig. 5. Semi-reciprocal example. Computation of semi-reciprocal ultrametrics

between nodes x and x′ for different values of parameter l. u
SR(2)
X (x, x′) = 4,

u
SR(3)
X (x, x′) = 3, u

SR(4)
X (x, x′) = 2 and u

SR(l)
X (x, x′) = 1 for all l ≥ 5; see

text for details.

l ≥ n, since we are looking for minimizing chains in a network with non
negative weights. Therefore, visiting the same node twice is not an optimal
choice. This implies that Cn(x, x′) contains all possible minimizing chains
between x and x′. In other words, all chains of interest have at most n nodes
or n− 1 hops. Hence, by inspecting (14), ũ

SR(l)
X (x, x′) = ũNR

X (x, x′) [cf. (6)]
for all l ≥ n. Furthermore, when l ≥ n, the best main chain that can be picked
is formed only by nodes x and x′ because, in this way, no additional meeting
point is enforced between the chains going from x to x′ and vice versa. As a
consequence, definition (15) reduces to

u
SR(l)
X (x, x′) = max

(
ũNR
X (x, x′), ũNR

X (x′, x)
)
, (17)

for all l ≥ n. The right hand side of (17) is the definition of the nonreciprocal
ultrametric [cf. (7)].

For the network in Fig. 5, we calculate the semi-reciprocal ultrametrics
between x and x′ for different values of l. Edges which have not been drawn
have dissimilarity values greater than the ones depicted in the figure. Since the
only bidirectional chain between x and x′ uses x3 as the intermediate node, we

conclude that uR
X(x, x′) = u

SR(2)
X (x, x′) = 4. Furthermore, by constructing a

path through the outmost clockwise cycle in the network, we conclude that
uNR
X (x, x′) = 1. Since the longest secondary chain in the minimizing path for

the nonreciprocal case, [x, x1, x2, x4, x′], has length 5, we may conclude that

u
SR(l)
X (x, x′) = 1 for all l ≥ 5. For intermediate values of l, if e.g., we fix l =

3, the minimizing path is given by the main chain [x, x3, x′] and the secondary
chains [x, x1, x3], [x3, x4, x′], [x′, x5, x3] and [x3, x6, x] joining consecutive
nodes in the main chain in both directions. The maximum cost among all

dissimilarities in this path is AX(x1, x3) = 3. Hence, u
SR(3)
X (x, x′) = 3. The

minimizing path for l = 4 is similar to the minimizing one for l = 3 but
replacing the secondary chain [x, x1, x3] by [x, x1, x2, x3]. In this way, we

obtain u
SR(4)
X (x, x′) = 2.

Remark 3 When propagating influence through a network, reciprocal clus-
tering requires bidirectional influence whereas nonreciprocal clustering allows
arbitrarily large unidirectional cycles. In many applications, such as trust prop-
agation in social networks, it is reasonable to look for an intermediate situation
where influence can propagate through cycles but of limited length. Semi-
reciprocal ultrametrics represent this intermediate situation with parameter l

accounting for the size of the influence cycles permitted.

IV. ALGORITHMS

In this section we interpret AX as a given matrix of dissimilarities and
uX as a symmetric matrix with entries corresponding to the ultrametric
uX(x, x′). As per (5), reciprocal clustering searches for chains that minimize
the maximum dissimilarity in the symmetric matrix ĀX := max(AX , AT

X).
This is equivalent to finding chains in ĀX that have minimum cost as
measured in the infinity norm. Likewise, nonreciprocal clustering searches
for directed chains of minimum infinity norm cost in AX to construct the
matrix ũX [cf. (6)] and selects the maximum of the directed costs by
performing the operation uNR

X = max(ũX , ũT
X) [cf. (7)]. These operations

can be performed algorithmically using matrix powers in the dioid algebra
(R+ ∪ {+∞},min,max) [15].

In the dioid algebra (R+ ∪ {+∞},min,max) the regular sum is replaced
by the minimization operator and the regular product by maximization. Using
⊕ and ⊗ to denote sum and product respectively on this dioid algebra we
have a⊕ b := min(a, b) and a⊗ b := max(a, b). The matrix product A⊗ B

is therefore given by the matrix with entries

[
A⊗B

]
i,j

=

n⊕
k=1

(
Ai,k ⊗Bk,j

)
= min

k∈[1,n]
max

(
Ai,k, Bk,j

)
. (18)



From the definition in (18), it follows that for given matrix A the lth dioid
power A(l) is such that its i, j entry [A(l)]i,j represents the minimum infinity
norm cost of a chain containing at most l hops. As discussed in Section III-C,
we can restrict candidate minimizing chains to those with at most n−1 hops,
entailing the following result.

