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Abstract—This paper develops the application of the alter
nating directions method of multipliers (ADMM) to optimize a 
dynamic objective function in a decentralized multiagent system. 
At each time slot each agent observes a new local objective 
function and all the agents cooperate to solve the sum objective on 
the same optimization variable. Specifically, each agent updates 
its own primal and dual variables and only requires the most 
recent primal variables from its neighbors. We prove that if each 
local objective function is strongly convex and has a Lipschitz 
continuous gradient the primal and the dual variables are close to 
their optimal values, given that the primal optimal solutions drift 
slowly enough with time; the closeness is explicitly characterized 
by the spectral gap of the network, the condition number of the 
objective function, and the ADMM parameter. 

I. INTRODUCTION 

We consider a multiagent system composed of n networked 
agents whose goal at time k is to solve a decentralized dynamic 
optimization problem with a separable cost of the form 

min^/f(x). (1) 

The variable x G W is common to all agents that have 
as their goal the determination of the vector x*(k) := 
aigmmY^=1fi(x) that solves (1). The problem is decen
tralized because the cost is separated into convex functions 
ff : W —>· IR known to different agents i and dynamic because 
the functions ff change over time. The purpose of this paper is 
to develop the application of the alternating directions method 
of multipliers (ADMM) to the solution of (1). 

Problems having the general structure in (1) arise in a 
decentralized multiagent system whose task is time-varying. 
Typical applications include estimating the path of a stochastic 
process using a wireless sensor network [1] and tracking 
moving targets and scheduling trajectories in an autonomous 
team of robots [2], [3]. In the case of static problems, i.e., 
when the functions ff(x) = fi(x) are the same for all times 
k, there are many iterative algorithms that enable decentralized 
solution of (1). Among those we encounter dual subgradient 
descent algorithms [4] and the ADMM [5], [6], [7], [8]. 
Both of these algorithms are similar in that they introduce 
Lagrange multipliers and operate in the dual domain where 
ascent directions can be computed in a decentralized manner. 
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While their relative performances don't differ dramatically, the 
ADMM does exhibit better numerical properties in problems 
with ill-conditioned dual functions [9]. Of particular note, the 
ADMM has been proved to converge linearly to both, the 
primal and dual optimal solutions, when all local objective 
functions are strongly convex and have Lipschitz continuous 
gradients [10]. 

Since a dynamic optimization problem can be considered 
as a sequence of static optimizations any of the methods in 
[4], [5], [6], [7], [8] can be utilized in their solution. This 
has indeed been tried in, e.g., [11], [12], where separate time 
scales are assumed so that the descent iterations are allowed 
to converge in between different instances of (1). This is not 
entirely faithful to the time-varying nature of (1) motivating 
the introduction of algorithms that consider the same time 
scale for the evolution of the functions ff and the iterations 
of the distributed optimization algorithm [1], [13], [14], [15]. 

If the change in the functions ff is sufficiently slow, minor 
modifications of static algorithms should work reasonably 
well on keeping track of the time-varying optimal argument 
x* (k). In this paper we characterize the norm of the difference 
between optimal arguments x* (k) and local estimates of these 
optimal values for a decentralized implementation of the 
ADMM. This gap is characterized in terms of the condition 
number of the functions ff, the spectral gap of the connected 
network, and the step size of the ADMM algorithm. When 
the variation vanishes, the ADMM algorithm achieves linear 
convergence which coincides with the result in [10]. 

Notation For column vectors v\,..., vn use the notation v := 
[i?i;... ; vn] to represent the stacked column vector v. For a 
block matrix M use (M)ij to denote the (i, j)th block. Given 
matrices M i , . . . , Mn use diag(Mi, . . . , Mn) to denote the 
block diagonal matrix whose ith diagonal block is Mi. 

