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Ahstract- This paper considers the control of a linear plant 
when a sensor transmits plant state information over a wireless 
fading channel to a controller physically separated from the 
sensor. The power allocated to these transmissions determines 
the probability of successful reception and is adapted to 
channel and plant state in order to conserve the sensor's 
energy resources. Our goal is to design plant control and 
power management policies to minimize an infinite horizon 
cost combining power consumption with the conventional linear 
quadratic regulator control cost. A method to separate the 
designs of plant inputs and transmitting powers is provided. 
The resulting optimal controller is the standard LQR control 
law while the optimal communication policy follows from a 
Markov decision process problem accounting for power at 
the sensor and state estimation error at the controller. The 
features of the optimal power management for general forward 
error correcting are examined qualitatively. In the particular 
case of transmissions protected with capacity achieving codes, 
conventional event-triggered policies are recovered, where the 
decision is whether to transmit or not. Further a suboptimal 
communication policy is computed using approximate dynamic 
programming and its behavior is validated in simulations and 
contrasted to other simple transmission policies. 

I. INTRODUCTION 

The Networked Control Systems (NCS) studied in this 
paper involve communication of plant state information from 
sensor to controller over a wireless channel. The more 
information the sensor conveys the more precise actuation 
becomes, but the resulting increase in transmitted power 
rapidly depletes the sensor's energy resources. To quantify 
the emerging tradeoff between plant performance and power 
consumption, we study plant input design and power control 
that minimize a joint cost accounting for both plant regula­
tion and communication penalty. 

Early works on NCS ignore communication costs and 
focus their analysis on the performance of control loops when 
various communication effects are taken into account, see 
e.g., [1]-[3] and references therein. Fundamental limits like 
the minimum bit rate for stabilization over bandlimited chan­
nels are also known; e.g., [4]. Efforts to regulate the com­
munication cost include the notions of event-triggered [5] 
or self-triggered [6] control. In both cases the idea is to 
prolong the interval between successive communications 
by avoiding transmission as long as a plant performance 
level is guaranteed. Such triggering rules implicitly reduce 
the communication cost but transmission expenses are not 
explicitly accounted. 

Explicit account of communication cost in the context of 
remote state estimation, when plant control is not part of the 
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design, can be found in [7]-[9]. The sensor measures the 
plant state and decides whether to transmit its value to an 
estimator or not. Transmissions incur a fixed cost and the 
overall goal is to minimize the combination of an estimation 
error cost and the communication penalties. Related contri­
butions consider jointly optimal plant and communication 
controllers using again a fixed cost per transmission [10]. 
The problem is more complex than the case of simple state 
estimation but a separation principle for finite horizon costs 
can be established [11], and optimal plant and transmission 
controls can be found by dynamic programming. 

In this paper instead of transmissions we penalize the 
resources used by the sensor to communicate, that is the 
transmitted power. This modeling also allows to take into 
account fading effects in the wireless channel. Power is 
allowed to adapt to plant state and channel fading and 
affects the likelihood of successful packet decoding through 
a known complementary error function (Section II). This 
communication framework generalizes the well-studied era­
sure model with i.i.d. dropouts (see e.g. [1], [2]) as the 
probability of packet drop is now controlled by the selected 
transmitted power. Quantization effects are ignored in this 
paper but have been introduced for remote state estimation 
in [12]. By proper joint selection of plant and power control 
policies we seek to minimize an aggregate infinite horizon 
cost combining power consumption with a linear quadratic 
regulator (LQR) cost (Section II-A). 

A restricted information structure is identified (Sec­
tion II-B), by which the usual LQR control law becomes 
optimal while the optimal communication policy follows 
from a Markov decision process (MDP) formulation involv­
ing transmitted power and the state estimation error at the 
controller (Section III). We leverage this separation principle 
to express optimal power control policies in terms of a value 
function (Section IV). While this does not allow computation 
of optimal policies it does provide a qualitative characteri­
zation. Our work can be considered as a generalization of 
the work in [7]-[ 10] where instead of scheduling based on 
plant state we allow for power control policies adapted to 
the channel and plant state. Moreover, conventional event­
triggered policies reminiscent of [5] where one just de­
cides whether to transmit or not emerge as the optimal 
communication strategy at the theoretical limit if the sen­
sor uses capacity achieving forward error correcting (FEC) 
codes (Section IV-A). Further, suboptimal power control 
policies are derived using a rollout algorithm (Section V) 
and numerical simulations show how they adapt power to 
plant and channel state to regulate estimation error at the 
controller (Section VI). We close the paper with conclusions 
and suggestions for further work (Section VII). 
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Fig. 1. Wireless control system architecture. A sensor measures the plant 
and channel states Xk, hk and transmits with power Pk over a wireless 
fading channel. Messages are successfully decoded at the controller with 
probability qk depending on hk and Pk· The sensor receives acknowledg­
ments with a one-step delay. 

