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Abstract—A stochastic implementation of the Davidon-Fletcher-Powell
(DFP) quasi-Newton method to minimize dual functions of optimal resource
allocation problems in wireless systems is introduced. While the use of
dual stochastic gradient descent algorithms is widespread, they suffer from
slow convergence rate. Application of second order methods, on the other
hand, is impracticable because computation of dual Hessian inverses incurs
excessive cost. The proposed method utilizes stochastic gradients in lieu of
deterministic gradients for both, the determination of descent directions
and the approximation of the dual function’s curvature. Since stochastic
gradients can be computed at manageable computational cost stochastic DFP
is realizable and retains the convergence rate advantages of its deterministic
counterparts. Convergence results show that lower and upper bounds on the
instantaneous form of the dual Hessian are sufficient to guarantee convergence
to a small neighborhood of optimality. Numerical experiments illustrate
that for ill conditioned dual functions stochastic DFP outperforms stochastic
gradient descent by an order of magnitude.

I. INTRODUCTION

This paper develops a stochastic version of the Davidon-Fletcher-
Powell (DFP) quasi-Newton method to solve optimal resource alloca-
tion problems in wireless systems. In particular, we consider wireless
communication systems characterized by a vector block fading channel
h ∈ H and corresponding resource allocation vectors p(h) ∈ P(h).
Allocation of p(h) units of resource when the channel coefficient is
h results in instantaneous performance f(h,p(h)). We want to find an
optimal resource allocation function p∗ := {p∗(h)}h∈H that optimizes
a given utility of the ergodic performance x = E[f(h,p(h))]. Formally,
consider a compact convex set X ; a set of compact, not necessarily
convex, sets P(h); a concave function f0(x); and bounded functions
f(h,p(h)). The pair of optimal ergodic performance x∗ and associated
optimal resource allocation p∗ is defined as

(x∗,p∗) := argmax f0(x) (1)

s. t. x = E[f(p(h),h)], x ∈ X , p ∈ P,

where P := {p : p(h) ∈ P(h)}h∈H is the set of feasible resource
allocation functions p. Problems with the structure in (1) have null duality
gap even if the functions f(p(h),h) are not concave or the sets P(h)
are not convex [1], [2]. Lack of duality gap allows solution in the dual
domain where the separable structure of the Lagrangian results in reduced
complexity.

The simplest particular instance of (1) is power allocation in a point to
point wireless channel. For each fading state h we allocate power p(h).
The function f(p(h),h) represents the stacking of the instantaneous
rate and instantaneous power consumption. The variable x represents the
ergodic capacity and average power and our goal is to maximize a utility
f0(x) of the ergodic capacity and average rate. The set X represents a
restriction on allowable ergodic capacities and powers and the sets P(h)
represent constraints on instantaneous powers. The fundamental interplay
of instantaneous resource allocation conducive to desirable ergodic per-
formance is widespread in wireless systems. Examples more interesting
than point-to-point communication include optimization of orthogonal
frequency division multiplexing [3], beamforming [4], cognitive radio
[5], random access [6], communication with imperfect channel state
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information [7], and various flavors of wireless network optimization
[8]–[10].

In most of the problems considered in [3]–[10] it is possible to compute
stochastic gradients of the dual function with manageable complexity.
It is therefore possible, even desirable, to implement a dual stochastic
gradient descent algorithm to find optimal dual variables – with optimal
primal variables obtained as a byproduct of this implementation [11].
Practical appeal of dual stochastic gradient descent remains limited,
however, because the convergence rate of these first order algorithms
is slow. Resort to second order methods, on the other hand, is of little
use because the computational cost of computing the dual Hessians’
inverses necessary to find Newton steps is prohibitive. Quasi-Newton
methods arise as the natural alternative because they rely on gradients
to compute curvature estimates thereby achieving superlinear convergece
rates in deterministic settings [12]–[15]. Since gradients can be estimated
by stochastic gradients at manageable computational cost stochastic
generalizations of quasi-Newton methods are realizable and expected to
retain the convergence rate advantages of their deterministic counterparts.

