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Abstract—The authors have introduced an axiomatic construction for
hierarchical clustering of asymmetric – i.e. weighted and directed –
networks. In such construction, nodes in a two-node network cluster
together at the largest of the two dissimilarities. This paper introduces two
alternative constructions requiring clustering at the smallest dissimilarity
and being agnostic at whether the minimum or maximum is the proper
choice. Within the first framework, unilateral clustering is defined and
shown to be the unique method that satisfies the proposed axioms. Within
the second framework, uniform bounds are established in the minimum
and maximum resolution at which clusters are formed. Unilateral
clustering is used to study internal migration in the United States.

Index Terms—Clustering, asymmetric networks

I. INTRODUCTION

In asymmetric – i.e., weighted and directed – networks, the notion
of proximity between nodes is not well defined since nodes can
be close in one direction but far away in the other. This hinders
intuitive understanding of clustering and explains why there is a
large number of clustering methods for finite metric spaces – see,
e.g., [1] – while methods for asymmetric networks are rarer [2]–[4].
To overcome this impediment and motivated by recent theoretical
developments in clustering theory for finite metric spaces [5]–[8],
we build a theory of clustering for asymmetric networks on a set of
axioms that condense desirable properties of clustering methods. In
this work we focus on hierarchical clustering methods whose output
is a dendrogram consisting of a nested set of partitions indexed by a
resolution parameter [9], [10]. Clustering methods are then maps that
attribute a dendrogram to every asymmetric network. We consider the
problem of designing these maps.

Our prior work in [11] introduces a first axiomatic framework for
the study of hierarchical clustering of asymmetric networks. This
framework is based on the axioms of value – in a two-node network
the nodes merge at the lowest resolution that allows bidirectional
influence – and transformation – if no pairwise dissimilarity is
increased, the resolution at which clusters form cannot increase. We
develop two clustering methods, reciprocal and nonreciprocal cluster-
ing, and show that every other method satisfying the aforementioned
axioms lies between these two in a well-defined sense. In [12],
we analyze intermediate clustering methods, i.e. contained between
reciprocal and nonreciprocal clustering, that satisfy the axioms of
value and transformation. Computationally tractable algorithms for
all proposed clustering methods are also given

The Axiom of Value in [11], [12] insists on bidirectional influence
for the formation of clusters. This requirement is well justified in
some applications but in other situations unidirectional influence suf-
fices for cluster determination. This paper develops the correspond-
ing alternative axiomatic framework (Section III) and introduces
the unilateral clustering method which is shown to be the unique
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hierarchical clustering method satisfying the given axioms (Section
III-A). We further take an agnostic view on whether bidirectional or
unidirectional influence should be enforced in the Axiom of Value,
generating a second alternative axiomatic construction. We prove
that in this agnostic framework any clustering method forms clusters
at resolutions coarser than those of unilateral clustering and finer
than those of reciprocal clustering (Section III-B). We use unilateral
clustering to study the network of state-to-state migration in the
United States (US) (Section IV).

II. PRELIMINARIES

The network N = (X,AX) is a set of n nodes X endowed
with a real valued dissimilarity function AX : X × X → R+

defined for all pairs x, x′ ∈ X . Dissimilarities AX(x, x′) from
x to x′ are nonnegative, and null if and only if x = x′, but
may not satisfy the triangle inequality and may be asymmetric,
i.e. AX(x, x′) 6= AX(x′, x) for some x, x′ ∈ X . The output of
hierarchically clustering the network N = (X,AX) is a dendrogram
DX , that is a nested set of partitions DX(δ) indexed by the resolution
parameter δ ≥ 0. Partitions in every dendrogram DX must satisfy two
boundary conditions: for the resolution parameter δ = 0 each point
x ∈ X must form its own cluster, i.e., DX(0) =

{
{x}, x ∈ X

}
,

and for some sufficiently large resolution δ0 all nodes must belong
to the same cluster, i.e., DX(δ0) =

{
X
}

. Partitions being nested
means that if any two nodes x, x′ ∈ X are in the same block of the
partition at resolution δ0, then they stay co-clustered for all larger
resolutions δ > δ0. When x and x′ are co-clustered at resolution δ
in DX we say that they are equivalent at that resolution and write
x ∼DX (δ) x