II. PROBLEM FORMULATION 

Consider the architecture shown in Fig. 1 controlling a 
discrete-time linear time-invariant plant described by 

(1) 

where Xk E ]Rn is the plant's state with Xo given, Uk E ]Rm 
the driving input, and {Wk, k � O} is the process noise com­
posed of independent identically distributed (i.i.d) Gaussian 
random variables Wk E ]Rn with zero mean and covariance 
W. We assume the plant is unstable but controllable. 

The NCS considered in this paper includes a sensor/ 
transmitter collecting state observations Xk that it com­
municates with power Pk E [0, Pmaxl through a wireless 
fading channel with coefficient hk. At the other side of the 
channel the receiver/controller uses the received information 
to determine the control input Uk applied to the plant. 

Due to propagation effects the channel coefficient hk 
changes unpredictably [13, Ch. 3]. We adopt a block fading 
model whereby channels {hk, k � O} are modeled as i.i.d. 
random variables of some known distribution mH on ]R+, 
independent of the noise process {Wk, k � O}, with the 
technical assumption that m H has a probability density 
function. The transmitter measures the value of hk before 
each transmission, e.g. by a pilot signal, however perfect 
channel knowledge is not necessary (see Remark 1). 

At the controller side the received signal includes the 
information bearing signal and additive white Gaussian noise 
(AWGN). The noise power is denoted by No and the power 
of the information bearing signal is the product hk Pk. 
Successful decoding of the transmitted packet is determined 
by the signal to noise ratio (SNR) at the receiver defined as 
SNRk := hkPk/No. More precisely, given the particular type 
of modulation and FEC code used, the SNR determines the 
probability of successful detection qk. To keep the analysis 
general we define a generic complementary error function 

(2) 

mapping SNRk to the probability qk. We assume that q (h, p) 
is a known increasing function of the product h p. 
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Fig. 2. Complementary error function for practical FEC and capacity 
achieving codes. The probability of successful decoding q for a FEC code 
is a sigmoid function of the received SNR = h pi No, while for a capacity 
achieving code decoding depends on a threshold value SNRo. 

Considering packet decoding as a part of the communi­
cation process, we can model communication as a sequence 
of successful decoding indicator variables 'Yk taking value 
'Yk = 1 when information is correctly decoded and 'Yk = 0 
otherwise. Variables 'Yk rv Bern(qk) are Bernoulli distributed 
with time-varying success probabilities qk. Ignoring quanti­
zation errors, the controller receives a signal Yk = 'YkXk and 
feedbacks 'Yk to the sensor as provided by 802.11 and TCP 
protocols. We assume lossless acknowledgments, so that the 
sensor knows what information is received at the controller. 
We assume the receiver also gets 'Yk so that the cases Xk = 0 
and 'Yk = 0 are distinguishable. 

In the next section we present the formal problem state­
ment of control inputs Uk and transmitting powers Pk design 
based on information available at time k. 

Remark 1. Perfect channel knowledge is not required in 
our framework. If hk is only an estimate of the fading 
coefficient the complementary error function (2) captures 
the uncertainty over channel realization as well. The error 
profiles 1 - q (hk' Pk) of particular FEC codes are difficult to 
determine analytically but can be measured in actual or sim­
ulated experiments [14], [15]. The typical shape of q (hk,Pk) 
is a sigmoid function of hk Pk with exponential tails as shown 
in Fig. 2. In the theoretical limit correct decoding depends on 
the channel capacity Ck = W log2(1 + SNRk), with W the 
channel bandwidth. Packet transmitted at a rate smaller than 
Ck bits per second are almost surely successfully decoded, 
and almost surely incorrectly decoded otherwise. Thus, we 
can write the successful decoding probability as the indicator 

q (hk,Pk) = IT (h�k 
� SNRO) , (3) 

for some threshold SNRo. With a samples per second and 
(3 bits per sample Xk we require a transmission rate of a(3 
bits per second so SNRo = 2O:,6/w - 1. This limit requires 
an infinitely long code with prohibitive delay, but delays are 
ignored in this paper. Our interest in (3) is conceptual as 
event-triggered communication [7] will be shown to arise 
from the use of capacity achieving codes - see Section IV-A. 
The form of (3) is shown in Fig. 2. D 

