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Abstract—This paper considers a multiple access fading channel
where each terminal has a different belief about the channel states
and adapts its transmission policy to the belief. In this setting,
frequency division multiple access (FDMA) and channel aware
random access (RA) are two special cases. To find solutions for
general cases, we formulate the problem as a Bayesian game in
which each terminal maximizes the expected utility based on its
belief. We show that optimal solutions for both FDMA and RA
are equilibrium points of the game. Therefore, the proposed game
theoretic formulation can be regarded as general framework for
multiple access channels. Furthermore, we develop a cognitive access
algorithm that solves the problem approximately. Numerical results
show that the proposed algorithm achieves good performance and
is adaptable to different levels of channel beliefs.

I. INTRODUCTION

Consider a multiple access fading channel in which terminals
contend for communicating with a central access point. To exploit
favorable channel conditions, terminals adapt their channel access
as well as transmission power to the random states of the fading
channel. The goal is to maximize the expected value of the sum
transmission rates over all terminals subject to terminals’ average
power constraints. This problem has been studied extensively
in the past and depending on the availability of the channel
state information (CSI) the optimal solutions are different. When
global CSI is available, i.e., each terminal knows the channel
states of others, they can cooperate with each other to avoid
collision. This is known as frequency-division multiple access
(FDMA) in which the terminal with the largest channel state gets
the opportunity to transmit, see e.g., [1], [2]. However, global
CSI is usually not available in many practical scenarios and it is
more reasonable to assume terminals only have access to local
CSI. In this case, terminals make transmission decision and power
allocation based on their local CSI without cooperating with each
other. This is known as channel aware random access (RA), and it
has been show the optimal solution is a threshold-based strategy,
i.e., transmission is scheduled only when the local CSI exceeds
certain threshold, see e.g., [3], [4].

FDMA and RA can be regarded as two extreme cases for
multiple access channel where global CSI and local CSI are
available for terminals. There are many other cases in between.
For example, terminals may know their local channels perfectly
and have some imperfect information about the channels of
other terminals. In other words, terminals are cognitive in the
sense that each terminal has a different belief about the channel
states. In this setting, it is natural to formulate the problem as
a Bayesian game in which each terminal is a self-interested but
rational player that maximizes the expected utility based on its
belief. Bayesian game has been used to study random access
channels in which each terminal knows the prior distributions

of other channels [5], [6]. However, these algorithms cannot be
generalized to the cognitive setting where beliefs change over
terminals and time. This motivates us to develop cognitive access
algorithms that determine an optimal allocation of resources
taking into account the fact that different terminals have different
beliefs on the channel state.

The rest of the paper is organized as follows. Communciation
model is introduced in Section II. In Section III, we define the
Bayesian game and show that optimal solutions for FDMA and
RA are Bayesian Nash Equilibrium (BNE) points of the game.
In Section IV, we develop a cognitive access algorithm that finds
solution for the Bayesian game approximately. Numerical results
and conclusion are presented in Section V and VI, respectively.

II. COMMUNICATION MODEL

Consider a multiple access channel with n terminals con-
tending to communicate with a common AP. The time varying
channel hi(t) ∈ R+ from user i to the AP is modeled as block
fading and assumed independent for different times t1 6= t2 and
different terminals i1 6= i2. The probability density function (pdf)
of channel hi is denoted as fhi(t)(h) = fhi(h) and assumed
to be time invariant and nonatomic. This latter condition is
equivalent to having continuous cumulative distribution functions
and holds true for practical models including Rayleigh, Rician,
and Nakagami [7]. For future reference define the aggregate
channel as h(t) := {hj(t)}nj=1 and the channel complement
of terminal i as h−i(t) := {hj(t)}nj=1,j 6=i. We also assume a
backlogged system where all terminals have packets to transmit
all the time.