II. PROBLEM FORMULATION AND ALGORITHM DESIGN 

Consider a network composed of a set of n agents V = 
{ 1 , . . . , n) and a set of m arcs A — { 1 , . . . , m}, where 
each arc e ~ (i5 j ) is associated with an ordered pair (i, j) 
indicating that i can communicate to j . We assume the 
networks is connected and that communication is bidirectional 
so that if e ~ (i5 j ) there exists another arc e' ~ (j, i). The set 
of agents adjacent to i is termed its neighborhood and denoted 
as Mi. The cardinality of this set is the degree di of agent i. 
We define the block arc source matrix As G WmPxnP where 
the block (As)e^ = Ip E Wxp is an identity matrix if the arc 
e ~ (i,j) originates at node i and is null otherwise. Likewise, 
define the block arc destination matrix Ad G WmPXnP where 
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the block (Ad)e,j — Ip G Wxp if the arc e ~ (i,j) terminates 
at node j and is null otherwise. Observe that the extended 
oriented incidence matrix can be written as E0 — As — Ad 
and the unoriented incidence matrix as Eu — As + Ad· 
The extended oriented (signed) Laplacian is then given by 
L0 — (l/2)EjE0, the unoriented (unsigned) Laplacian by 
Lu — (1/2)E^EU and the degree matrix containing nodes' 
degrees di in the diagonal is D — (1/2)(L0 + Lu). Denote 
Γ^ as the largest singular value of Lu and 7^ as the smallest 
nonzero singular value of L0\ Γ^ and 7^ are both measures 
of network connectedness. 

To solve (1) in a decentralized manner we introduce vari
ables Xi G W representing local copies of the variable 
x, auxiliary variables zij G W associated with each arc 
(i, j) G A, and reformulate (1) as 

n 
min Σίϊ(χί), 

O . L . Jb j Z · I3·, Xj = Zij, for all (i, j) G A. (2) 
The constraints Xi = Zij and Xj = Zij imply that for all pairs 
of agents (i, j) G A forming an arc, the feasible set of (2) 
is such that Xi = Xj. For a connected network these local 
neighborhood constraints further imply that feasible variables 
must satisfy Xi = Xj for all, not necessarily neighboring, pairs 
of agents i and j . As a consequence, the optimal local variables 
in (2) must coincide with the solution of (1), i.e., x* = x* for 
all nodes i. We interpret the auxiliary variables Zij as being 
attached to the arc (i, j) with the purpose of enforcing the 
equality of the variables Xi and Xj attached to its source agent 
i and destination agent j . 

To simplify discussion define the vector 
Wip concatenating all variables x^ the vector z = 
\z\\... ; zm] G Wmp concatenating all variables ze = Zij, and 
define the aggregate function fk : Rnp —>· IR as fh(x) := 
ΣΓ=ι fi (xi)· Using these definitions and the definitions of 
the arc source matrix As and the arc destination matrix Ad 
we can rewrite (2) in matrix form as 

min fk(x), s.t. A8x-z = 0, Adx - z = 0. (3) 

Further define the matrix A = [As;Ad] G R2mP*nP stacking 
the arc source and arc destination matrices As and Ad and 
the matrix B = [—Imp; —Imp\ stacking the opposite of two 
identity matrices so that (3) reduces to 

min fk{x), s.t. Ax + Bz = 0. (4) 

To introduce the dynamic ADMM for the problem in (2) -
and its equivalent forms in (3) and (4) - consider Lagrange 
multipliers ae = otij associated with the constraints Xi — 
Zij and Lagrange multipliers ße = ßij associated with the 
constraints Xj = zij. Group the multipliers ae in the vector 
a = [ai ; . . . ; am] G Wmp and the multipliers ße in the vector 
ß = [βλ ; . . . ; ßm] G Wmp which are thus associated with the 
constraints Asx — z = 0 and A^x — z — 0, respectively. Further 
define λ = [a; β] G R2mp associated with the constraint Ax + 
Bz = 0, a positive constant c > 0, and define the augmented 
Lagrangian function at time k as 

Lk(x, z, X) = fk(x) + XT(Ax + Bz) + ^\\Ax + Bzf, 

which differs from the regular Lagrangian by the addition of 
the quadratic regularization term (c/2)\\Ax + Bz\\2. 

The dynamic ADMM proceeds iteratively through alternat
ing minimizations of the Lagrangian Lk(x,z,X) with respect 
to primal variables x and z followed by an ascent step on the 
dual variable λ. To be specific, consider arbitrary time k and 
given past iterates z(k — 1) and X(k — 1). The primal iterate 
x(k) is defined as x(k) := argmin^ Lk(x, z(k — 1), X(k — 1)) 
and given as the solution of the first order optimality condition 

Vfk(x(k))+ATX(k-l)+cAT[Ax(k)+Bz(k-l)] = 0 . (5) 

Using the value of x(k) from (5) along with the previous 
dual iterate X(k — 1) the primal iterate z(k) is defined as 
z(k) := argmin^ Lk(x(k)JzJX(k — 1)) and explicitly given 
by the solution of the first order optimality condition 

BTX{k - 1) + cBT [Ax{k) + Bz{k)] = 0. (6) 

The dual iterate X(k — 1) is then updated by the constraint 
violation Ax(k)-\-Bz(k) corresponding to primal iterates x(k) 
and z(k) in order to compute 

A(fc) = A(fc - 1) + c[Ax(k) + Bz(k)]. (V) 

Observe that the step size c in (7) is the same constant used 
in (5). 