A. Joint optimal design of plant and power control 

To formulate the joint design of plant controller and 
power management we introduce an equivalent architecture 
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Fig. 3. Equivalent wireless control system architecture. A scheduler decides 
the successful decoding probability qk and transmits the state measurement 
Xk with the required power Pk = P(hb qk)· 

resembling those considered in, e.g., [7], [10]. In view of (2), 
choosing Pk is equivalent to choosing the desired probability 
of successful delivery qk at time k and transmitting with the 
minimum required power to achieve this qk, namely 

Pk = P(hk' qk) := inf {O ::; P::; Prnax : q(hk' P) ;::: qd· 
(4) 

We now interpret qk as the decision variable with p(hk' qk) 
the cost of decision qk. This equivalent NCS architecture is 
shown in Fig. 3 where a scheduler responsible for deciding 
qk replaces the sensor/transmitter of Fig 1. 

The assumed monotonicity of the function q( h, p) on the 
product h P implies that the p( h, q) is increasing in q and 
decreasing in h. Using maximum power Prnax, the transmitter 
can achieve a maximum success probability qrnax(h) := 
q(h, Prnax) for a given channel state h. Therefore, the de­
cision variables qk belong in the interval [0, qrnax(hk)]. We 
also make the following assumptions. 

Assumption 1. For all channel realizations h, the function 
p(h, q) in (4) is continuous in the successful decoding 
probability variable q. 
Assumption 2. For all channel realizations h, the largest 
achievable successful decoding probability qrnax (h) satisfies 
qrnax(h) > qcrit := l-l/maxi IAi(AW · 

Assumption 1 is of a technical nature and will be used in 
Theorem 2. The value qcrit in Assumption 2 is the necessary 
and sufficient success probability of i.i.d. Bernoulli 'Yk for 
stability of the estimation error in (11) (see e.g. [1, Th. 2]). In 
our case success probabilities are controlled and we require 
qcrit to be feasible for all channel realizations h. 

In Fig. 3 the decision qk is a causal function of information 
available at the sensor, while the plant control signal Uk is a 
causal function of the information available at the controller. 
The sequence 7r:= {qO,ql," . }, or equivalently the power 
allocation {Po, PI, . . .  }, is termed the communication policy, 
whereas B := {uo, UI, . . .  } denotes the control policy. With 
fixed policies 7r, B all random variables are defined on an 
appropriate probability space. Let the measure be ]p>7r,e and 
lE7r,e the integration with respect to that, which we simplify 
to lE when not leading to confusion. We remark that sensor 
and controller know each other's policy. 

The policy pair 7r, B incurs a control and a communication 
cost. Let the control cost be of a standard LQR form 

N-I 
J(J)R(7r, B) := lE7r,e L xr QXk + ur RUk, (5) 

k=O 
for matrices R > 0, and Q ;::: 0 with (A, QI/2) detectable. 
The communication cost is the expected power consumption 

N-I 
Jf!wR(7r,B) := lE7r,e L p(hk,qk)' (6) 

k=O 
To quantify the tradeoff between plant performance and 
power consumption we combine the LQR cost in (5) and 
the power cost in (6) into the limit aggregate cost 

J(7r, B):= lim l/N [JI'!oR(7r, B) + AJf!wR(7r, B)], (7) N-+oo 
for some weight A > O. The problem of joint design of plant 
and power control asks for policies 7r and B that minimize (7). 
These depend on what information is available to the sensor 
and controller. The specific information structure considered 
in this paper is introduced in the following section. 

B. Information structure 

Denote as Ok the information known at the controller/ 
receiver at time k just before deciding the input Uk. This 
information includes the history of transmission success 
variables 'YO:k := {'Yo, . . .  ,'Yk, }  and received signals YO:k := 
{Yo, . . .  ,Yk, }, i.e., 

(8) 

Given the possibility of lost packets, the controller has 
partial information on the plant state Xk so we study the 
MMSE estimate lE7r ,e (x k 10k). This estimation is difficult 
because the event 'Yk = 0 contains information about the 
state Xk through the dependence of the probability qk on its 
value. To avoid this complication we discard the information 
given by events of the form 'Yk = O. Formally, define 
Tk := sup{l ::; k : 'YI = 1 } as last successful transmission 
time by time k with the convention that TO := 0, and define 
the sequence of (7-fields 

(9) 

When 'Yk = 1, Gk coincides with Ok. When 'Yk = 0, Gk 
only contains information available until the last successful 
transmission which occurred at time Tk < k. 