Upon observing its own channel hi(t) node i makes a decision
on whether to transmit or not in the current time slot and if it
chooses to do so it selects a transmit power for the communica-
tion attempt. Transmission decisions are based on the attempt
function qi : R → {0, 1} and the power allocation function
pi : R+ → [0, pinst

i ], where pinst
i > 0 is a limit on the instantaneous

power transmitted by terminal i. Given the channel value hi(t)
terminal i makes a transmission attempt in time slot t if and only
if qi(hi(t)) = 1 in which case it does so with power pi(hi(t)).
The pair of functions pi := (qi, pi) is termed the transmission
strategy profile of terminal i. The joint strategy is defined as
the grouping p := {pj}nj=1 of all individual strategy profiles
and the complementary strategy of terminal i as the grouping
p−i := {pj}nj=1,j 6=i of all strategies except the one of i. Observe
that specifying the joint strategy p is equivalent to specifying the
individual strategy pi and the complementary strategy p−i.

A communication attempt with power pi(hi(t)) when the
channel is hi(t) proceeds at a rate C[hi(t), pi(hi(t))], where
C : R+ × [0, pinst

i ] → R+ is a function mapping channels and
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powers to transmission rates. If more than one terminal attempts
transmission in the same time slot a collision occurs. Thus, user
i is able to reach the AP at time t if and only if qi(hi(t)) = 1
and qj(hj(t)) = 0 for all j 6= i. Therefore, the instantaneous
transmission rate for terminal i at time t is

ri(h(t),p(h(t))) = C
[
hi(t), pi(hi(t))

]
(1)

× qi(hi(t))
n∏

j=1,j 6=i

[1− qj(hj(t))],

For joint transmission strategy p, the average rate experienced by
terminal i is the expectation Eh [ri(h(t),p(h(t)))] with respect
to h of the instantaneous rate in (1). Adopting the sum rate as
our utility function, it then follows that the utility associated with
policy p is given by

Ū(p) = Eh

[
U(p(h))

]
= Eh

[ n∑
i=1

ri(h,p(h))

]
. (2)

where we dropped the time index because the channel dis-
tribution is assumed stationary and defined the instantaneous
utility U(p(h)). Further note that each communication attempt,
successful or not, incurs a power cost pi(hi). Therefore, the
average power consumption of terminal i is the expectation
Ehi

[
qi(hi)pi(hi)

]
and in order to satisfy an average power

budget pavg
i we must have

Ehi

[
qi(hi)pi(hi)

]
≤ pavg

i . (3)

The goal of each terminal is to select the policy pi that maximizes
the average sum rate utility Ū(p) in (2) while satisfying the
average power constraint in (3). However, terminal i lacks the
information to do so. The rate ri(h,p(h)) attained by terminal i
is dependent upon the scheduling qi(hi) of all terminals [cf. (1)].
For terminal i to be able to solve this problem, it requires policies
p−i and channels h−i of all other terminals. Since neither p−i
nor h−i is available to terminal i, necessary assumptions need to
be made in order to solve the problem. E.g., assume all channels
have the same distributions and all terminals employ the same
policies, i.e., fhj

(h) = fhi
(h) and pj = pi for all j 6= i, the

problem can be formulated as optimal random access (RA) [3],
[4]. In this paper, we would like to study more general cases in
which terminals have partial knowledge about others’ channels
and apply different policies.

Assume terminal i has access to channel estimations of other
terminals h̃−i := {h̃j}nj=1,j 6=i where h̃j is terminal i’s estimation
of terminal j’s channel. We assume h̃j has the same distribution
as hj and the accuracy of h̃j is indicated by conditional proba-
bility distributions of hj given h̃j , i.e., fhj |h̃j

(h) (see Remark
1). When the channel estimation is perfect, i.e., h̃j = hj , it
implies that fhj |h̃j

(h) = δ(h− h̃j). When h̃j does not reveal any
information about hj , the conditional pdf fhj |h̃j

(h) is the prior
distribution of hj , i.e. fhj |h̃j

(h) = fhj
(h). The conditional pdf

fhj |h̃j
(h) is called terminal i’s belief about terminal j’s channel.

We remark that the belief changes over time.