In this paper we propose a stochastic version of the DFP quasi-
Newton method that operates in the dual domain to find solutions to
problems with the generic structure in (1). We begin with a discussion
of stochastic gradient descent algorithms (Section II) and move on
to introduce the DFP method as well as a regularized version that
results in Hessian approximations with more amenable spectral properties
(Section II-A). This regularized version is leveraged to introduce the dual
stochastic DFP algortihm (Section II-B). Stochastic DFP differs from
regular DFP in the use of a regularization and on the use of stochastic
gradients in lieu of deterministic gradients for both, the determination of
descent directions and the approximation of the dual function’s curvature.
Convergence results are then presented to show that lower and upper
bounds on the instantaneous form of the dual Hessian are sufficient to
guarantee convergence to a small neighborhood of optimality (Section
III). Simulation results are presented for a simple frequency division
multiple access channel with two users (Section IV). For well conditioned
dual functions stochastic DFP and gradient descent exhibit comparable
performance. For ill conditioned dual functions, however, stochastic DFP
outperforms stochastic gradient descent by an order of magnitude.

II. PROBLEM FORMULATION

To solve (1) we work in the dual domain. For that purpose introduce
the vector Lagrange multiplier λ and define the Lagrangian associated
with the optimization problem in (1) as

L(x,p,λ) := f0(x) + λT
[
E [f(p(h),h)]− x

]
(2)

For the methods derived here the concept of Lagrangian maximizer is
important

(x(λ),p(λ)) := argmax
x∈X ,p∈P

L(x,p(h),λ). (3)

Because the structure of the Lagrangian is separable, the Lagrangian
maximizers in 3 can be computed as

x(λ) = argmax
x∈X

f0(x)− λTx (4)

p(h,λ) = argmax
p(h)∈P(h)

λT f(p(h),h). (5)
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Algorithm 1 Computation of stochastic gradients

1: function STOCHASTIC GRADIENT(λ, h̃ = [h1; ...;hL])
2: Determine ergodic Lagrangian maximizers [cf. (4)]

x = x(λ) = argmax
x∈X

f0(x)− λTx

3: Determine resource allocations for all hl [cf. (5)]

p(hl,λ) = argmax
p(hl)∈P(hl)

λT f(p(hl),hl)

4: return stochastic gradient [cf. (9)]

ŝ(λ, h̃) =
1

L

L∑
l=1

f(p(hl,λ),hl)− x(λ)

5: end function

Observe that (5) is not convex, which in practice restricts applicability
to problems with a moderate number of terminals. The dual function is
then defined as

g(λ) = L(x(λ),p(λ),λ). (6)

The dual problem for (1) is defined as a minimization of the dual function
over all positive dual variables, i.e.,

D = min
λ≥0

g(λ) (7)

It has been proven that the duality gap for problem (1) is zero and
the optimal value of the primal function and dual function are equal.
Therefore, we have the ability to solve problem (7) instead of solving
problem (1). Since the dual function in (6) is finite dimensional, its
minimization is simpler than the solution of the infinite dimensional
primal problem in (1). Given that the duality gap is null, optimal primal
arguments can be computed as x∗ = x(λ∗), p∗ = p(λ∗) once an
optimal dual variable λ∗ = argmin g(λ) is available.

Since the dual function is convex, descent algorithms can be used for its
minimization. This is not difficult in principle because gradients ∇g(λ)
of the dual function at λ are given by the constraint slack corresponding
to the Lagrangian maximizers associated with λ,

s(λ) := ∇g(λ) = E[f(p(h,λ),h)]− x(λ). (8)

However, exact evaluation of the gradient in (8) is not possible in
general because it requires evaluation of the expectation E[f(h,p(h,λ))]
which depends on the Lagrangian maximizing function p(λ) obtained
by solving the program in (5) and in most cases not available in closed
form.

This difficulty is overcome by using stochastic gradients in lieu of
the actual gradients in (8). To do so consider a given set of L channel
realizations h̃ = [h1; ...;hL] and define the stochastic gradient

ŝ(λ, h̃) =
1

L

L∑
l=1

f(p(hl,λ),hl)− x(λ). (9)

To compute the stochastic gradient ŝ(λ, h̃) we solve the maximization
in (4) to determine x(λ), L problems of the form in (5) for channels
h1, . . . ,hL to determine the resource allocations p(hl,λ), and proceed
to evaluate the sum in (9); see Algorithm 1.