′. For future reference, we define the two-node network
~∆2(α, β) := ({p, q}, Ap,q) with Ap,q(p, q) = α and Ap,q(q, p) = β
for some α, β > 0 as depicted in Fig. 1

Given a network (X,AX) and x, x′ ∈ X , a chain C(x, x′)
is an ordered sequence of nodes in X , C(x, x′) = [x =
x0, x1, . . . , xl−1, xl = x′], which starts at x and finishes at x′. The
links of a chain are the edges connecting consecutive nodes of the
chain in the direction given by it. We define the cost of chain C(x, x′)
as the maximum dissimilarity maxi|xi∈C(x,x′)AX(xi, xi+1) en-
countered when traversing its links in order. The directed minimum
chain cost ũ∗X(x, x′) between x and x′ is then defined as the
minimum cost among all the chains connecting x to x′,

ũ∗X(x, x′) := min
C(x,x′)

max
i|xi∈C(x,x′)

AX(xi, xi+1). (1)

We further define the separation of a network (X,AX) as its
minimum positive dissimilarity and denote it as sep(X,AX),

sep(X,AX) := min
x 6=x′

AX(x, x′). (2)

An ultrametric uX on the set X is a function uX : X ×X → R+

that satisfies symmetry uX(x, x′) = uX(x′, x), identity uX(x, x′) =
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Fig. 1. Axiom of Value and Alternative Axiom of Value. For a two node
network, the Axiom of Value (A1) clusters both nodes at the minimum
resolution at which both can influence each other whereas the Alternative
Axiom of Value (A1’) clusters both nodes at the minimum resolution at which
at least one of them can influence the other.
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Fig. 2. Axiom of Transformation. If network NX can be mapped to network
NY using a dissimilarity reducing map φ, nodes clustered together in DX(δ)
at arbitrary resolution δ must also be clustered in DY (δ). For example, x1
and x2 are clustered together at resolution δ′, therefore y1 and y2 must also
be clustered at this resolution.

0 ⇐⇒ x = x′ and the strong triangle inequality

uX(x, x′) ≤ max
(
uX(x, x′′), uX(x′′, x′)

)
, (3)

for all x, x′, x′′ ∈ X . For a given dendrogram DX consider the
minimum resolution at which x and x′ are co-clustered and define

uX(x, x′) := min
{
δ ≥ 0, x ∼DX (δ) x

′}. (4)

It can be shown that the function uX as defined in (4) is an
ultrametric on the set X , thus proving that dendrograms and finite
ultrametric spaces are equivalent, [8, Theorem 9]. Ultrametrics are
more convenient than dendrograms to present the results developed
in this paper.

A hierarchical clustering method can be defined as a map H :
N → D from the space of networks N to the space of dendrograms
D, or, equivalently, as a map H : N → U mapping every asymmetric
network into the space U of networks with ultrametrics as dissimi-
larity functions. In our original axiomatic formulation, we looked for
methods H that satisfied the following intuitive restrictions:

(A1) Axiom of Value. The ultrametric output (X,up,q) =
H(~∆2(α, β)) produced by H applied to the two-node network
~∆2(α, β), see Fig. 1, satisfies

up,q(p, q) = max(α, β). (5)

(A2) Axiom of Transformation. Given networks NX = (X,AX)
and NY = (Y,AY ) and a dissimilarity reducing map φ : X →
Y , that is a map φ such that for all x, x′ ∈ X it holds
AX(x, x′) ≥ AY (φ(x), φ(x′)); see Fig. 2. Then, the outputs
(X,uX) = H(X,AX) and (Y, uY ) = H(Y,AY ) satisfy

uX(x, x′) ≥ uY (φ(x), φ(x′)). (6)

x x1 . . .. . . xl x′

AX(x, x1) AX(x1, x2) AX(xl−1, xl) AX(xl, x
′)

AX(x1, x) AX(x2, x1) AX(xl, xl−1) AX(x′, xl)

Fig. 3. Reciprocal clustering. Nodes x, x′ cluster at resolution δ if they can
be joined with a bidirectional chain of maximum dissimilarity δ [cf. (7)].
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Fig. 4. Nonreciprocal clustering. Nodes x, x′ cluster at resolution δ if they
can be joined in both directions with possibly different chains of maximum
dissimilarity δ [cf. (8)].