Remark 1 The probability distribution fhj |h̃j
(h) depends on the

channel estimation method. A typical way is to assume that h̃j is
an outdated version of hj modeled by an order-1 autoregressive
(AR) process. For example, suppose hj is complex Gaussian with
pdf CN (0, 2), then the estimation can be modeled by hj = ρh̃j +

ej where ρ is the correlation coefficient between hj and h̃j and
ej is complex Gaussian random noise with pdf CN (0, 1 − ρ2).
In this case, fhj |h̃j

(h) is a noncentral chi-square distribution [8]

fhj |h̃j
(h) =

1

2(1− ρ2)
exp

(
− h+ ρ2h̃j

2(1− ρ2)

)
I0

ρ2
√
hh̃j

(1− ρ2)

 ,

(4)

where I0(x) =
∑∞

i=0 (x2/4)i/(i!)2 is the zeroth order modified
Bessel function of the first kind. This particular form for the
conditional pdf fhj |h̃j

(h) is used to provide numerical results
in Section V. The rest of the development in the paper holds
independently of the particular form of this pdf.

III. BAYESIAN NASH EQUILIBRIUM

Since terminals are not allowed to cooperate with each other,
each terminal has to make transmission decisions independently.
On the other hand, the system utility depends on the actions
of all terminals [cf. (2)]. This situation can be modeled as a
game with incomplete information where each terminal makes
decisions on its own channel and beliefs about channels of others
while receives a global utility.

From terminal i’s perspective, the utility U(p) is a function of
its own action pi and actions of other terminals p−i. As a result,
we can write U(p) as U(pi,p−i). In each time slot, terminal
i observes its own channel hi and estimations about channels
of other terminals h̃−i. Based on h̃−i, terminal i has a belief
about h−i which is represented by the conditional pdf fhj |h̃j

(h).
Suppose other terminals’ policies p−i are given, the best response
terminal i can take is to maximize the expected value of the
sum rate utility based on its belief subject to the average power
constraint

pBR
i (p−i) := argmaxEhi,h̃−i

[
Eh−i|h̃−i

U(pi,p−i)
]

(5)

s.t. Ehi,h̃−i
[qi(hi)pi(hi)] ≤ pavg

i ,pi ∈ Pi

where Pi = {pi|qi(hi) ∈ {0, 1}, pi(hi) ∈ [0, pinst
i ]} is the set

of values that pi can take. Note that the double expectation
Ehi,h̃−i

[
Eh−i|h̃−i

U(pi,p−i)
]

in (5) is the same as the expected
utility in (2): the outer expectation in (5) is taken over terminal
i’s observations hi and h̃−i while the inner expectation in (5)
is with respect to terminal i’s belief about channels of other
terminals, i.e., h−i given h̃−i. In this game, each terminal solves
an optimization problem like (5). The equilibrium point of the
game is defined by the following:

Definition 1 pBNE
i is Bayesian Nash Equilibrium (BNE) if for

all i the following holds true

pBNE
i = argmaxEhi,h̃−i

[
Eh−i|h̃−i

U(pi,p
BNE
−i )

]
(6)

s.t. Ehi,h̃−i
[qi(hi)pi(hi)] ≤ pavg

i ,pi ∈ Pi

At BNE, every terminal plays best response to the policies
of other terminals. A natural question arises is how to obtain
solutions for BNE. As we will see next, two conventional
formulations of optimal wireless access that follow from (2) and
(3), namely optimal FDMA and optimal RA, are BNE for two
special cases when terminals have perfectly correlated beliefs
(fhj |h̃j

(h) = δ(h − h̃j) for all j 6= i) and uncorrelated beliefs
(fhj |h̃j

(h) = fhj
(h) for all j 6= i).
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A. Perfectly correlated beliefs