The dual stochastic gradient descent algorithm consists of recursive
computation of primal Lagrangian maximizers x(λt) and p(ht,l,λt)
for given dual iterate λt and channel samples h̃t, followed by evaluation
of the stochastic gradient ŝ(λt, h̃t), and the projected descent step

λt+1 = λt − εŝ(λt, h̃t). (10)

As long the step size ε is judiciously selected and the channel samples
h̃t,l are drawn independently from the channel probability distribution
the sequence of dual variables generated by (10) approaches the optimal
multiplier λ∗ from where convergence of primal iterates follows, see

e.g., [2], [11]. However, the convergence rate is slow, motivating the
introduction of the stochastic DFP algorithm that we describe in the
following section.

A. Regularized DFP

To speed up convergence of (10) resort to second order methods is
of little use because evaluating Hessians of the dual function is com-
putationally intensive. A better suited methodology is the use of quasi-
Newton methods whereby gradient descent directions are premultiplied
by a matrix B−1

t ,
λt+1 = λt − εB−1

t s(λt). (11)

The idea is to select matrices Bt close to the dual Hessian H(λt) :=
∇2g(λt). Various methods are known to select matrices Bt, including
those by Broyden e.g., [12]; Broyden, Fletcher, Goldfarb, and Shanno
(BFGS) e.g., [15]; and Davidon, Fletcher, and Powell (DFP) e.g., [12].
We work here with the matrices Bt used in the DFP method.

In DFP – and all other quasi Newton methods for that matter – the
function’s curvature is approximated by a finite difference. Specifically,
define the variable and gradient variations at time t as

µt = λt+1 − λt, rt = s(λt+1)− s(λt), (12)

respectively. We select the matrix Bt+1 to be used in the next time step so
that it satisfies the secant condition Bt+1µt = rt. The rationale for this
selection is that the Hessian H(λt) satisfies this condition for vanishing
µt, i.e., for λt+1 tending to λt.

Notice however that the secant condition Bt+1µt = rt is not enough
to completely specify Bt+1. Part of this indeterminacy can be resolved
by requiring matrices Bt � 0 to be (symmetric) positive semidefinite.
To resolve the remaining indeterminacy we observe that it is reasonable
to expect the Hessians H(λt) and H(λt−1) to be close to each other
and therefore select Bt+1 as the closest matrix to the previous Hessian
approximation Bt among all those that satisfy the secant condition
Bt+1µt = rt. Closeness between Bt and Bt+1 is usually specified
in terms of a weighted Frobenius norm. For the purposes of this paper
it is better to specify closeness in terms of the relative Gaussian entropy
and define the matrix Bt+1 as the solution of the semidefinite program

Bt+1 = argmin tr(BtX
−1)− log det(BtX

−1)− n,
s. t. µt = X−1rt, X � 0. (13)

The constraint X � 0 restricts the feasible space to positive semidefinite
matrices whereas the constraint µt = X−1rt requires X to satisfy
the secant condition. The objective tr(BtX

−1) − log det(BtX
−1) − n

represents the differential entropy between random variables with zero-
mean Gaussian distributions N (0,Bt) and N (0,X) having covariance
matrices Bt and X. The differential entropy is nonnegative and equal
to zero if and only if X = Bt. The solution Bt+1 of the semidefinite
program in (13) is therefore closest to Bt, in the sense of minimizing
the Gaussian differential entropy, among all positive semidefinite matrices
that satisfy the secant condition µt = X−1rt.

If the variations µt and rt are such that µT
t rt > 0 the semidefinite

program in (13) has a unique solution that is explicitly given by

Bt+1 =

(
I− rtµ

T
t

µT
t rt

)
Bt

(
I− µtr

T
t

µT
t rt

)
+

rtr
T
t

µT
t rt

. (14)

The Hessian approximation update in (14) is the one most often associ-
ated with the definition of DFP [15].