The computations necessary to implement (5)-(7) can be 
distributed through the network. However, it is also possible to 
rearrange (5)-(7) so that with proper initialization the updates 
of the auxiliary variables z(k) are not necessary and the 
Lagrange multipliers a G Wnp and ß G Wnp can be replaced 
by a smaller dimension vector φ = [φι;... ; φη] G Rnp. We 
do this in the following proposition before showing that these 
rearranged updates can be implemented in a decentralized 
manner. The simplification technique is akin to those used in 
decentralized implementations of ADMM for static optimiza
tion problems; see e.g., [5, Ch. 3], [7]. 

Proposition 1 Consider iterates x(k), z(k), and X{k) = 
[a(k); ß(k)] generated by recursive application of (5)-(7). 
Recall the definition of A — \As\Aj\, the oriented incidence 
matrix E0 — As — Ad, the unoriented incidence matrix 
Eu — As + Ad, the oriented Laplacian L0 = (l/2)EjE0, 
the unoriented Laplacian Lu = (1/2)E^EU, and the degree 
matrix D = (1/2) (L0 + Lu). Require the initial multipliers 
λ(0) = [α(0);/3(0)] to satisfy a(0) = -ß(Q), the initial 
auxiliary variables z(0) to be such that Eox(0) = 2z(0) and 
further define variables 0(fc) := Eja(k) G Mnp. Then, for all 
times k > 0 iterates x(k) can be alternatively generated by 
the recursion 

Vfh(x(k)) + φψ - 1) + 2cDx(k) - cLux(k ■ 
<̂ (Jb) = φ^-1) + ^0χ^). 

Proof: See [16]. 

The iterations in (8) can be implemented in a decentralized 
manner. To see that this is true consider the component of 
the update for x(k) corresponding to the variable X{. Using 
the definitions of the degree matrix D, the oriented incidence 
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Algorithm 1 Decentralized Dynamic ADMM at agent i 
Require: Initialize local variables to xi(0) = 0, φί(0) = 0. 
Require: Initialize neighboring variables Xj(0) = 0 for all j £ Mi. 

for times k = 1, 2, . . . do 
Observe local function /f. 
Compute local estimate of optimal variable x*(k) [cf. (9)] 

Vfï(xi(k)) + 2cdiXi(k) 

= c Σ [xi(k-l) + xj(k-l)] - & ( f c - l ) . 

4: Transmit Xi(k) to and receive Xj(k) from neighbors j G Mi. 
5: Update local variable (f)i(k) as [cf. (10)] 

φί(1ΰ) = φί(1ΰ-1) + βΣ [xi(k)-Xj(k)]. 

6: end for 

matrix E0, and the unoriented Laplacian Lu we can write this 
component of the first equality in (8) as 

Vf?(xi(k)) + 2cdixi(k) 

= c Σ [xi(k - 1) + xj(k - 1)] - <t>i& - 1). (9) 
jeAfi 

Likewise, using the definitions of the oriented Laplacian L0 

the update for φ^) can be written as 

φί(1ή = ^ ( t 1) + ^ [xi(k) Xj(k)]. (10) 

At the initialization stage, we choose φ(0) in the column space 
of L0 (e.g., φ(0) = 0). This is equivalent to choosing λ(0) = 
[α(0);/3(0)] such that both a(0) and ß(Q) are in the column 
space of E0. Such initialization is necessary for the analysis 
in Section III. 