When terminals’ belief about others is perfect, this implies
that each terminal has access to the global channel state. By
using global CSI, terminals can cooperate with each other so that
collision can be avoided. To do so, we introduce a constraint∑n

i=1 qi(hi) ≤ 1 which allows only at most one terminal
to transmit in each time slot. Since collision is avoided, the
instantaneous rate ri can be rewritten as qi(hi)C(hi, pi(hi)). As a
result, each terminal can solve the following global optimization
problem locally

pFDMA
i = argmax

n∑
i=1

Ehi [qi(hi)C(hi, pi(hi))] (7)

s.t. Ehi
[qi(hi)pi(hi)] ≤ pavg

i ,pi ∈ Pi ∀i
n∑

i=1

qi(hi) ≤ 1

Notice that problem (7) is the optimal FDMA with single
frequency [2]. It can be shown that problems like (7) have
null duality gap [9], [10], and the optimal solution is uniquely
determined by the optimal solution for its dual problem. Let
λFDMA
i be the optimal dual variable for the dual problem of (7),

the optimal solution pFDMA
i for (7) is then given by

pFDMA
i (hi) = max

pi∈Pi

C(hi, pi)− λFDMA
i pi, (8)

qFDMA
i (hi) = H

(
gFDMA
i (hi) > max

{
max
j 6=i

gFDMA
j (hj), 0

})
(9)

where H(·) is the Heaviside function and gFDMA
i (hi) is defined

by

gFDMA
i (hi) = C(hi, p

FDMA
i (hi))− λFDMA

i pFDMA
i (hi). (10)

gFDMA
i (hi) can be regarded as a local utility function that only

depends on terminal i’s local CSI hi. In each time slot, terminals
compute their local utilities gFDMA

i (hi) and the one with the
largest nonnegative utility gets the opportunity to transmit. We
show this solution has the following property.

Proposition 1 Suppose terminals have perfect beliefs about
other terminals, i.e., fhj |h̃j

(h) = δ(h− h̃j), then pFDMA
i obtained

by (8) and (9) that solves problem (7) is BNE of the game as is
defined by (6).

Proof: When terminal i has perfect beliefs about other terminals,
we have h̃−i = h−i. As a result, we can write the maximization
problem in (5) as

pBR
i (p−i) = argmaxEh [U(pi,p−i)] (11)

s.t. Eh [qi(hi)pi(hi)] ≤ pavg
i ,pi ∈ Pi.

To show pFDMA
i is BNE, we need to show that given p−i =

pFDMA
−i the optimal solution for (11) is pBR

i (pFDMA
−i ) = pFDMA

i .
We prove this by contradiction. Suppose given p−i = pFDMA

−i the
optimal solution for (11) is pBR

i (pFDMA
−i ) 6= pFDMA

i . This implies

Eh

[
U(pBR

i (pFDMA
−i ),pFDMA

−i )
]
> Eh[U(pFDMA

i ,pFDMA
−i )]. (12)

Moreover, the constraint in (11) implies that pBR
i (pFDMA

−i ) is
feasible for the FDMA problem. This contradicts with the fact
that pFDMA

i is the global maximizer for the FDMA problem (7).
Therefore, it must be pBR

i (pFDMA
−i ) = pFDMA

i .

B. Uncorrelated beliefs
In this case, terminals only have prior knowledge about chan-

nels of others and solves the following optimization problem

pRA
i = argmaxEh [U(p)] (13)

s.t. Ehi
[qi(hi)pi(hi)] ≤ pavg

i ,pi ∈ Pi ∀i
This is known as the optimal random access problem in which
terminals operate independently without cooperating with each
other and the optimal solution can be found by [3], [4]. We show
that pRA

i has the following property:

Proposition 2 Suppose terminals have uncorrelated beliefs
about other terminals, i.e., fhj |h̃j

(h) = fhj
(h), then pRA

i that
solves problem (13) is BNE of the game as is defined by (6).

Proof: When terminal i has uncorrelated beliefs about other
terminals, we have fh−i|h̃−i

(h−i) = fh−i
(h−i). As a result, we

can rewrite the maximization problem in (5) as

pBR
i (p−i) = argmaxEh [U(pi,p−i)] (14)

s.t. Ehi [qi(hi)pi(hi)] ≤ pavg
i ,pi ∈ Pi.