It follows from (14) that B−1
t stays positive definite for all iterations

t as long as the initial matrix is B−1
1 � 0 positive definite and the varia-

tions satisfy µT
t rt > 0. However, it is possible for the smallest eigenvalue

of B−1
t to become arbitrarily close to zero. This has proven not to be an

issue in DFP implementations but is a more significant challenge in the
stochastic version proposed here. To avoid this problem we introduce a
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regularization of (13) that requires the minimum eigenvalue of B−1
t+1 to

be at least δ,

Bt+1 = argmin tr[Bt(X
−1−δI)]−log det[Bt(X

−1−δI)]−n,
s. t. µt = X−1rt, X � 0. (15)

Since the negative logarithm determinant − log det[Bt(X
−1 − δI)]

diverges as the smallest eigenvalue of X−1 approaches δ, the smallest
eigenvalue of the Hessian inverse approximation matrices B−1

t+1 computed
as solutions of (15) exceed the lower bound δ. In the following lemma
we show that the regularized approximations in (15) can be computed
by a formula similar to the update in (14)1.

Lemma 1 Consider the semidefinite program in (15) where the matrix
Bt � 0 is positive definite and the inner product (µt − δrt)T rt > 0.
Then, the solution Bt+1 of (15) satisfies

(B−1
t+1 − δI)

−1 =

(
I− rtµ̃

T
t

µ̃T
t rt

)
Bt

(
I− µ̃tr

T
t

µ̃T
t rt

)
+

rtr
T
t

µ̃T
t rt

, (16)

where µ̃t := µt − δrt is the corrected variable variation.

The expression in (16) permits efficient computation of the regularized
Hessian approximations Bt+1. To implement the descent step (11) the
approximation Bt+1 needs to be inverted. This inversion can be avoided
by using the Sherman-Morrison formula in (16) to write

B−1
t+1 = B−1

t +
µ̃tµ̃

T
t

rTt µ̃t

− B−1
t rtr

T
t Bt

−1

rTt B
−1
t rt

+ δI. (17)

When δ = 0 the update in (17) coincides with standard non-regularied
DFP. Therefore, the differences between DFP and regularized DFP are
the replacement of the variable variation µt in (12) by the corrected
variation µ̃t := µt − δrt and the addition of the regularization term δI.
We use (17) in the construction of the stochastic DFP algorithm in the
following section.

B. Stochastic DFP

As can be seen from (16) the regularized DFP curvature estimate Bt+1

is obtained as a function of previous estimates Bt, dual iterates λt and
λt+1, and corresponding gradients s(λt) and s(λt+1). We can then think
of a method in which gradients s(λt) are replaced by stochastic gradients
ŝ(λt, h̃t) in both, the curvature approximation update in (16) and the
descent iteration in (11). These substitutions lead to the dual stochastic
DFP algorithm that we introduce in the following.

Start at time t with current dual iterate λt and let B̂t stand for
the Hessian approximation computed by stochastic DFP in the previous
iteration. Obtain a batch of channel samples h̃t = [ht,1; ...;ht,L] and
for each of the ht,l samples determine the values p(ht,l,λt) of the
Lagrangian maximizer resource allocation function associated with ht,l

as per (5). Further determine the ergodic Lagrangian maximizers x(λt)
as per (4) and evaluate the stochastic gradient ŝ(λt, h̃t) as per (9) with
x(λ) = x(λt) and p(hl,λ) = p(ht,l,λt). Descend then on the dual
function along the direction B̂−1

t ŝ(λt, h̃t) moderated by the stepsize ε

λt+1 = λt − εB̂−1
t ŝ(λt, h̃t). (18)

For the multiplier iterate λt+1 compute the stochastic gradient
ŝ(λt+1, h̃t) associated with the same set of channel samples h̃t used to
compute the stochastic gradient ŝ(λt, h̃t). This requires determination of
ergodic variables x(λt+1) as per (4), resource allocations p(ht,l,λt+1)
as per (5), and evaluation of the stochastic gradient ŝ(λt+1, h̃t) as per
(9) with x(λ) = x(λt+1) and p(hl,λ) = p(ht,l,λt+1). Define then
stochastic gradient variation at time t as

r̂t = ŝ(λt+1, h̃t)− ŝ(λt, h̃t), (19)

1Proofs are available in [16]

Algorithm 2 Stochastic DFP

Require: Dual variable λ1. Hessian approximation B̂−1
1 � δI.

1: for t = 1, 2, . . . do
2: Acquire L independent channel samples h̃t = [ht,1, . . . ,ht,L]

3: Compute ŝ(λt, h̃t) = STOCHASTIC GRADIENT(λt, h̃t)
4: Descend along direction B̂−1

t ŝ(λt, h̃t) [cf. (18)]

λt+1 = λt − εB̂−1
t ŝ(λt, h̃t).