The decentralized dynamic ADMM algorithm run by agent 
i is summarized in Algorithm 1. At the initial time k = 0 
we initialize local variables to Xi(0) = 0 and φΐ(0) = 0. 
Agent i also initializes its local copies of neighboring variables 
to Xj(0) = 0 for all j G Mi, which is consistent with the 
initialization at agent j . For all subsequent times agent i 
goes through successive steps implementing the primal and 
dual iterations in (9) and (10) as shown in steps 3 and 5 of 
Algorithm 1, respectively. Implementation of Step 3 requires 
observation of the local function fk as shown in Step 2 and 
availability of neighboring variables Xj(k-l) from the previ
ous iteration. Implementation of Step 5 requires availability of 
current neighboring variables Xj(k), which become available 
through the exchange implemented in Step 4. This variable 
exchange also makes variables available for the update in Step 
3 corresponding to the following time index. 

III. C O N V E R G E N C E A N A L Y S I S 

This section analyzes convergence properties of the decen
tralized dynamic optimization algorithm (9)-(10). We discuss 
convergence of primal iterates x(k) to the optimal primal 
variables x*(k) at time k. We also define the vector u(k) = 
[z(k);a(k)] which combines primal iterates z(k) and dual 
iterates a(k) as well as the vector u*(k) = [z*(k);a*(k)] 

concatenating the unique primal optimal value z* (k) and a part 
of an optimal dual variable \*(k) = [a*(k); β*(k)] such that 
a*(k) lies in the column space of E0. For distances between 
x(k) and x*(k) we consider regular 2-norms and for distances 
between u(k) and u*(k) we measure norms with respect to 
the block diagonal matrix G = d iag(c/ m p , (l/c)Imp). 

Our convergence analysis studies the evolution of the norm 
\\u(k) — u*(k)\\o at subsequent time steps. This result is 
established in Theorem 1 which relies on the results in lemmas 
1 and 2. Lemma 1 is a descent bound on the contraction of the 
distance \\u(k — l)—u*(k — 1)\\G between iterate and optimal 
value at time k — 1 into the distance \\u(k) — u*(k — 1)\\G 
between the optimal value associated with time k — 1 and 
the optimal iterate at time k. Lemma 2 bounds the drift of 
the optimal value u*(k — 1) between subsequent time steps 
when we are given the value of the drift ||x*(fc) — x*(k — 1)|| 
between optimal solutions of the original problem in (1). 
Theorem 1 follows from the triangle inequality and the two 
bounds in lemmas 1 and 2. Theorem 2 relates the distances 
\\u(k - 1) - u*(k - 1)\\G and \\x(k) - x*(k)\\ so that the 
convergence result in Theorem 1 can be translated into a more 
meaningful statement regarding the suboptimality of primal 
iterates x{k). The final result in Theorem 3 is stated in the 
form of a steady state suboptimality gap which is follows from 
recursive application of the bound in Theorem 2. 

Throughout this section we make the following assumptions 
on the local objective functions ff. 
Assumption 1 Local objective functions are differentiable 
and strongly convex. I.e., for all agents i and times k there exist 
strictly positive constants m ^ > 0 such that for all pairs of 
points xa and xb it holds [xa - xb)]T[Vf^(xa) - V / f (£&)] > 
rrifk\\xa — Xb\\2-

Assumption 2 Local objective functions have Lipschitz con
tinuous gradient. I.e., for all agents i and times k there exist 
strictly positive constants M^k > 0 such that for all pairs 
of points xa and xb it holds \\Vff{xa) - V / f (£6) | |2 < 
Mfk\\xa -Xbh-

Assumptions 1 and 2 imply that the sum functions fk(x) := 
ΣΓ=ι fi(xi) a r e a^ s o s t r o n gly convex with Lipschitz gradi
ents. Indeed, defining rrif := min^/, m ^ > 0 as the minimum 
of all strong convexity constants it follows from Assumption 
1 that for all times k and pairs of points xa and xt it holds 

[xa-xt]T[Vfk(xa)-\7fk(xb)] >mf\\xa-xb\\2 (11) 

Likewise, defining Mf := max^/. Mjk > 0 as the maximum 
Lipschitz constant it follows from Assumption 2 for all times 
k and pairs of points xa and xb it holds 

\\Vfk(xa)-Vfk(xb)\\<Mf\\xa-xb\ (12) 

In the following lemma we utilize (11) and (12) to prove a 
contraction of the distance \\u(k — 1) — u*(k — 1)\\G between 
iterate and optimal value at time k—1 into the distance \\u(k) — 
u*(k — 1)\\G between the optimal value associated with time 
k — 1 and the optimal iterate at time k. 