To show pRA
i is BNE, we need to show that given p−i = pRA

−i
the solution for (14) is pBR

i (pRA
−i) = pRA

i . To see this is true,
note that given p−i = pRA

−i problem (13) and (14) are identical.
In this case, optimal solution for (13) is the optimal solution for
(14), i.e., pBR

i (pRA
−i) = pRA

i .

In summary, when terminals have perfectly correlated and
uncorrelated beliefs about other terminals it is possible to for-
mulate the problem as FDMA or RA and find corresponding
optimal solutions. Interestingly, optimal solutions for these two
different problems both coincide with the BNE defined by (6). In
other words, BNE can be used as a unified framework to model
multiple access channels. Indeed, from an individual terminal’s
point of view the only difference between FDMA and RA is the
knowledge about other channels which is captured by the belief in
BNE. However, for intermediate cases where beliefs are neither
perfectly correlated nor uncorrelated finding the BNE solution is
not an easy task because the objective in (6) evolves policies of
other terminals which is unknown to terminal i. Next, we develop
algorithms that solve (6) approximately.

IV. COGNITIVE ACCESS ALGORITHMS

The key in designing an algorithm for solving (6) is to model
the actions of other terminals. Let q̃j(·) be the modeling of
terminal j’s action. The easiest way of modeling terminal j
is to assume that h̃j is the true channel gain and terminal j
makes decision based on it, i.e., q̃j(h̃j). The intuition behind this
modeling is that each terminal finds a strategy that is optimal
when their belief about other terminals are perfect as in the case
of optimal FDMA (7). As a result, terminal i solves the following
problem locally

{pCA
i , p̃CA

−i} = maxEhi
[qi(hi)C(hi, pi(hi))] (15)

+
n∑

j=1,j 6=i

Eh̃j

[
q̃j(h̃j)C(h̃j , p̃j(h̃j))

]
s.t. Ehi

[qi(hi)pi(hi)] ≤ pavg
i ,pi ∈ Pi

Eh̃j

[
q̃j(h̃j)p̃j(h̃j)

]
≤ pavg

j , p̃j ∈ Pj ∀j 6= i

qi(hi) +
n∑

j=1,j 6=i

q̃j(h̃j) ≤ 1.

978-1-4673-5577-3/13/$31.00 ©2013 IEEE

2013 IEEE 14th Workshop on Signal Processing Advances in Wireless Communications (SPAWC)

122



4

Note that problem (15) is the same as the one for FDMA (7)
except that p−i is replaced by p̃−i. Suppose the optimal dual
variable for the dual problem of (15) is λCA

i , then the optimal
solution for (15) is given by

pCA
i (hi) = max

pi∈Pi

C(hi, pi)− λCA
i pi, (16)

qCA
i (hi) = H

(
gCA
i (hi) > max

{
max
j 6=i

gCA
j (hj), 0

})
, (17)

where gCA
i (hi) is given by

gCA
i (hi) = C(hi, p

CA
i (hi))− λCA

i pCA
i (hi) (18)

In practice, each terminal solves (15) offline locally to find
the optimal multiplier λCA

i . Based on λCA
i , terminal i makes

transmission and power allocation decisions according to (16)-
(18). When terminal i is scheduled for transmission, it assumes
other terminals are silent, i.e., q̃j = 0 for all j 6= i, and
the attained instantaneous transmission rate is C(hi, p

CA
i (hi)).

However, this may not be true since the modeled action q̃j may
be different from the real action qj of terminal j which is obtained
by terminal j solving another maximization problem like (15).
Therefore, collision may happen when all terminals operate by
following (16)-(18). Before proceeding to show the performance
of the proposed algorithm, we first prove the next properties.

Proposition 3 Let λCA
i and λFDMA

i be optimal multipliers associ-
ated with terminal i’s average power constraints in (15) and (7),
then λCA

i = λFDMA
i . Let pCA

i (hi) and pFDMA
i (hi) be the optimal

power allocations for terminal i that solve problems (15) and
(7), then pCA

i (hi) = pFDMA
i (hi).