5: Compute ŝ(λt+1, h̃t) = STOCHASTIC GRADIENT(λt+1, h̃t)
6: Compute stochastic gradient variation [cf. (19)]

r̂t = ŝ(λt+1, h̃t)− ŝ(λt, h̃t)

7: Compute modified variable variation [cf. (20)]

µ̃t = (λt+1 − λt)− δr̂t.

8: Update approximation of Hessian inverse [cf. (22)]

B̂−1
t+1 = B̂−1

t +
µ̃tµ̃

T
t

r̂Tt µ̃t

−
B̂−1

t r̂tr̂Tt B̂−1
t

r̂Tt B̂−1
t r̂t

+ δI.

9: end for

as well as the modified dual variable variation

µ̃t = µt − δr̂t = (λt+1 − λt)− δr̂t. (20)

The Hessian approximation B̂t+1 for the next iteration is defined as the
matrix that satisfies the stochastic secant condition µt = B̂−1

t+1r̂t and is
closest to B̂t in the sense of (15). As per Lemma 1 we can then compute
B̂t+1 explicitly as the matrix that satisfies

(B̂−1
t+1 − δI)

−1 =

(
I− r̂tµ̃

T
t

µ̃T
t r̂t

)
B̂t

(
I− µ̃tr̂

T
t

µ̃T
t r̂t

)
+

r̂tr̂
T
t

µ̃T
t r̂t

, (21)

as long as (µt − δr̂t)T r̂t = µ̃T r̂t > 0. Conditions to guarantee that
µ̃T rt > 0 are introduced in Section III. The expression in (21) is used
in the convergence analysis in Section III. For practical implementation
we use the Sherman-Morrison formula in (16) to write the analogous of
(17),

B̂−1
t+1 = B̂−1

t +
µ̃tµ̃

T
t

r̂Tt µ̃t

− B̂−1
t r̂tr̂

T
t B̂
−1
t

r̂Tt B̂
−1
t r̂t

+ δI. (22)

The dual stochastic DFP algorithm is summarized in Algorithm II-B.
The two core steps in each iteration are the dual descent in Step 4 and
the update of the Hessian approximation inverse B̂−1

t in Step 8. Step
2 comprises the observation of L channel samples that are required to
compute the stochastic gradients in steps 3 and 5. The stochastic gradient
ŝ(λt, h̃t) in Step 3 is used in the descent iteration in Step 4 and is
computed using the function in Algorithm II. The stochastic gradient of
Step 3 along with the stochastic gradient ŝ(λt+1, h̃t) of Step 5 are used
to compute the variations in steps 6 and 7 that permit carrying out the
update of the Hessian approximation inverse B̂−1

t in Step 8. Iterations
are initialized at arbitrary nonnegative multiplier λ1 and positive definite
matrix B̂−1

1 with the smallest eigenvalue larger than δ as indicated in
Step 1.

Remark 1 One may think that the natural substitution of the gradient
variation rt = s(λt+1) − s(λt) is the stochastic gradient variation
ŝ(λt+1, h̃t+1) − ŝ(λt, h̃t) instead of the one that we actually use
r̂t = ŝ(λt+1, h̃t) − ŝ(λt, h̃t). This would have the advantage that
ŝ(λt+1, h̃t+1) is the stochastic gradient used to descend in iteration
t+1 whereas ŝ(λt+1, h̃t) is not and is just computed for the purposes of
updating Bt. Therefore, using the variation r̂t = ŝ(λt+1, h̃t)− ŝ(λt, h̃t)
requires twice as many primal maximizations as using the variation
ŝ(λt+1, h̃t+1) − ŝ(λt, h̃t). However, the use of the variation r̂t =
ŝ(λt+1, h̃t) − ŝ(λt, h̃t) is necessary to ensure that (µt − δrt)

T rt =
µ̃T rt > 0. This is necessary for (21) to be true and cannot be guaranteed
if we use the variation ŝ(λt+1, h̃t+1) − ŝ(λt, h̃t). See Lemma (2) for
details.
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III. CONVERGENCE

For the subsequent analysis it is convenient to define the instantaneous
dual function associated with samples h̃ = [h1, . . . ,hL]

ĝ(λ, h̃) =
1

L

L∑
l=1

f0(x(λ)) + λT
[
f(p(hl,λ),hl)− x(λ)

]
, (23)

where x(λ) and p(hl,λ) are primal Lagrangian maximizers defined in
(4). The definition in (23) is so that the dual function g(λ) in (6) can be
written as the expectation of the instantaneous functions ĝ(λ, h̃), i.e.,

g(λ) = E[ĝ(λ,h)]. (24)

Our goal here is to show that as time progresses the dual iterates λt

approach the optimal multiplier λ∗. In proving this result we make the
following assumptions.