We restrict attention to control policies Uk that are func­
tions of Gk, or more formally measurable with respect to 
the (7-field G k, and denote the set of all such policies as 
8. Unlike lE7r,e(xkIOk), the state MMSE estimate Xk := 
lE7r,e(xkIGk) with respect to Gk is easy to compute. When 
'Yk = 1 the state Xk becomes known at the receiver side. 
When 'Yk = 0 no new information becomes available and 
Xk is obtained by propagating Xk-I through the plant's 
dynamics in (1). Thus the estimate evolves by 

if 'Yk = 1, 
if 'Yk = 0 

(10) 
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Fig. 4. Wireless control system with restricted information structure. A pre­
processor computes the error Ek given Xk and the acknowledgment rk-l' 
A scheduler decides qk based on Ek and the channel hb and transmits 
Xk with the required power p( hk, qk). The controller receives the message 
with probability qb updates the estimate Xk and provides input Uk. 

and the corresponding estimation error ek := xk -Xk by 

(11) 

with eo = 0 since we assumed Xo is given. 
The sensor at time k has access to the channel realization 

hk and the plant state Xk which allows selection of the suc­
cess probability qk to depend on Xk. This however affects the 
controller design, because when the controller decides Uk-l 
to control Xk, it should consider the indirect effect on qk. 
This information structure makes the joint design problem 
in (7) hard to analyze. To overcome this we adopt [11] and 
restrict transmission policies to depend on the channel state 
hk and the sensor's belief on what the future estimation error 
at the controller side will be. In particular consider by (10) 
the value of the estimation error ek if the kth packet is not 
successfully decoded, that is 

(12) 

Observe that Ek is known to the sensor, since Xk is measured 
and by the acknowledgment mechanism the controller's pre­
vious estimate Xk-l and input Uk-l can also be computed. 
Then ek = (1 -,k)Ek, so the sensor predicts that the 
estimation error ek is ek = 0 with probability qk and 
ek = Ek with probability 1 - qk. We restrict information 
at the sensor side to the set Fk defined as the channel 
history hO:k := {ho, ... ,hk' } and the history of error beliefs 
EO:k := {EO, ... , Ek, }, i.e., 

(13) 

Communication policies are restricted to be measurable with 
respect to Fk. Call the set of all such policies II. This 
information structure is depicted in Fig. 4. The sensor block 
is split into a pre-processor and a scheduler. The preprocessor 
gets the sample Xk and the acknowledgment Ik-l and 
feeds Ek to the scheduler who, upon measuring the channel 
hk decides the transmission success probability qk while 
incurring power cost p( hk' qk). 

Our goal in this paper is to study policies 7r E II and 
e E 8 that minimize (7), that is 

J*:= inf J(7r, e). KEII,IiEe 
(14) 

In particular, the next section shows that the information 
structure we introduced allows separate design of the optimal 
communication and control policies. We then leverage this 
result to study optimal communication policies in Section IV 
and to develop tractable suboptimal policies in Section V. 

III. SEPARATION OF DESIGNS 

With the imposed restrictions on the information available 
at sensor and controller, the control law e E 8 and the 
communication policy 7r E II can be designed separately. 
To show this, let us substituting Xk by (1) in (12) to get 

Ek = Aek-l + Wk-l· Then by ek-l = (1 -,k-l)Ek-l, 
(15) 

with initial value EO = O. The key argument to why separa­
tion works is that {Wk' hk' k ::.:: O} are chosen independently, 
and the processes {Ek' qk, Ik, ek, k ::.:: O} are completely 
determined by the communication policy 7r E II and do 
not depend on the control policy e E 8. We show this 
by induction. At k = 0, EO is equal to 0, qo depends only 
on ho and EO, 10 is an independent Bernoulli with success 
qo, and eo is also O. Then at time k, Ek by (15) depends 
on Ik-l,Ek-l,Wk-l which are not affected by past control 
inputs. Also by the restriction qk E Fk, qk depends on 
EO:k, hO:k so it is not affected by control inputs. Finally 
Ik rv Bern( qk), and ek by (11) are also independent of 
control inputs. 

Consequently the power cost JFwR (7r, e) in (6) is not 
affected by the control policy e. We can rewrite then the 
optimum cost in (14) as 

J* = inf { inf lim �J0R(7r, e) + A lim N
1 JFwR(7r)} KEII IiEe N-+= N N-+= 

(16) 

Using (16), optimal control policies e E 8 for given 
communication policy 7r E II can be found by the infimum 
of the limit LQR cost limN-+=(I/N)J0R(7r, e). As it turns 
out, we can also prove that the form of the optimal controller 
does not depend on the communication policy leading to 
a stronger separability result than what follows from (16). 
The proof of this result requires the technical assumption 
that the limit and infimum operator can be interchanged in 
the optimal LQR cost for any given communication policy 
7r E II, i.e., 

inf { lim �Jf!QR(7r, e)} = lim inf { N
1 J0R(7r, e)} . IiEe N-+= N N-+= IiEe 

(17) 