Proof: Since h̃j and hj have the same pdf, the dual problems of
(15) and (7) are the same. Therefore, the optimal dual variables
for their dual problems are the same, i.e., λCA

i = λFDMA
i .

To see pCA
i (hi) = pFDMA

i (hi), observe that pCA
i (hi) and

pFDMA
i (hi) are functions of λCA

i and λFDMA
i , respectively [cf. (16)

and (8)]. Since we have shown λCA
i = λFDMA

i , it follows that
pCA
i (hi) = pFDMA

i (hi). This completes the proof.

Let the expected utilities achieved by pCA
i and pFDMA

i are ŪCA

and ŪFDMA, respectively. We show that the performance of the
proposed algorithm for the following two cases.

Proposition 4 If terminals have perfectly correlated belief, i.e.,
fhj |h̃j

(h) = δ(h − h̃j), the expected utility achieved by pCA
i is

the same as that of FDMA, i.e., ŪCA = ŪFDMA.

Proof: When terminals have perfectly correlated belief, h̃j = hj .
This implies that the problem (15) solved by the proposed
algorithm is the same as the problem (7) solved by FDMA.
Therefore, the performance achieved by both algorithms are
identical, i.e., ŪCA = ŪFDMA.

Proposition 5 If terminals have uncorrelated belief, i.e.,
fhj |h̃j

(h) = fhj
(h), the expected utility achieved by pCA

i is
a fraction of that of FDMA, i.e., ŪCA = βŪFDMA, where
β ∈ [0, 1] is a constant. In particular, when channels are
symmetric, β = 1/e as the number of terminals goes to infinity.

Proof: In both FDMA and the proposed algorithm, transmission
decision for each terminal is made by comparing its local utility
with maximum of the utilities of others [cf. (9) and (17)].

Therefore, given local channel hi terminal i transmits with certain
probability under both policies. Let αFDMA

i (hi) and αCA
i (hi) be

the probability that terminal i transmit in the proposed algorithm
and FDMA, respectively. According to (9) and (17), αFDMA

i (hi)
and αCA

i (hi) are given by

αFDMA
i (hi) = Pr

(
gFDMA
i (hi) > max

{
max
j 6=i

gFDMA
j (hj), 0

})
(19)

αCA
i (hi) = Pr

(
gCA
i (hi) > max

{
max
j 6=i

gCA
j (h̃j), 0

})
. (20)

By definition, gFDMA
j and gCA

j are functions of the local channel
hi, corresponding optimal multipliers and optimal power alloca-
tions [cf. (10) and (18)]. Since λCA

i = λFDMA
i and pCA

i (hi) =
pFDMA
i (hi) by Proposition 3, for the same channel we have
gCA
j (hj) = gFDMA

j (hj). Moreover, since h̃j , hj have the same
distribution, we conclude that αCA

i (hi) = αFDMA
i (hi) = αi(hi).

As a result, the expected utility achieved by pFDMA
i is

ŪFDMA =
∑
i

Ehi

[
C(hi), p

FDMA
i (hi))αi(hi)

]
, (21)

and the expected utility achieved by pCA
i is

ŪCA =
∑
i

Ehi [C(hi), p
CA
i (hi))αi(hi)]

∏
j 6=i

[
1− Ehj [αj(hj)]

]
,

(22)

where the product
∏

j 6=i

[
1− Ehj

[αj(hj)]
]

in (22) represents the
probability that all terminals other than terminal i are silient.
Define βi :=

∏
j 6=i

[
1− Ehj [αj(hj)]

]
and rewrite (22) as

ŪCA =
∑
i

βiEhi [C(hi), p
CA
i (hi))αi(hi)]. (23)

Let βmin = mini βi and βmax = maxi βi, then there must exist
β ∈ [βmin, βmax] such that

ŪCA = β
∑
i

Ehi [C(hi), p
CA
i (hi))αi(hi)]

= β
∑
i

Ehi
[C(hi), p

FDMA
i (hi))αi(hi)], (24)

where the second equality follows from the fact that pCA
i (hi) =

pFDMA
i (hi). Substitute (21) into (24) yields

ŪCA = βŪFDMA. (25)

When the channels are symmetric, it can be show that β = (1−
1/n)n−1. Since limn→∞(1− 1/n)n−1 = 1/e, ŪCA goes to 1/e ·
ŪFDMA as n goes to infinity.