Assumption 1 The instantaneous functions ĝ(λ, h̃) are twice differen-
tiable and the eigenvalues of the instantaneous dual Hessian Ĥ(λ, h̃t) =
∇2ĝ(λ,h) are bounded between constants m̃ > 0 and M̃ < ∞ for all
channel realizations h̃,

m̃I � Ĥ(λ, h̃t) � M̃I. (25)

Assumption 2 The second moment of the norm of the stochastic gradi-
ent is bounded for all λ. I.e., there exists a constant Ŝ2 such that for all
dual variables λ it holds

E
[
‖ŝ(λt, h̃t)‖2

]
≤ S2, (26)

Assumption 3 There exists a constant Γ that upper bounds all the
eigenvalues of the inverse Hessian approximation matrix B̂−1

t ,

B̂−1
t � ΓI. (27)

As a consequence of Assumption 1 similar eigenvalue bounds hold for
the (average) dual function g(λ). Indeed, it follows from the linearity of
the expectation operator and the expression in (24) that the dual Hessian
is H(λ) = E[Ĥ(λ, h̃)]. Combining this observation with the bounds in
(25) it follows that there are constants m ≥ m̃ and M ≤ M̃ such that

m̃I � mI � H(λ) �MI � M̃I. (28)

The bounds in (28) are customary in convergence proofs of descent
methods. For the results here the stronger condition spelled in Assump-
tion 1 is needed. The restriction imposed by Assumption 2 is typical
of stochastic descent algorithms, its intent being to limit the random
variation of stochastic gradients. Assumption 3 is valid as long as the
components of the matrices B̂−1

t stay bounded.
According to Lemma 1 the update in (21) is a solution to (15) – with

the substitutions B̂t for Bt and µt = X−1r̂t for the secant condition
µt = X−1rt – as long as the inner product (µt− δr̂t)T r̂t = µ̃T rt > 0
is positive. Our first result is to show that selecting δ < 1/M̃ guarantees
that this inequality is satisfied for all times t.

Lemma 2 Consider the stochastic gradient variation r̂t defined in (19)
and the modified variable variation µ̃t defined in (20). Let Assumption
1 hold and recall the upper bound Mh̃ ≤ M̃ on the largest eigenvalue
of the instantaneous Hessians. Then, for all constants δ < 1/M̃ it holds

µ̃T r̂t = (µt − δr̂t)
T r̂t > 0 (29)

Initializing the curvature approximation matrix B̂−1
1 � δI, which

implies B̂1 � 0, and setting δ < 1/M̃ it follows from Lemma (2) that
the hypotheses of Lemma (1) are satisfied for t = 1. Hence, the matrix
B̂−1

2 computed from (22) is the solution of the semidefinite program in
(15) and as such satisfies B̂−1

2 � δI, which in turn implies B̂2 � 0.
Proceeding recursively we can conclude that B̂t � 0 and B̂−1

t � δI;
i.e., that the minimum eigenvalue of B̂−1

t is at least δ for all times t.
Observe that since the constant M̃ is not known in general we interpret

the hypothesis δ < 1/M̃ as requiring δ to be sufficiently small. Adaptive
selection of δ will be used in practice.

Having matrices B̂−1
t that are strictly positive definite and not

approaching the border of the set of positive semidefinite matrices
leads to the conclusion that if ŝ(λt, h̃t) is a descent direction, the
same holds true of B̂−1

t ŝ(λt, h̃t). The stochastic gradient ŝ(λt, h̃t) is
not a descent direction in general, but we know that its conditional
expectation E[ŝ(λt, h̃t)

∣∣λt] = ∇g(λt) is a descent direction. There-
fore, we conclude that B̂−1

t ŝ(λt, h̃t) is an average descent direction
because E[B̂−1

t ŝ(λt, h̃t)
∣∣λt] = B̂−1

t ∇g(λt). Stochastic optimization
algorithms whose displacements λt+1 − λt are descend directions on
average are expected to approach optimal arguments. This is indeed true
as we claim in the following theorem.