Lemma 1 Consider the dynamic ADMM algorithm defined by 
(5)-(7). At time k, define the vectors u(k) = [z(k); a(k)] which 
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stacks the current primal and dual variables and u*(k) — 
[z*(k);a*(k)] which stacks the current optimal primal and 
dual variables and the matrix G — dmg(clmp, (l/c)Imp). Let 
μ > 1 be an arbitrary constant and define the corresponding 
positive number 

mm 
(μ - 1)JL 2cmfjL (13) 

L μΓΣ ' c2rL7L + ±μΜ) } 

Then, the norm with respect to G of the difference between 
u(k) and u*(k) decreases by, at least, a factor 1/ΛΛ + à °f 
the difference between u(k — 1) and u*(k) 

I) \\u(k) -

Proof: See [16]. 

< 
\u(k ■ u*(k)\\ G 

VTTs 
(14) 

The constant δ controls the ratio between \\u(k) — u*(k)\\G 
and \\u(k — 1) — u*(k)\\G· Since δ > 0, u(k) is closer to 
u*(k) than u(k — 1). Fixing \\u(k — 1) - u*(k)\\G, larger 
δ means smaller distance from u(k) to u*(k) and stronger 
contraction. The same constant δ also appears in analyzing 
the static ADMM. The impact of the network topology, the 
objective function, and the step size on δ is discussed in [10]. 

The following lemma considers how the drift of the optimal 
primal variables x*(k) — x*(k — 1) translates into a drift of 
the optimal vectors u*(k — 1) and u*(k). 

Lemma 2 Consider the dynamic ADMM algorithm defined by 
(5)-(7). Define the positive constant 

Mfy/n σ — y/cm + 

and a time-varying number 

g(k)=a\\x*(k) 

Λ / ^ Τ Γ ' 

■x*(k-l)\\, 

(15) 

(16) 

where x*(k) and x*(k — 1) are the optimal solutions of (1) at 
time k and time k — 1, respectively. Define u(k), u*(k), and 
G as in Lemma I. Then the distance from u(k) to u*(k) and 
the distance from u(k — 1) to u*(k), both measured by the 
norm with respect to G, has a gap upper bounded by g(k) 

\u(k - 1) - u*(k)\\G - \\u(k - 1) - u*(k - 1) 

Proof: See [16]. 

\o<g(k). 
(17) 

The gap g{k) describes the drift from u*(k — l) to u*(k) on 
the basis of u(k — 1). We expect this gap to be small enough. 
That is, the difference between the two successive optimal 
solutions x*(k — 1) and x*(k) is small enough. 

Note that in (16) and (17), x*(k - 1) and u*(k - 1) 
are undefined when k = 1. To address this issue, we can 
define a virtual initial optimization problem min J ^ = 1 ff(x) 
such that x*(0) = 0 and u*(0) = [**(()); a* (0)] = 0. 
Combining Lemma 1 and Lemma 2, we get the following 
theoretical bound which describes the relationship between 
\\u(k) - u*(k)\\G and \\u(k - 1) - u*{k - \)\\G. 

Theorem 1 Consider the dynamic ADMM algorithm defined 
by (5)-(7). Define u(k), u*(k), and G as in Lemma 1, the 

positive number δ as in (13) and the time-varying gap g(k) 
as in (16). Then the distance between u(k) and u*(k) and the 
distance between u(k — 1) and u*(k — 1), both measured by 
the norm with respect to G, satisfy 

\\u{k)-u*{k)\\t 

Proof: See [16]. 

y/ΤΤδ 
(18) 

Theorem 1 gives the convergence property of the dynamic 
ADMM. The convergence is discussed upon u, which is the 
combination of the auxiliary primal variable z and the dual 
variable a. Often we are more interested in the convergence 
with respect to the primal variable x, which is given below. 

Theorem 2 Consider the dynamic ADMM algorithm defined 
by (5)-(7). Define rrif as the strong convexity constant of fk in 
(11), u(k), u*(k), and G as in Lemma 1, and the time-varying 
gap g(k) as in (16). The distance between x(k) and x*(k) 
measured by the Euclidean norm and the distance between 
u(k — 1) and u*(k — 1) measured by the norm with respect to 
G satisfies 

\\x(k)-x*(k)\\< 

Proof: See [16]. ■ 

If x*(k) is a constant for all k > ko — 1, then g(k) = 
0, for all k > ko. In this case Theorem 1 shows that {||̂ (&) — 
7i*(fc)||G} is Q-linearly converging to 0 and Theorem 2 shows 
that {||x(fc) —x*(fc)||} is R-linearly converging to 0. 