This assumption holds true in most cases of practical interest. 
The separability result is stated in the following theorem. 1 

Theorem 1 (Optimal control policy). Consider the net­
worked control system of Fig. 4 with control policies e := 
{ Uo, Ul, ... } E 8 composed of actions Uk measurable with 
respect to the set Gk in (9), and communications policies 
7r := {qO, ql, ... } E II selecting qk measurable with respect 

1 Due to space limitations, the proofs of the theorems are omitted in this 
paper and can be found in [16]. 
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to the set Fk in (13). Further assume (17) holds. The optimal 

joint communication and control cost J* by (5)-(7), (14) with 

respect to policies e E e and 7r E II satisfies 

N-l 
J* = Tr(PW) + inf lim �IE7r "" erPek + AJj:WR(7r) 7rEIl N -+00 N � k=O 

(18) 

where P is the solution to the algebraic Riccati equation 

P = ATpA + Q -ATpB(R + BTpB)-lBTPAfor the 

system in (1) and the linear quadratic regulator cost (LQR) 

in (5), and the matrix P is defined as 

(19) 

Furthermore, the optimal control policy that achieves the 

infimum in (14) and (18) is the linear controller 

(20) 

with K := (R + BT PB)-l BT PA being the steady state 

LQR gain. 

The statement in (20) of Theorem 1 deteIIllines the optimal 
control policy e as the conventional LQR controller, which 
is shown in Fig. 4. The second summand in (18) shows that 
the optimal communication policy jointly regulates power 
consumption and a weighted controller's estimation error 
T-ek Pek· 
Observe that as per (10) and (11) it holds that ek = (1 -

'Ik)Ek. Also IE7rbklFk] = ]P'7rbk = IlFk] = qk and Ek E Fk· 
So we can write 

T- T- T-IE7r[ek PeklFk] = IE7r[(1 -'Ik)Ek PEklFk] = (1 -qk)Ek PEk. 
(21) 

and taking the expectation in both sides gives 

T- T-IE7rhPek] =IE7r[(I-qk)EkPEk]. (22) 

Substituting the expression (22) into the second summand 
of (18) it follows that the optimal communication policy 7r E 
II is the one that achieves the infimum cost 

1 N-l 
JCOM := inf lim NIE7r "" c( Ek, hk, qk), (23) 

7rEIl N-+oo � k=O 
where we define the cost-per-stage to be 

c( E, h, q) := (1 -q)ET PE + Ap(h, q). (24) 

The difference between the infimum in (18) and the for­
mulation (23) is that in the former ek is not known at 
the sensor at time k, while Ek in the latter is. Thus (23) 
takes the form of a MDP problem with an infinite horizon 
average cost criterion. The state of the problem at time k 
is the pair (Ek' hk) E JRn x JR+ and the available action is 
qk E [0, qmax (hk)]' The state transition probabilities can be 
obtained from (15) and are given by 

]P'(E+,h+le,h,q) 
= [q No,W(E+) + (1 -q) NAE,W(E+)] mH(h+), (25) 

where Np"E is the n-dimensional Gaussian distribution with 
mean f..L and covariance �. Here E, hand E+, h+ denote the 

current and next states respectively, and q the current action. 
When q is chosen at state (E, h), a variable 'I rv Bern (q) is 
drawn. By (15) on the event 'I = 1, E+ = W rv No, w, while 
on the event 'I = 0, E+ = AE + w with w rv No, w, which 
is equivalent to E+ rv NAE,W. Since h+ is independent of 
E, h, E+, its distribution m H appears as a product in (25). Let 
us denote IE [E+, h+ IE, h, q] the integration with respect to 
the above transition probability measure. 

IV. OPTIMAL COMMUNICATION POLICY 

Using (23) we can show that optimal communication 
policies achieving the infimum of the co-design problem 
in (14) exist. This existence result provides a characterization 
of these policies from which we infer the general features 
of optimal transmitted powers Pk and corresponding success 
probabilities qk as a function of estimation error beliefs Ek 
and channel realizations hk. 

Existence of optimal policies for infinite-horizon MDPs on 
general Borel spaces requires some technical assumptions. 
Here we select a sufficiently large constant L and restrict 
consideration to stationary policies qk E Q(Ek' hk) satisfying 

Q(E, h) := { [0, qmax(h)] 
qmax(h) 

if llell < L, 
otherwise, 

(26) 

This restriction is inconsequential as we may pick L large 
enough so as to make its effect arbitrarily small. With this 
restriction we adapt the fixed point approach [17] used in [9] 
to determine the characterization of the optimal communica­
tion policy stated in the following theorem. 

