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ABSTRACT

A repeated network game where agents’ utilities depend on information
and payoff externalities is considered. Agents play Bayesian Nash Equi-
librium strategies with respect to their beliefs on the state of the world
and the actions of all other nodes in the network. These beliefs are re-
fined over subsequent stages based on the observed actions of neighbor-
ing peers. This paper introduces the Quadratic Network Game (QNG)
filter that agents can run locally to update their beliefs, select correspond-
ing optimal actions, and eventually learn a sufficient statistic of the net-
work’s state. The QNG filter is demonstrated on a coordination game.

Index Terms— Network Games, Bayesian Nash Equilibrium, Lin-
ear Filtering, Distributed Signal Processing.

1. INTRODUCTION

Consider a network of autonomous agents intent on selecting actions that
maximize local quadratic utilities that depend on an unknown state of the
world – information externalities – and also the unknown actions of all
other agents – payoff externalities. In a Bayesian setting agents form a
belief on the actions of their peers and select an action that maximizes
the expected payoff with respect to those beliefs. In turn, forming these
beliefs requires that each network element make a model of how other
members will respond to their local beliefs. The natural assumption is
that they exhibit the same behavior, namely that they are also making a
model of other nodes’ responses. But that means we need a model of
their model which shall include their model of our model of their model
and so on. The fixed point of this iterative modeling effort is a Bayesian
Nash Equilibrium (BNE). Here, we consider repeated versions of this
game in which agents observe the actions taken by neighboring agents
at a given time. Observation of neighboring actions alters agents’ be-
liefs leading to the selection of new actions which become known at the
next play prompting further reevaluation of beliefs and corresponding
actions. In this context we talk of Bayesian learning as the agents’ goal
which can be interpreted as the eventual learning of peers’ actions. This
paper introduces the Quadratic Network Game (QNG) filter that agents
can run locally to update their beliefs, select corresponding optimal ac-
tions, and eventually learn a sufficient statistic of the network’s state.

The burden of computing a BNE in repeated games is, in general,
overwhelming even for small sized networks [1]. This intractability has
led to the study of simplified models in which agents are non-Bayesian
but update their beliefs according to some heuristic rule [2–6]. A differ-
ent simplification is obtained in models with pure information externali-
ties where payoffs depend on the local action and an underlying state but
not on the actions of others. This is reminiscent of distributed estima-
tion [7–12] since agents figure out the state of the world from observed
neighboring actions without strategic considerations on the actions of
peers. Computations are still intractable in the case of pure information
externalities and for the most part only asymptotic analysis of the learn-
ing dynamics with rational agents is possible [13–15]. However, there
exist explicit characterizations when signals are Gaussian [1] or when the
network structure is a tree [16]. For the network games considered here
in which there are information as well as payoff externalities not much
is known besides an asymptotic analysis of learning dynamics [17–19].

Work in this paper is supported by ARO W911NF-10-1-0388, NSF CAREER
CCF-0952867, NSF CCF-1017454, and AFOSR MURI FA9550-10-1-0567.

The QNG filter provides a mechanism to compute BNE actions for
quadratic games in which the initial condition of each agent is a single
private observation of the state of the world corrupted by additive Gaus-
sian noise (Section 2). We begin by showing that the propagation of local
posterior probability distributions on the system’s state as new neigh-
boring actions are observed follows a Gaussian distribution (Section 3).
We then employ a complete induction argument to derive an explicit re-
cursion for the tracking of means and covariances of these distributions
(Theorem 1) which we leverage to develop the QNG filter (Section 4).
We apply the QNG filter on a vector coordination game (Section 5).