V. NUMERICAL RESULTS

Numerical tests are conducted to evaluate performance of the
proposed algorithm. We assume local channel hi follows a com-
plex Gaussian distribution CN (0, 2) and the imperfect channel
estimation h̃j is modeled by (4). Assume capacity achieving
codes are used for transmission and the capacity function takes
the form of C(hi, pi(hi)) = log(1 + hipi(hi)/N0) where N0 is
normalized noise power. Without loss of generality, we assume
N0 = 1. The average power budget is 1 for all terminals,
i.e. pavg

i = 1 for all i. We conducted simulations for different
total number of terminals n ∈ {10, 20, 30, 40, 50} and different
correlation coefficient ρ ∈ {0, 0.1, 0.2, · · · , 1}. In the simulation,
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Fig. 1. Comparison of the expected sum rate utility achieved by the optimal
FDMA (ρ = 1), the optimal RA (ρ = 0) and the proposed algorithm (ρ ∈
{0, 0.1, 0.2, · · · , 1}). The total number of terminals is n = 10.

stochastic subgradient descent algorithm [10] is used to iteratively
compute the primal and dual variables. Optimal solutions for
FDMA (when ρ = 1) and RA (when ρ = 0) are also computed.

Fig. 1 compares the expected sum rate achieved by optimal
FDMA (when ρ = 1), optimal RA (when ρ = 0) and the
proposed algorithm (when ρ ∈ {0, 0.1, 0.2, · · · , 1}) for n = 10.
When ρ = 1 the expected utility achieved by the proposed
algorithm is 1.87 which is equal to that achieved by the optimal
FDMA. This corroborates the results in Proposition 4. As the
correlation ρ decreases, the performance of the proposed algo-
rithm degrades gracefully and achieves an expected utility of 0.72
when ρ = 0. This is very close to the expected utility achieved
by the optimal RA (0.78).

In Proposition 5, it is shown for symmetric channel the
expected utility achieved by the proposed algorithm for ρ = 0 is
about 1/e of the utility achieved by optimal FDMA as n goes to
infinity. To show this is true, we normalized the expected utility
achieved by the proposed algorithm by the utility achieved by
the optimal FDMA. Fig. 2 shows the normalized expected utility
achieved by the proposed algorithm for n = 10 and n = 50. The
horizontal line is 1/e ≈ 0.368. Indeed, for n = 50 the normalized
utility converges to 1/e when ρ = 0. Moreover, notice that the
normalized utility decreases as n increases. This is because when
n increases the imperfect channel estimation is more likely to
cause collisions.

VI. CONCLUSION

We considered algorithms that adapts transmission policy to
the random channel states in multiple access fading channels
where each terminal has a different belief about the channel
states. In this setting, we formulated the problem as a Bayesian
game in which each terminal maximizes the expected utility
based on its belief subject to an average power constraint. We
showed that optimal solutions for both FDMA and RA are
Bayesian Nash Equilibrium (BNE) points of the formulated
game. Therefore, the proposed game theoretic formulation can
be regarded as general framework for multiple access channels.
Moreover, a cognitive algorithm is developed to solve the prob-
lem approximately. Numerical results show that the proposed
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Fig. 2. The expected sum rate utility achieved by the proposed algorithm
normalized by that achieved by the optimal FDMA for n = 10 and n = 50. The
horizontal line is 1/e ≈ 0.368.

algorithm achieves performance equal to as the optimal FDMA
when the channel estimation is perfectly correlated and perfor-
mance very close to the optimal RA when channel estimation is
uncorrelated.1.
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