Theorem 2 (Optimal communication policy). Consider the 

Markov decision process with optimal cost as in (23), state 

transition probabilities as in (25), and a stationary policy of 

the form qk E Q(Ek, hk) with Q(E, h) abiding to (26). Under 

assumptions 1, 2 there exists a function V : JRn x JR+ f-t JR, 
with V(O, h) = ° for some h E JR+, such that for all E E JRn 
and h E JR+ it satisfies 

V(E,h) = min {c(E,h,q) - JCOM 
qEQ(E,h) 

+IE [V(E+,h+) IE,h,q] } . (27) 

The optimal communication cost is given by JCOM = 
IEw,h V( W, h), where IEw,h denotes integration with respect to 

the product measure No,w x mHo The optimal communica­

tion policy q'k E Q( Ek, hk) is the one achieving the minimum 

in the right hand side of (27) and it can be written as 

q*(E, h) = argmin Ap(h, q) + (1 -q)R(E), (28) 
qE [O,qmax (h) 1 

when IIEII < L, and q*(E, h) = qmax(h) when IIEII ?: L, 
where 

R(E) := ET PE + IEw,h lV(AE + W, h) - V(w, h)]. (29) 

In the context of infinite horizon MDPs the function 
V(E, h) in (27) is called relative value function and infor­
mally it represents the expected cost incurred starting at 
state (E, h) and following the optimal policy in the future. 
Observe that V in (27) is defined only up to a constant but 
we fixed its value at V(O, h) = 0. In principle one can 
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Fig. 5. Optimal transmitting power p* for FEC codes with different 
complementary error functions. The optimal p* is plotted as a function of 
the factor R(E) for a fixed channel state h using FEC codes with different 
q-SNR characteristics. When the q-SNR curve becomes steeper, the optimal 
power allocation resembles a step function. 

find V(E, h) using, e.g., a value iteration algorithm which 
involves iterative application of (27) [18]. This procedure is, 
however, computationally onerous as each iteration requires 
minimizing the right hand side of (27) for all possible 
state pairs (E, h). Nevertheless, (27) still gives qualitative 
information on the optimal policy. 

Let us ignore the case IIEII ;::: Lin (26) as it is irrelevant for 
the following discussion. The optimal policy q* (E, h) in (28) 
depends on the shape of the function p(h, q). In general 
it takes values anywhere in the interval [0, qmax(h)]. The 
optimal power allocation can be found by converting (28) to 
power by (2), (4), and is described by 

P*(E, h) := min AP + (1 -q(h,p))R(E). (30) 
O�P�Pmax 

Despite the fact that V (E, h) and R( E) are hard to compute, 
the above expression is an important characterization of 
the optimal power allocation. It provides a tool for qual­
itative analysis of different FEC codes in wireless NCS. 
We illustrate this in Fig. 5 where we examine how the q­
SNR relationship of a FEC code affects the optimal power 
allocation. For simplicity we assume a fixed channel state 
h and we plot p* in (30) as a function of R( E). In all 
cases, when the error penalty R( E) is below some threshold, 
the best option is to not transmit. Above the threshold, 
the optimal power increases with R( E). For powerful FEC 
codes characterized by a steep q-SNR relationship, close 
to the theoretical limit in (3), the optimal power allocation 
resembles a step function, since the probability of successful 
decoding becomes practically one for large powers. For fat 
q-SNR tails, this behavior deteriorates as the sensor needs to 
transmit with higher power to achieve a larger q. 

In Fig. 6 we present qualitative plots of the optimal 
decoding probability q* and optimal transmitting power p* 
as functions of the factor R( E) and the channel state h for a 
given sigmoid q-SNR characteristic. Blue regions correspond 
to no transmission. The fact that q depends on the product h p 
creates a disparity in the two plots. The optimal q* increases 
with the product h R( E). On the other hand, the optimal p* 
increases with R( E), but the rate of increase depends on 
the quality of the channel h. So when h is bad, the sensor 
needs higher power to achieve high probability of successful 

Optimal decoding probability q Optimal power allocation p' 

Factor R(e) Factor R(e) 

Fig. 6. Optimal decoding probability q* and power allocation p* for a FEC 
code. Color intensity indicates the magnitude of q* and p* as functions of 
the factor R( E) and the channel state h. 

decoding at the receiver. 