2. GAUSSIAN QUADRATIC GAMES

We consider games with incomplete information in which N identical
agents in a network repeatedly choose actions and receive payoffs that
depend on their own actions, an unknown scalar parameter θ ∈ R, and
actions of all other agents. The network is represented by an undirected
connected graph G = (V,E) with node set V = 1, . . . , N and edge
set E. The network structure restricts the information available to agent
i who is assumed to observe actions of agents j in its neighborhood
n(i) := {j : {j, i} ∈ E} composed of agents that share an edge with
him. The degree of node i is given by the cardinality of the set n(i)
and denoted as d(i) := #n(i). The neighbors of i are denoted ji,1 <
, . . . , < ji,d(i). We assume the network graph G is known to all agents.

At time t = 0 agent i observes a private signal xi ∈ R which we
model as being given by the unknown parameter θ contaminated with
zero mean additive Gaussian noise εi,

xi = θ + εi, (1)

The noise variances are denoted as Ci := E
[
ε21
]

and grouped in the
vector C := [C1, . . . , CN ]T which is assumed known to all agents. The
noise terms εi are further assumed independent across agents. For future
reference define the vector of private signals x := [x1, . . . , xN ]T ∈
RN×1 grouping all local observations.

Consider a discrete time variable t = 0, 1, 2, . . . to index subsequent
stages of the game. At each stage t agent i takes scalar action ai(t) ∈ R.
The selection of agent i, along with the concurrent selections aj(t) of
all other agents j ∈ V \ i results in a payoff ui(ai(t), {aj(t)}j∈V \i, θ)
that agent i wants to make as large as possible. In this paper we restrict
attention to quadratic payoffs. Specifically, selection of actions {ai =
ai(t)}i∈V when the state of the world is θ results in agent i receiving

ui(ai, {aj}j∈V \i, θ) = −1

2
a2i +

∑
j∈V \{i}

βijaiaj

+ δaiθ + f({aj}j∈V \i, θ), (2)

where βij ∈ R for all i ∈ V , j ∈ V \ i and δ ∈ R are constants and f(·)
is some function with arguments {aj}j∈V \i and θ. Notice that since
∂2ui/∂a

2
i = −1 < 0 the payoff function in (2) is strictly concave with

respect to the self action ai of agent i.
Agent i cannot select the action ai(t) that maximizes the payoff

in (2) because neither θ nor the actions {aj(t)}j∈V \i are available to
him. Hence, agent i needs to reason about his beliefs on state θ and ac-
tions {aj(t)}j∈V \i based on its available information. At the playing
of stage t − 1, agent i observes the actions an(i)(t − 1) := [aji,1(t −
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1), . . . , aji,d(i)(t − 1)]T ∈ Rd(i)×1 of all agents in his neighborhood.
In general, at any point in time t the history of observations hi,t is aug-
mented to incorporate the actions of neighbors in the previous stage,

hi,t :=
{
hi,t−1,an(i)(t− 1)

}
=
{
xi,an(i)(u), u < t

}
. (3)

Observed action history hi,t is then used to update estimates of the world
state θ and the upcoming actions {aj(t)}j∈V \i of all other agents lead-
ing to the selection of the action ai(t) in the current stage of the game.

Next, we introduce the strategy σi,t of agent i that is used to map
histories to actions. The strategy σi,t of agent i at time t is a σ-algebra
measurable with respect to the history hi,t. In this paper we focus on
pure strategies that can be written as functions that map hi,t to ai(t),
that is, σi,t : hi,t 7→ ai(t). We emphasize the difference between
strategy and action. An action ai(t) is the play of agent i at time t,
whereas strategies σi,t refer to the map of histories to actions. We can
think of the action ai(t) = σi,t(hi,t) as the value of the strategy func-
tion σi,t associated with the given observed history hi,t. Further define
the strategy of agent i as the concatenation σi := {σi,u}u=0,...,∞ of
strategies that agent i plays at all times. Use σt := {σi,t}i∈V to refer
to the strategies of all players at time t, σ0:t := {σu}u=0,...,t to rep-
resent the strategies played by all players between times 0 and t, and
σ := {σu}u=0,...,∞ = {σi}i∈V to denote the strategy profile for all
agents i ∈ V and t ∈ N. As in the case of the network topology, the
strategy σ is also assumed to be known to all agents. We study mecha-
nisms for the construction of strategies in the following section.