Axiom (A1) says that in a network with two nodes p and q, the
dendrogram DX has them merging at the maximum value of the two
dissimilarities α and β. Axiom (A2) states that a contraction of the
dissimilarity matrix AX entails a contraction of the ultrametric uX .

A hierarchical clustering method H is admissible if it satisfies
axioms (A1) and (A2). Two admissible methods of interest are
reciprocal and nonreciprocal clustering. The reciprocal clustering
method HR with output (X,uR

X) = HR(X,AX) is the one for which
the ultrametric uR

X(x, x′) between points x and x′ is given by

uR
X(x, x′) := min

C(x,x′)
max

i|xi∈C(x,x′)
ĀX(xi, xi+1), (7)

where ĀX(x, x′) := max(AX(x, x′), AX(x′, x)) for all x, x′ ∈ X .
Intuitively, in (7) we search for chains C(x, x′) linking nodes x and
x′. Then, for a given chain, walk from x to x′ and determine the
maximum dissimilarity, in either the forward or backward direction,
across all links in the chain. The reciprocal ultrametric uR

X(x, x′) is
the minimum of this value across all possible chains; see Fig. 3.

Reciprocal clustering joins x to x′ by going back and forth at
maximum cost δ through the same chain. Nonreciprocal clustering
HNR permits different chains. Hence, we define the nonreciprocal
ultrametric between x and x′ as the maximum of the two directed
minimum chain costs (1) from x to x′ and x′ to x

uNR
X (x, x′) := max

(
ũ∗X(x, x′), ũ∗X(x′, x)

)
. (8)

In (8) we implicitly consider forward chains C(x, x′) going from x
to x′ and backward chains C(x′, x) from x′ to x. We then determine
the respective maximum dissimilarities and search independently
for the forward and backward chains that minimize the respective
maximum dissimilarities. The nonreciprocal ultrametric uNR

X (x, x′)
is the maximum of these two minimum values; see Fig. 4.

Reciprocal and nonreciprocal clustering are of importance because
they bound the range of ultrametrics generated by any other admis-
sible method H in the sense stated in the following theorem.

Theorem 1 ([11]) Consider an arbitrary network N = (X,AX)
and let uR

X and uNR
X be the associated reciprocal and nonreciprocal

ultrametrics as defined in (7) and (8). Then, for any admissible
method H, the output ultrametric (X,uX) = H(X,AX) is such
that for all pairs x, x′,

uNR
X (x, x′) ≤ uX(x, x′) ≤ uR

X(x, x′). (9)

In Section III we see that by modifying the admissibility criterion, i.e.
by altering the axiomatic framework, the result in Theorem 1 varies.
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For the Alternative Axiom of Value (A1’) we obtain a uniqueness
result whereas for the Agnostic Axiom of Value (A1”) the admissible
methods span a range of ultrametrics larger than the one in (9).

III. ALTERNATIVE AXIOMATIC CONSTRUCTIONS

Of the axioms stated in Section II, the Axiom of Value (A1) is
the most open to interpretation. Requiring the two-node network in
Fig. 1 to cluster at resolution max(α, β) seems reasonable because at
resolutions δ < max(α, β) one node can influence the other but not
vice versa, which in most situations means that the nodes are different
in nature and, hence, must belong to different clusters. However, it is
also reasonable to accept that in some situations the two nodes should
be clustered together as long as one of them is able to influence the
other. To account for this possibility we replace the Axiom of Value
by the following alternative.

(A1’) Alternative Axiom of Value. The ultrametric output
(X,up,q) = H(~∆2(α, β)) produced by H applied to the two-
node network ~∆2(α, β) satisfies

up,q(p, q) = min(α, β). (10)

Axiom (A1’) replaces the requirement of bidirectional influence in
Axiom (A1) to unidirectional influence; see Fig. 1. We say that a
clustering method H is admissible respect to the alternative axioms
if it satisfies axioms (A1’) and (A2).

The Alternative Property of Influence (P1) that we define next,
besides its intrinsic theoretical value, is a keystone in the proof of
the uniqueness result in Theorem 3.