A. Optimal solution for capacity achieving codes 

Consider now the case of capacity achieving codes. By (3), 
at time k the transmitter needs to allocate either Pk = 0 
or Pk = PO/hk with Po := NoSNRo, since any other 
choice is unfavorable. Assumption 2 in this case implies that 
the transmitter has enough power budget Pmax ;::: Po/h to 
transmit successfully for every channel state h. Suppose we 
are looking for a randomized policy, i.e. a distribution on the 
two power options, and with a slight abuse of notation we 
denote qk E [0,1] the probability of choosing power PO/hk. 
Then the transmitter draws independent 1k rv Bern(qk) and 
transmits with power Pk = 1kPO/hk. The decoding success 
at the receiver is given by the same 1k. The expected power 
consumption is 

N-l N-l 

lE L 1k Po/hk = lE L qk Po/hk, (31) 
k=O k=O 

which is of the form (6) with p(h, q) = q po/h. In this case 
the minimization in (28) becomes linear in q, thus the optimal 
communication policy is deterministic, 

qCA(E, h) := { � 
or in terms of power 

o 
Po/h 

if hR(E) :s: APO 
otherwise 

if hR(E) :s: APO 
otherwise 

(32) 

(33) 

This is an event-triggered scheme along the lines of [7], 
except that now the decision is also affected by the current 
channel state h apart from the error E. This deterministic 
policy was expected as the limit behavior of powerful 
FEC codes in Fig. 5. The transmission-triggering event is 
h R( E) > APO' Qualitatively this shows that when the channel 
is in a good state, transmitting is worthy since it does not 
cost much, while when a measure R( E) of the error is large, 
it is necessary to transmit and reset it to zero. 

In the following section we present a simple computable 
approximation of the above optimal communication policies, 
which we examine with simulations in Section VI. 
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V. A ROLLOUT COMMUNICATION POLICY 

In the previous section we showed by Theorem 2 that 
the optimal communication policy q* (E, h) minimizes in the 
right hand side of (27) including the optimal value funciton 
V. A rollout algorithm [19] to suboptimally choose actions 
relies on some reference communication policy 7r for which 
the corresponding relative value function V7r ( E, h) is known. 
Assuming this reference policy will be followed at all future 
steps, the best current action, minimizing the current stage 
cost and the future expected cost is 

qkOIl(E,h) := argmin c(E,h,q) +IE [V7r(E+,h+)ie,h,q] O�q�q=ax(h) 
(34) 

To find a family of policies with computable relative 
value functions suppose we adapt qk = q(hd to the current 
channel state hk but not to the error Ek. Since channel states 
are independent of Ek the policy q( h) results in successful 
packet decodings with expected probability q := IEhq(h) 
implying that rk rv Bern(q) for all k. Since the expected 
power consumption IEhP( h, q( h)) at every stage is also 
constant the MDP cost of this policy by (23) becomes 

N-l 

Jq(-) := lim �IE "" (1 -q)Er FEk + AIEhP(h, q(h)). 
N---+oo N � k=O 

(35) 
For any policy of the form qk = q(hk ) the corresponding 
relative value function Vq(-) (E, h) and cost Jq(-) can be 
determined in closed form as stated in the following theorem. 

Theorem 3 (Cost of channel-adaptive communication poli­
cies). Consider the Markov decision process with state pair 

(E, h) and state transition probabilities as in (25). Consider 

policies q(-) for which the success transmission probability 

is selected as a function q( h) independent of the estimation 

error belief E. For any such policy with q := IEhq(h) > qcrit 
for the critical probability qcrit of Assumption 2, the cost 

Jq(-) in (35) becomes 

Jq(-) = Tr(FE) + AIEhP(h, q(h)), (36) 

where the matrix E is the unique solution of 

E = (1 -q)(AEAT + W). (37) 

Furthermore, the relative value function Vq(-) is given by 

Vq(-)(E,h) = 1 
;

q(�)ETHE+AP(h,q(h)), (38) -q 
where the matrix H is the unique solution of 

(39) 

Theorem 3 provides an explicit formula for a family of rel­
ative value functions Vq(-) (E, h). Substituting (38) into (34) 
and removing constants we find the rollout policy 

ETHE qroJJ(E,h) := argmin (l-q)--_+Ap(h,q). O�q�qmax(h) 1 -q (40) 

Given a parameter q modeling suboptimal future actions, 
we can compute H by (39) and then solve (40) given the 

1', (k) I 1'2 (k) I 

Fig. 7. Simulation points Iq(k)l,h(k) and h(k)l,h(k) of the rollout 
policy for a capacity achieving code. Blue indicates the decision to not 
transmit (qk = 0), red to transmit (qk = 1). 

function p(h, q). Observe that (40) is of the same form as the 
optimal communication policy (28) except that the optimal 
unknown function R( E) is approximated by the suboptimal 
quadratic form ETHEl (1 -q). 