2.1. Bayesian Nash equilibria

Given that agent i wants to maximize the utility in (2) but has access
to the partial information available in the observed history hi,t in (3)
a reasonable strategy σi,t is to select the action ai(t) that maximizes
the expected utility with respect to hi,t. This expected utility depends
on strategies σ0:t−1 played in the past by all agents and on strategies
{σj,t}j∈V \i that all other agents are to play at time t. Fix then the past
strategies σ0:t−1 and the upcoming strategies {σj,t}j∈V \i, and define
the best response of player i at time t as

BRi,t
(
σ0:t−1, {σj,t}j∈V \i

)
(4)

:= argmax
ai∈R

Eσ0:t−1

[
ui(ai, {σj,t}j∈V \i, θ)

∣∣hi,t].
The strategies σ0:t−1 played at previous times mapped respective his-
tories {hj,u}j∈V to actions {aj(u)}j∈V for u < t. Therefore, the
past strategies σ0:t−1 determine the manner in which agent i updates
his beliefs on the state of the world θ and on the histories {hj,t}j∈V \i
observed by other agents. The strategy profiles {σj(t)}j∈V \i of other
players in the current stage permit transformation of history beliefs
{hj,t}j∈V \i into a probability distribution over respective upcoming
actions {aj(t)}j∈V \i. The resulting joint distribution on {aj(t)}j∈V \i
and θ permits evaluation and maximization of the expectation in (4).

One can think of the profiles {σj(t)}j∈V \i played by other agents in
the upcoming stage as the model agent i makes of the behavior of other
agents. In that sense the sensible assumption is that other agents are also
playing best response to a best response model of other agents. This
modeling assumption leads to the definition of Bayesian Nash equilibria
(BNE) as the solution to the fixed point equation

σ∗i,t(hi,t) = BRi,t
(
σ∗0:t−1, {σ∗j,t}j∈V \i

)
, for all hi,t, (5)

where we have also added the restriction that an equilibrium strategy
σ∗i,u has been played for all times u < t. We emphasize that (5) needs
to be satisfied for all possible histories hi,t and not just for the history
realized in a particular game realization.

If all agents play their BNE strategies as defined in (5), there is
no strategy that agent i could unilaterally deviate to that provides a

higher expected payoff than σ∗i,t [cf. (4)]. In this paper we restrict
attention to games in which all agents play the BNE strategy σ∗i,t at
all times. To simplify future notation define the expectation operator
Ei,t[·] := Eσ∗

0:t−1
[· |hi,t], that represents expectation with respect to

the local history hi,t when agents played the equilibrium strategy σ∗0:t−1

in earlier stages of the game. Similarly we define the conditional proba-
bility distribution of agent i at time t given past strategies σ∗0:t−1 and his
information hi,t by Pi,t(·) := Pσ∗

0:t−1

(
·
∣∣hi,t).

Since utility in (2) is a strictly concave quadratic function of ai, the
same is true of the expected utility that is maximized in (4) to obtain the
best response. We can then rewrite (4) by nulling the derivative of the
expected utility with respect to ai. Performing this operation for σ∗t in
(5), the set of equations in (5) can be rewritten as

σ∗i,t(hi,t) =
∑

j∈V \{i}

βijEi,t[σ
∗
j,t(hj,t)] + δEi,t[θ], (6)

that need to be satisfied for all possible histories hi,t and agents i ∈ V .
We pursue our goal to develop a filter that agents can use to compute their
equilibrium actions a∗i (t) := σ∗i,t(hi,t) given their observed history hi,t
in the following section.