(P1’) Alternative Property of Influence. For any network NX =
(X,AX) the output ultrametric (X,uX) = H(X,AX) is such
that the ultrametric value uX(x, x′) between any two distinct
points x and x′ cannot be smaller than the separation [cf. (2)]
of the network

uX(x, x′) ≥ sep(X,AX). (11)

The Alternative Property of Influence (P1’) states that no clusters are
formed at resolutions at which there are no unidirectional influences
between any pair of nodes and is consistent with the Alternative
Axiom of Value (A1’). Moreover, (P1’) is true if (A1’) and (A2)
hold as we assert in the following theorem.

Theorem 2 If a clustering method H satisfies the Alternative Axiom
of Value (A1’) and the Axiom of Transformation (A2) then it also
satisfies the Alternative Property of Influence (P1’).
Proof: See [13].

In (A1’) we require two-node networks to cluster at the resolution
where unidirectional influence occurs. When we consider (A1’) in
conjunction with (A2) we can translate this requirement into a
statement about clustering in arbitrary networks. Such requirement
is the Alternative Property of Influence (P1’) which prevents nodes
to cluster at resolutions at which each node in the network is
disconnected from the rest.

A. Unilateral clustering

We move on to define methods that satisfy axioms (A1’)-(A2) and
then bound the range of admissible methods respect to these axioms.
To do so let N = (X,AX) be a given network and consider the
symmetric dissimilarity function

ÂX(x, x′) := min(AX(x, x′), AX(x′, x)), (12)

x x1 . . .. . . xl x′

AX(x1, x2) AX(xl−1, xl)

AX(x1, x) AX(x′, xl)

Fig. 5. Unilateral clustering. Nodes x, x′ cluster at resolution δ if they can
be joined with a chain with links in any direction of maximum dissimilarity
δ [cf. (13)].

for all x, x′ ∈ X . We define the unilateral clustering method HU

with output (X,uU
X) = HU(N), where uU

X is defined as

uU
X(x, x′) := min

C(x,x′)
max

i|xi∈C(x,x′)
ÂX(xi, xi+1), (13)

for all x, x′ ∈ X . In unilateral clustering, we first symmetrize the
dissimilarities to the minimum and then look for the minimum chain
cost between every pair of nodes. Equivalently, we merge two nodes
at the resolution that it is possible to find a chain joining them where
the directions of the links are ignored; see Fig. 5. To show that HU

is a properly defined clustering method, we need to establish that uU
X

as defined in (13) is a valid ultrametric. Furthermore, it can be shown
that HU satisfies axioms (A1’) and (A2), as we state next.

Proposition 1 The unilateral clustering method HU is valid, i.e. uU
X

as defined in (13) is a valid ultrametric, and satisfies axioms (A1’)
and (A2).
Proof: See [13].

In the case of admissibility with respect to (A1) and (A2), we
found an infinite number of clustering methods whose outcomes are
uniformly bounded between those of nonreciprocal and reciprocal
clustering [cf. Theorem 1]. In the case of admissibility with respect to
(A1’) and (A2), unilateral clustering is the unique admissible method
as stated in the following theorem.

Theorem 3 Let H be a hierarchical clustering method satisfying
axioms (A1’) and (A2). Then, H ≡ HU where HU is the unilateral
clustering method with output ultrametrics as in (13).
Proof: See [13].

Further note that in the case of symmetric networks we have
ÂX(x, x′) = AX(x, x′) = AX(x′, x) [cf. (12)] for all x, x′ ∈ X
and, as a consequence, unilateral clustering is equivalent to single
linkage clustering [10, Ch. 4]. Moreover, for symmetric networks,
axioms (A1’) and (A2) coincide with two of the three axioms
considered in [8] for finite metric spaces where single linkage was
shown to be the only admissible clustering method. Thus, the result
in Theorem 3 generalizes the uniqueness result in [8] since it depends
on less axioms and is valid on the larger space of asymmetric
networks and reduces to the uniqueness result known for single
linkage clustering when considering symmetric networks.