For the case of a capacity achieving FEC we can repeat 
the analysis in Section IV-A to solve (40) and we obtain 

h 
if ( )A ETHE::;l 

1- q Po (41) 
otherwise 

This gives us an explicit (suboptimal) event-triggered com­
munication policy, where events depend on current values of 
channel state h and error E. 

V I. SIMULATIONS 

We simulate exponentially distributed channel fading with 
mean 0.5, and choose plant, cost and noise parameters as 

A = [i 0�8 ] ' B = [ i ] , Q = R = W = I, (42) 

and A = 50, Po = 1. For capacity achieving codes we 
use a reference communication policy q(h) = IT (h 2: ht) 
which transmits whenever channel state exceeds a threshold 
ht inducing q ;::::: 0.79. Simulations of the resulting rollout 
policy by (41) reveal a dramatic decrease in the empirical rate 
of transmissions liN L�:olrk ;::::: 0.37, which is also much 
lower than the critical qcrit = 0.75. Similarly the empirical 

N 1 -
cost liN Lk:O er Pek + ArkPolhk ;::::: 56 decreased to a 
half compared to the reference Jq(-) ;::::: 124. 

The event -triggered nature of the rollout policy (41) is cap­
tured in Fig. 7, where we plot iel(k)l, h(k) and ie2(k)l, h(k) 
during simulation. Red and blue points indicate the decision 
to transmit q( k) = 0 and not q( k) = 1 respectively. 
The sensor avoids transmission at low channel fading h( k) 
requiring large power. Transmissions also adapt to the plant 
structure. Error El(k) relates to the unstable eigenvalue of A, 
so the sensor always transmits when Ilell is away from O. In 
contrast such a correlation between transmissions and E2 (k) 
is not clear. Even for large E2 (k) the sensor chooses not to 
transmit. As long as El(k) is kept bounded, E2(k) will also 
be bounded as it relates to a stable eigenvalue. 

Next for the same parameters we compare the performance 
of the rollout with the reference. For different values of A 
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Fig. 8. Comparison of the optimal threshold policy and the resulting rollout 
policy performance for a capacity achieving code. Power and estimation 
costs are plotted for different values of the weight .\.. 
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Fig. 9. Simulation points IIE(k)ll, h(k) of the rollout policy for a FEC 
code. Colors denote the magnitude of the chosen decoding probability q( k). 

we find the optimal threshold policy q(h) = IT (h 2: ht), i.e. 
the one minimizing (36), and the corresponding rollout (41). 
The resulting power and estimation costs by simulating the 
rollout are plotted separately in Fig. 8 along with the costs of 
the reference policy. Larger A decreases power consumption 
since it is penalized more in the aggregate cost (23), and the 
decrease rate is similar for both policies. On the other hand 
estimation cost increases too since the sensor transmits less 
often. However the increase for the rollout is slower relative 
to the reference. The reason is that the reference adapts only 
to channel so avoids transmission when channel hk is low. 
The rollout adapts to both channel and error Ek. Transmitting 
only when Ek is large results in only a moderate increase in 
the estimation cost with a similar decrease in power. 

Finally, we simulate rollout (40) for the system when a 
FEC code is employed. The probabilities qk chosen by the 
rollout during simulation are plotted in Fig. 9 on IHk) II, h( k) 
axes (compare with the optimal policy in Fig. 6). Unlike 
capacity achieving codes, qk take values smaller than 1. 
However, due to the sigmoid form of the q-SNR characteris­
tic of the FEC code, qk are practically either 0 or very close 
to 1, especially for high hk. When hk is low transmissions 
with high success probability require large power. Thus the 
rollout decides either to not transmit (qk = 0) or transmit 
with qk very close to 1. The points accumulate at small errors 
IIE(k) 11 because when the error gets larger, qk is chosen close 
to 1 so with very high probability the error is reset. 

V II. CONCLUSIONS AND FUTURE WORK 

This paper examines the control of a linear plant when 
sensor and actuator communicate over a wireless fading 
channel. Fading is captured by a random channel state and 
the probability of a successfully decoded packet is modeled 
as a function of the channel state and the power used at 
transmission. We considered the problem of co-designing 
transmitting powers and control inputs that minimize an 
infinite horizon aggregate LQR and power cost. A method 
to separate the two designs is introduced and the optimal 
power management is characterized for general FEC codes 
and capacity achieving codes. Suboptimal power policies are 
proposed and simulated. Further work focuses on the general 
control/power co-design problem without separation as well 
as the problem of power resources management in a multi­
sensor/actuator network. 
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