3. PROPAGATION OF PROBABILITY DISTRIBUTIONS

According to the model in (6), at each stage of the game agents use the
observed history hi,t to estimate the unknown parameter θ as well as the
histories {hj,t}j∈V \i observed by other agents. They use the latter and
the known BNE strategy {σ∗j,t(hj,t)}j∈V \i to form a belief on the ac-
tions Pi,t({a∗j (t)}j∈V \i) which they use to compute their equilibrium
action a∗j (t) at time t. Observe that if the vector of private signals x
is given – not to the agents but to an outside observer – the trajectory
of the game is completely determined as there are no random decisions.
Thus, agent i can form beliefs on the histories {hj,t}j∈V \i and actions
{a∗j (t)}j∈V \i of other agents if it keeps a local belief on the vector of
private signals x; i.e., Pi,t(x). A method to track this probability distri-
bution is derived in this section using a complete induction argument.

Start by making the assumption that at time t, the posterior distri-
bution Pi,t(x) is normal with mean equal to Ei,t [x]. Define the cor-
responding error covariance matrix M i

xx(t) ∈ RN×N as M i
xx(t) :=

Ei,t[(x−Ei,t[x])(x−Ei,t[x])T ]. Although agent i’s probability distri-
bution for x is sufficient to describe its belief on the state of the system,
subsequent derivations are simpler if we keep an explicit belief on the
state of the world θ. Therefore, we also assume that agent i’s beliefs on
θ and x are jointly Gaussian given history hi,t. The mean of θ is Ei,t [θ]
and the corresponding variance is M i

θθ(t) := Ei,t[(θ − Ei,t[θ])(θ −
Ei,t[θ])

T ]. The cross covariance M i
θx(t) ∈ R1×N between the world

state θ and the private signals x is M i
θx(t) := Ei,t[(θ − Ei,t[θ])(x −

Ei,t[x])T ]. We further make the stronger assumption that the means of
this joint Gaussian distribution can be written as linear combinations of
the private signals. In particular, we assume that for some known matrix
Li,t ∈ RN×N and vector ki,t ∈ RN×1 we can write

Ei,t [x] = Li,tx, Ei,t [θ] = kTi,tx. (7)

Observe that the assumption in (7) is not that the estimates Ei,t [x] and
Ei,t [θ] are computed as linear combinations of the private signals x
– indeed, x is not known by agent i in general. The assumption is that
from the perspective of an external observer the actual computations that
agents do are equivalent to the linear transformations in (7).

Under the complete induction hypothesis of Gaussian posterior be-
liefs at time t with expectations as in (7) we show that linear equilibrium
strategies of the form

σ∗i,t(hi,t) = vTi,tEi,t[x], (8)
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for some action coefficients vi,t ∈ RN×1 that vary across agents but
are independent of the observed history hi,t can be found by solving a
system of linear equations. We do this in the following lemma 1.

Lemma 1 Consider a Bayesian game with quadratic utility as in (2).
Suppose that for all agents i, the joint posterior beliefs on the state of
the world θ and the private signals x given the local history hi,t at time
t, Pi,t([θ,x

T ]), are Gaussian with means expressed as the linear combi-
nations of private signals in (7) for some known vectors ki,t and matri-
ces Li,t. Define the aggregate vector kt := [kT1,t, . . . ,k

T
N,t]

T ∈ RN
2×1

stacking the state estimation weights of all agents and the block matrix
Lt ∈ RN

2×N2

withN ×N diagonal blocks ((Lt))jj = LTj,t and off di-
agonal blocks ((Lt))ij = −βijLTi,tLTj,t. If there exists a linear equilib-
rium strategy as in (8) the action coefficients vt := [vT1,t, . . . ,v

T
N,t]

T ∈
RN

2

can be obtained by solving the system of linear equations

Ltvt = δkt. (9)

Lemma 1 provides a mechanism to determine the strategy profiles
σ∗i,t(hi,t) of all agents through the computation of the action vectors
vi,t as a block of the vector vt that solves (9). We emphasize that the
value of the weight vector vt in (9) does not depend on the realization
of private signals x. This is in accord with the postulated equilibrium
strategy in (8) which assumes the action weights vi,t are independent of
the observed history. A consequence of this fact is that the action coeffi-
cients {vi,t}i∈V of all agents can be determined locally by all peers as
long as the matrices Li,t and vectors vi,t are common knowledge. The
equilibrium actions a∗i (t), however, do depend on the observed history
because the equilibrium action a∗i (t) = σ∗i,t(hi,t) – see Section 4.