Proposition 5 For given network N = (X,AX) with n nodes the reciprocal
ultrametric uR

X defined in (5) can be computed as

uR
X =

(
max

(
AX , AT

X

) )(n−1)
, (19)

where the operation (·)(n−1) denotes the (n− 1)st matrix power in the dioid
algebra (R+ ∪{+∞},min,max) with matrix product as defined in (18). The
nonreciprocal ultrametric uNR

X defined in (7) can be computed as

uNR
X = max

(
A

(n−1)
X ,

(
AT

X

)(n−1)
)
. (20)

Proof: See [14]. �

For the reciprocal ultrametric we symmetrize dissimilarities with a maxi-
mization operation and take the (n − 1)st power of the resulting matrix on
the dioid algebra (R+ ∪ {+∞},min,max). For the nonreciprocal ultrametric
we revert the order of these two operations. We first consider matrix powers

A
(n−1)
X and

(
AT

X

)(n−1)
of the dissimilarity matrix and its transpose which

we then symmetrize to the maximum. Besides emphasizing the relationship
between reciprocal and nonreciprocal clustering, Proposition 5 suggests the
existence of intermediate methods in which we raise dissimilarity matrices AX

and AT
X to some power, perform a symmetrization, and then continue matrix

multiplications. These procedures yield methods that are not only valid but
coincide with the family of semi-reciprocal ultrametrics introduced in Section
III-C as the following proposition asserts.

Proposition 6 For a given network N = (X,AX) with n nodes the lth semi-
reciprocal ultrametric u

SR(l)
X in (15) can be computed as

u
SR(l)
X =

(
max

(
A

(l−1)
X , (AT

X)(l−1)
))(n−1)

. (21)

where (·)(l−1) and (·)(n−1) denote matrix powers in the dioid algebra (R+∪
{+∞},min,max) with matrix product as defined in (18).

Proof: See [14]. �

The result in (21) is intuitive. The powers A
(l−1)
X and

(
AT

X

)(l−1)
represent

the minimum infinity norm cost among directed chains of at most l− 1 hops.
In terms of Section III-C, these are the cost of the optimal secondary chains

of at most l nodes. Therefore the maximization max
(
A

(l−1)
X ,

(
AT

X

)(l−1) )
computes the cost in both directions of joining two given nodes with secondary

chains of at most l nodes, i.e. Ā
SR(l)
X in (15). Applying the dioid power

(n − 1) to this new matrix is equivalent to looking for minimizing chains
in the network with costs given by the secondary chains, i.e., the dioid
power computes the cost of the optimal main chain, as described in Section
III-C. Observe that we recover (19) by making l = 2 in (21). Also, it can
be shown that (20) is equivalent to (21) when l = n. Thus, the results in
propositions 5 and 6 further emphasize the extremal nature of the reciprocal
and nonreciprocal methods and characterize the semi-reciprocal ultrametrics
as natural intermediate clustering methods in an algorithmic sense.

This algorithmic perspective allows for a generalization in which the powers
of the matrices AX and AT

X are different. To be precise, consider strictly
positive integers l, l′ > 0 and define the algorithmic intermediate clustering
method Hl,l′ with parameters l, l′ as the one that maps the given network

N = (X,AX) to the output ultrametric (X,ul,l′
X ) = Hl,l′ (N) given by

ul,l′
X =

(
max

(
A

(l)
X , (AT

X)(l
′)))(n−1)

. (22)

The ultrametric (22) can be interpreted as a semi-reciprocal ultrametric
where the allowed length of secondary chains varies with the direction.
Forward secondary chains may have at most l + 1 nodes whereas backward
secondary chains may have at most l′+1 nodes. The algorithmic intermediate
family Hl,l′ encapsulates the semi-reciprocal family since Hl,l ≡ HSR(l+1)

as well as the reciprocal method since HR ≡ H1,1 as it follows from
comparison of (22) with (21) and (19), respectively. It can also be shown

that HNR(X,AX) = Hn−1,n−1(X,AX) for all networks with |X| ≤ n. The

intermediate algorithmic methods Hl,l′ are admissible as we claim in the
following proposition.

Proposition 7 The hierarchical clustering method Hl,l′ with ultrametrics as
in (22) satisfies axioms (A1) and (A2).

Proof: See [14]. �

Algorithms to compute ultrametrics associated with the grafting families in
Section III-A entail combinations of matrices uR

X and uNR
X . E.g., ultrametrics

in (9) corresponding to the grafting method HR/NR(β) can be computed as

u
R/NR
X (β) = uNR

X ◦ I{uR
X ≤ β

}
+ uR

X ◦ I
{
uR
X > β

}
, (23)

where A ◦ B denotes the Hadamard product of matrices A and B and I {·}
is an element wise indicator function which outputs a matrix with a 1 in the
positions satisfying the condition and a 0 otherwise.

Algorithms for the convex combination family in Section III-B involve com-
puting dioid algebra powers of a convex combination of ultrametric matrices.
Given two admissible methods with output ultrametrics (X,u1

X) = H1(N)

and (X,u2
X) = H2(N), and a scalar 0 ≤ θ ≤ 1, the ultrametric in (13)

corresponding to the method H12(θ) can be computed as

u12
X (θ) =

(
θ u1

X + (1− θ)u2
X

)(n−1)
. (24)

Remark 4 It follows from (19), (20) and (21) that methods in this paper are
computationally tractable as the total number of operations is of order n4.
This complexity can be reduced to n3 logn by noting that the dioid matrix
power An can be computed with the sequence A,A2, A4, . . ., which requires
o(logn) matrix products at a cost of o(n3) each.

Remark 5 In the dioid algebra (R+∪{+∞},min,max), it can be shown that
a matrix A satisfies the strong triangle inequality if and only if A = A(2) [15].
Also, for a nonnegative matrix with null diagonal, A(n−1) = A(n). Hence, the
dioid matrix powers in (19)-(22) and (24) ensure a valid ultrametric definition.
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