On the other hand, if g(k) does not converges to 0 but is 
smaller than a constant, from Theorem 1 and Theorem 2, we 
have the following theorem which bounds \\x(k) — x*(k)\\. 

Theorem 3 Consider the dynamic ADMM algorithm defined 
by (5)-(7). Define rrif as the strong convexity constant of fk 

in (11) and the corresponding positive numbers δ as in (13). 
If the time-varying gap g(k) defined in (16) is smaller than 
9max far all times k, the distance between x(k) and x*(k) 
measured by the Euclidean norm satisfies 

lim \\x(k) 
;—>-+oo 

Proof: See [16]. 

■x*(k)\\< (20) 

Recall that g(k) = a\\x*(k) -x*(k- 1)|| defined in (16) 
measures the drift between x*(k) and x*(k — 1). Theorem 
3 shows that if this drift is upper bounded by gmax over all 
times k then the difference between x{k) and x*(k) is also 
bounded. The constant at the right-hand-side of (20) contains 
δ and rrif. Larger δ gives tighter bound for \\x(k) — x*(k)\\. 
The strong convexity constant rrif exists since it controls the 
drifts of the optimal dual variables. 
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Fig. 1. (TOP) True signal and decentralized estimate of agent 1. (BOTTOM) 
Maximum distance between decentralized estimates. 

IV. NUMERICAL EXPERIMENTS 

This section provides numerical experiments to demonstrate 
the effectiveness of the proposed dynamic ADMM and validate 
the theoretical analysis. We consider a connected network with 
n = 100 agents, in which m = 1810 arcs (out of all 9900 
possible arcs) are randomly chosen to be connected. 

At time k agent i measures a true signal xo(k) through 
a linear observation function yi(k) = Hi(k)xo(k) + ei(k) 
where ei{k) is random noise. We know in advance that the 
Euclidean distance between xo(k) and x0(k — 1) is smaller 
than a threshold p. The agents cooperate to recover xo(k) and 
the objective function at time k is fk(x) = Σ™=1 \\\Hi(k)x — 

< p. The local objective 
2 

yi(k)\\2 subject to \\x — x(k 
function of agent i is ff(x) = \\\Hi(k)x - yi(k)\\2 subject 
to \\x — Xi(k — 1)|| < p. This constrained problem is more 
difficult than the unconstrained one that we have assumed. 
Accordingly we modify the primal iterate (9) such that agent 
i can update its Xi(k) from 

Xi(k) = aigmin-\\Hi(k)xi - yi(k)\\2 + cdi\\xi -pi(k)\\2, 
Xi Z 

S.t. Xi(k-l)\\<p, (21) 

where Pi(k) = (1/2*) Σ ^ Μ M * " X) + xj(k ~ *)] ~ 
(l/2cdi)<fri(k — 1) is a proximal point. In the simulation we 
let x(k),ei(k) G M2, H^k) e M2x2, p = 0.1, and c = 1. 
We generate elements in Hi(k) following i.i.d. Gaussian 
distribution ΛΓ(0,1) and elements in ei(k) following i.i.d. 
Gaussian distribution Λ^(0,0.01). 

Fig. 1 depicts the simulation results of the dynamic ADMM. 
The TOP figure compares the true signal, which is close to the 
centralized solution, and the decentralized estimates of agent 

1. The difference between them is bounded throughout the 
optimization process. This is nontrivial since the optimization 
problem is dynamic and the inexact solutions Xi(k — 1), which 
are the estimates of xo(k — 1), bring extra uncertainty to 
the subsequent problems. The BOTTOM figure shows the 
maximum distance between decentralized estimates of all the 
agents with respect to the two dimensions. Though each agent 
optimizes by itself, the agents keep tight consensus. The key 
is the optimization of the dual variables which guarantees that 
the consensus constraints don't violate too much. 

V. CONCLUSION 

This paper introduces the ADMM to solve a decentralized 
dynamic optimization algorithm. Traditionally the ADMM is 
a powerful tool to solve centralized and/or static optimization 
problems; we show that a minor modification enables it to 
adapt to the decentralized dynamic cases. We prove that 
under certain conditions, the differences between the ADMM 
iterates and the optimal solutions, in both the primal and the 
dual domains, can be characterized by the drifts between the 
successive primal optimal solutions. 
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