At time t agent i computes its action vector vi,t which it uses to
select the equilibrium action a∗i (t) = vTi,tEi,t[x] as per (8). Since we
have also hypothesized that Ei,t [x] = Li,tx as per (7) the action of
agent i at time t is given by

ai(t) = vTi,tLi,tx. (10)

We emphasize that as in (7) the expression in (10) is not the computation
made by agent i but an equivalent computation from the perspective of
an external omniscient observer.

The actions an(i)(t) := [aji,1(t), . . . , aji,d(i)(t)]
T ∈ Rd(i)×1

of neighboring agents j ∈ n(i) become part of the observed his-
tory hi,t+1 of agent i at time t + 1 [cf. (3)]. The important con-
sequence of (10) is that these observations are a linear combination
of private signals x. In particular, by defining the matrix HT

i,t :=

[vTji,1,tLji,1,t; . . . ;v
T
ji,d(i),t

Lji,d(i),t] ∈ Rd(i)×N we can write

an(i)(t) = HT
i,tx (11)

Agent i’s belief of x at time t is normally distributed and when we
go from time t to time t + 1 agent i observes a linear combination,
an(i)(t) = HT

i,tx, of private signals. Thus, the propagation of the
probability distribution when the history hi,t+1 incorporates the actions
an(i)(t) is a simple sequential LMMSE estimation problem [21, Ch. 12].
In particular, the joint posterior distribution of x and θ given hi,t+1 re-
mains Gaussian and the expectations Ei,t+1 [x] and Ei,t+1 [θ] remain
linear combinations of private signals x as in (7) for some matrix Li,t+1

and vector ki,t+1 which we compute explicitly in the following lemma.

Lemma 2 Consider a Bayesian game with quadratic utility as in (2)
and the same assumptions and definitions of Lemma 1. Further define
the observation matrixHT

i,t ∈ Rd(i)×N as in (11) and the LMMSE gains

Ki
x(t) := M i

xx(t)Hi,t
(
HT
i,tM

i
xx(t)Hi,t

)−1
, (12)

Ki
θ(t) := M i

θx(t)Hi,t
(
HT
i,tM

i
xx(t)Hi,t

)−1
, (13)

1Proofs of results in this paper are available in [20]

an(i)(t)

∑
Ki

x

∑ Ei,t[x]
vi,t

ai(t)

−HT
i,t−Ei,t[an(i)(t)]

M i
xx(t) {kj,t}j∈V

{Lj,t}j∈V

HT
i,t

x

{vj,t}j∈n(i)

{Lj,t}j∈n(i)

Fig. 1. Linear network game filter at agent i.

and assume that agents play the linear equilibrium strategy in (8).
Then, Pi,t+1([θ,xT ]) is Gaussian with means that can be expressed
as the linear combination of private signals Ei,t+1 [x] = Li,t+1x, and
Ei,t+1 [θ] = kTi,t+1x, where the matrix Li,t+1 and vector ki,t+1 are
given by

Li,t+1 = Li,t +Ki
x(t)

(
HT
i,t −HT

i,tLi,t
)
, (14)

kTi,t+1 = kTi,t +Ki
θ(t)

(
HT
i,t −HT

i,tLi,t
)
. (15)

The posterior covariance matrixM i
xx(t+1) for the private signals x the

varianceM i
θθ(t+ 1) of the state θ and the cross covarianceM i

θx(t+ 1)
are further given by

M i
xx(t+ 1) =M i

xx(t)−Ki
x(t)HT

i,tM
i
xx(t), (16)

M i
θθ(t+ 1) =M i

θθ(t)−Ki
θ(t)