B. Agnostic Axiom of Value

Axiom (A1) takes the position that every two-node network is
clustered at max(α, β), whereas Axiom (A1’) takes the position that
they should be clustered at min(α, β). One can also be agnostic
with respect to this issue and say that both of these situations are
admissible. An agnostic version of axioms (A1) and (A1’) is given.

(A1”) Agnostic Axiom of Value. The ultrametric output
(X,up,q) = H(~∆2(α, β)) produced by H applied to the two-
node network ~∆2(α, β) satisfies

min(α, β) ≤ up,q(p, q) ≤ max(α, β). (14)
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Fig. 6. State-to-state migration clustering. Dendrogram output of applying
the unilateral clustering method to the network of state-to-state migration.
Clusters are painted in color and identified in the map. States tend to merge
with neighboring states.

Since fulfillment of (A1) or (A1’) implies fulfillment of (A1”), any
admissible clustering method with respect to the original axioms
(A1)-(A2) or with respect to the alternative axioms (A1’)-(A2) must
be admissible with respect to the agnostic axioms (A1”)-(A2). For
methods that are admissible with respect to (A1”)-(A2), we can bound
the output ultrametrics as stated in the following theorem.

Theorem 4 Consider a clustering methodH satisfying axioms (A1”)
and (A2). For an arbitrary given network N = (X,AX) denote by
(X,uX) = H(X,AX) the outcome of H applied to N . Then, for
all pairs of nodes x, x′

uU
X(x, x′) ≤ uX(x, x′) ≤ uR

X(x, x′), (15)

where uU
X and uR

X denote the unilateral and reciprocal ultrametrics
as defined in (13) and (7), respectively.
Proof: See [13].

As in the case of the original axioms (A1)-(A2), there is an
infinite number of clustering methods satisfying the agnostic ax-
ioms (A1”)-(A2). By Theorem 4, given an asymmetric network
(X,AX), any hierarchical clustering method satisfying axioms (A1”)
and (A2) is contained between two methods. The first one, uni-
lateral clustering, symmetrizes AX by calculating ÂX(x, x′) =
min(AX(x, x′), AX(x′, x)) for all x, x′ ∈ X and then com-
putes minimum chain costs on (X, ÂX). The other method, re-
ciprocal clustering, symmetrizes AX by calculating ĀX(x, x′) =
max(AX(x, x′), AX(x′, x)) for all x, x′ ∈ X and computes mini-
mum chain costs on (X, ĀX).

IV. NUMERICAL EXPERIMENTS

We apply the unilateral clustering method HU to a network
containing information about state-to-state migration in the US during
year 2011 [14]. The network NS = (S,AS) contains as a node set S
every state plus Washington D.C. whereas the dissimilarity function
AS is an inverse function of the probability of state-to-state migration.
More precisely, a low dissimilarity AS(s, s′) for any s, s′ ∈ S
indicates that an immigrant into state s′ has a high probability to
come from state s. Notice that NS is inherently asymmetric. In Fig.
6 we present the dendrogram output of applying HU to NS .

The first two states to merge in the dendrogram in Fig. 6 are
Massachusetts and New Hampshire because from all the people that
moved into NH, 42% came from MA, this being the highest value
among the country. A similar thing occurs with individuals moving
to Nevada from California and to North Dakota from Minnesota,
thus the early mergings between these states in the dendrogram.
If we analyze the dendrogram from top to bottom we see that
the country is first divided into two clusters corresponding to an
east-west division given in part by the Mississippi river. Going to
lower resolutions, smaller clusters arise that we have highlighted in
colors and painted the corresponding states in those colors in the
US map. These clusters correspond to geographical areas where the
(unidirectional) migration flow within the area is more intense than
with the rest of the country. The fact that states tend to form clusters
with neighboring states shows that geographical location determines
the intensity of migrational flows. That is, people tend to choose
nearby states as preferred destinations for internal migration.

V. CONCLUSION

Two alternative axiomatic frameworks for hierarchical clustering of
asymmetric networks were presented. Within the first framework we
defined the unilateral clustering method and showed a uniqueness
result. For the second framework, we showed that unilateral and
reciprocal clustering are well-defined extremes of all clustering meth-
ods satisfying the proposed axioms. Finally, we applied unilateral
clustering to study state-to-state migration in the United States.
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