THT
i,tM

i
xθ(t), (17)

M i
θx(t+ 1) =M i

θx(t)−Ki
θ(t)H

T
i,tM

i
xx(t). (18)

Under the inductive hypotheses of Gaussian beliefs and linear esti-
mates as per (7), lemmas 1 and 2 show how agents determine optimal
actions given available information and propagate posterior mean and
variance of the beliefs. This permits closing the inductive loop to estab-
lish the following theorem for recursive computation of BNE of repeated
games with quadratic objectives (we use ei to denote the ith element of
the standard orthonormal basis of RN and ēi := 1 − ei to write an
all-one vector with the ith component nulled).

Theorem 1 Consider a repeated Bayesian game with the quadratic
utility function in (2) and assume that linear strategies σ∗i,t(hi,t) =

vTi,tEi,t[x] as in (8) exist for all times t. Then, the action coefficients
vi,t can be computed by solving the system of linear equations in (9)
with vt, kt and Lt as defined in Lemma 1. The matrices Li,t and the
vectors ki,t are computed by recursive application of (12)-(13) and
(14)-(18) with initial values Li,0 = 1eTi and ki,0 = ei, and initial
covariance matrix M i

xx(0) = diag(ēi)diag(C) + ēiē
T
i Ci, initial

variance M i
θθ(0) = Ci, and initial cross covariance M i

θx(0) = Ciē
T
i .

Theorem 1 shows that the estimates of θ and x remain Gaussian for
all agents when agents play according to a linear equilibrium strategy as
in (8) at each stage. This assumption is true when there exists a solution
to the set of linear equations in (9) at all stages. Since the equations
in (9) are altered at each stage, the assumption that there exists a linear
equilibrium strategy at all stages seems stringent. However, notice that
the stage game at time t+ 1 is exactly the same game as the stage game
at time t with identical payoff functions and information structure given
by the belief updates in Lemma 2. Hence, if the stage game at time
t = 0 has a linear equilibrium strategy, then it must be true that there
exists a linear equilibrium in the following stages – see [20] for a formal
discussion on existence and uniqueness of linear equilibrium strategies.

Note that the estimation weights Li,t and ki,t cannot be used to
calculate the mean estimates provided by Theorem 1, unless the private
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Fig. 2. Geometric (left) and random (right) networks with N = 50
agents. Agents are randomly place on a 4 meter× 4 meter square. There
exists an edge between any pair of agents with distance less than 1 meter
apart in the geometric network. In the random network, the connection
probability between any pair of agents is independent and equal to 0.1.

signals x are exactly known which will absolve agent i from responsi-
bility of the estimation process entirely. We cannot use (10) to compute
the equilibrium actions for similar reasons. We summarize the actual
operations carried by each agent in fig. 1 and in the following section.

4. QUADRATIC NETWORK GAME FILTER

In order to compute and play BNE strategies each node runs a quadratic
network game (QNG) filter. This filter entails a full network simulation
in which agent i maintains beliefs on the state of the world and the pri-
vate signals of all other agents, Pi,t([θ,x

T ]). These joint beliefs allow
agent i to form an implicit belief on all other actions aj,t for all j ∈ V
which he uses to find its equilibrium action ai(t).

The QNG filter at node i implements the sequential LMMSE esti-
mator updates to keep track of local mean estimates of x and θ, respec-
tively. These updates are illustrated in Fig. 1 inside the dashed box. At
time t, the input to the filter is the observed actions an(i)(t) of agent i’s
neighbors. The prediction Ei,t[an(i)(t)] = Hi,tEi,t[x] of this vector is
subtracted from the observed value and the resultant error is fed into the
block tasked with updating the belief on the private signals x. This error
is multiplied by the gain Ki

x(t) and the resultant innovation is added to
the previous mean estimate to correct the estimate of x,

Ei,t+1[x] =Ei,t [x] +Ki
x(t)

(
an(i)(t)−Hi,tEi,t[x]

)
. (19)

A similar correction is done on the estimate of θ by using the innovation
obtained by multiplying the error by the gain Ki

θ(t),

Ei,t+1[θ] =Ei,t [θ] +Ki
θ(t)

(
an(i)(t)−Hi,tEi,t[x]

)
. (20)

The mean updates in (19)-(20) and covariance updates (16)-(18) are ad-
missible since they depend on previous mean estimates, observed actions
and LMMSE gains.

In order to determine the equilibrium play, agent i multiples her
private signal estimate Ei,t[x] by the vector vi(t) obtained by solv-
ing the system of linear equations in (9). In order to form the matrix
Lt in (9), agent i needs to compute estimation weights {Lj,t,kj,t}j∈V .
Note that agent i does not need to access observations of other agents
in order to calculate the updates for estimation weights using (14)-(15).
It only needs to know the previous weight vector and the observation
matrix. Consequently, the recursions for estimation weights (14)-(15)
are useful for agent i to keep track of how other agents are calculating
{Lj,t,kj,t}j∈V without making the observations other agents are mak-
ing. This information is used in solving the set of equations given by (9).
Using this solution, agent i can compute the action weights in (8) which
she can use to compute her action, the observation matrix (11) and the
LMMSE gains.
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Fig. 3. Agents’ actions over time for heading angle φi (top) and take-off
angle ψi in geometric (left) and random (right) networks respectively.

5. COORDINATION GAME

Consider a network of mobile agents that want to align themselves so
that they move towards a goal on three dimensional space following a
straight path. While global coordination is required, communication is
possible with neighboring agents only. The direction of movement is
characterized by the heading angle on the x − y plane φ ∈ [0◦, 180◦]
and the take-off angle on the x− z plane ψ ∈ [0◦, 180◦]. We denote the
correct movement direction by θ = [φ, ψ]T . Agents also have the goal
of maintaining the starting formation while moving at equal speed by
coordinating their angle of movement with other agents. In this context,
agent i’s decision ai ∈ [0◦, 180◦] × [0◦, 180◦] represents the heading
and take-off angles in the direction of movement. It is possible to for-
mulate the objective of agent i as maximization of the payoff

ui(ai,a−i,θ) = −1− λ
2

(ai − θ)T (ai − θ)

− λ

2(N − 1)

∑
j∈V \{i}

(ai − aj)
T (ai − aj), (21)

where λ ∈ (0, 1) is a constant measuring the relative importance of esti-
mation and coordination. The first term in (21) is the estimation error in
the true heading and take-off angles. The second term is the coordina-
tion component that measures the discrepancy between the direction of
movement and headings of other agents.

We set the correct movement angle to θ = [10◦, 20◦]T and let
agents make private observations on φ and ψ, given by xi = θ + εi,
where εi is jointly Gaussian with mean zero and identity covariance ma-
trix. Hence, signal for φ, xi[1], is independent from signal for ψ, xi[2],
for all i ∈ V . Further, εi is independent across agents. This simplifies
the process such that agents are running two QNG filters in parallel, one
for the heading angle and the other for the take-off angle. The QNG filter
can be generalized to handle correlated vector states – see [20].

We let λ = 0.5 and evaluate convergence behavior in geometric
and random networks with N = 50 agents; see Fig. 2. The geomet-
ric network has a diameter of ∆g = 5 where the random network has
a diameter of ∆r = 4. The action values of each agent are depicted
in Fig. 3. The top (bottom) row shows the heading angle φi (take-off
angle ψi) in geometric and random networks on the left and right re-
spectively. The results show that agents’ actions ai converge to the best
estimates in heading and take-off angles denoted by φ̂∗ = E[φ

∣∣x[1]]

and ψ̂∗ = E[φ
∣∣x[2]], respectively. Agreement in actions is reasonable

since agents have the incentive to agree with others in the movement di-
rection in order to maintain the initial formation—see (21). Convergence
occurs in a number of iterations in the order of the network diameter.
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