Theorem 1 Consider the stochastic DFP algorithm as defined by (18)-
(22). If assumptions 1-3 hold true the limit infimum of the squared
distance to optimality ‖λ(t)− λ∗‖2 satisfies

lim inf
t→∞

‖λ(t)− λ∗‖2 ≤ εMΓ2S2

2m2δ
, (30)

with probability 1 over realizations of the channel samples {h̃t}∞t=1.

Theorem 1 shows that the dual iterates λt converge to an area near the
optimal vector λ∗ with probability 1. The important observation about
Theorem 1 is that the volume of the area to which λt converges depends
on the step size ε. There is a tradeoff between speed of convergence and
accuracy of convergence. If we decrease ε, we converge to a point closer
to the optimal value λ∗, but the speed of convergence decreases. If we
increase ε we have faster convergence to a point farther away from the
optimal argument λ∗.

IV. SIMULATIONS

The goal of this section is comparing the performance of Stochas-
tic DFP with Stochastic graidents in good-condition and ill-condition
problems. As it was mentioned in section III, the Stochastic gradient’s
convergence rate depends on the condition number of problem, but the
Stochastic DFP’s convergence rate does not depend on the problem
condition number. To explore this fact, we consider a FDMA channel
problem. Consider a central access point (AP) administers tones F and
average power budget P0 to serve J terminals Ti[1 : J ]. The goal is to
develop an algorithm that allocates power and frequency to maximize the
given utility function. At time t AP observes the fading channels vector
hf = [h1f , ..., hJf ]T for all frequencies f ∈ F . Based on the fading
channels vector AP determines the terminal should use channel f and
power it can use for transmission. To formalize the problem we need to
define a vector to show that which node has access to frequency f at each
time. The frequency allocation vector αf (t) = [α1f (t), ..., αJf (t)]T

which aif (t) ∈ {0, 1} determines which terminal can use the frequency
f at time t. Variable αif (t) = 1 if and only if frequency f is allocated
to node i at time t. If αif (t) = 1, the power allocated for such
communication is pif (t). If channel i in communicating with AP at time
t has channel hif (t) and power allocation pif (t), then the delivered
information is log(1 + hif (t)pif (t)/N0). If the amount of information
that AP send to node i on Frequency f , the total amount of information
that node i receives at time t is

∑
f∈F αif (t) log(1+hif (t)pif (t)/N0).

If ci(t) is the units of information that node i accepts for delivery at
time t, then to guaranty delivery of packets it suffices to ensure stability
of information queues by requiring

lim
t→∞

1

t

t∑
u=1

ci(u) = lim
t→∞

1

t

t∑
u=1

[
∑
f∈F

αif (u) log(1 +
hif (u)pif (u)

N0
)]

(31)
Similarly, the amount of power consumed at time t is the sum of power
used on all the frequencies for communication with all terminals, i.e.,∑J

i=1

∑
f∈F αif (u)pif (t). As there is a limitation for the amount of
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Fig. 1. Convergence of Stochastic gradient descent and Stochastic DFP for well
conditioned problem.(L=1 in both algorithms)
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Fig. 2. Convergence of Stochastic gradient descent and Stochastic DFP for ill
conditioned problem.(L=1 in both algorithms)

power that AP can consume, the average amount of power that AP uses
must be less than or equal P0.

P0 = lim
t→∞

1

t
(

t∑
u=1

[

J∑
i=1

∑
f∈F

αif (u)pif (u)]) (32)

If we replace the time of average of variables with their ergodic limit,
then the optimization problem can be represented as following

max
∑
i

log(ci)

s.t. ci = E[
∑
f∈F

αif (h) log(1 +
hifpif (h)

N0
)],

P0 = E[

J∑
i=1

∑
f∈F

αif (h)pif (h)].

(33)

This optimization problem is of the form of Problem 1. Defining the
Lagrangian multipliers λi associated with capacity constraints and µ
with the power constraint, the primal iteration which is the first step
of Stochastic DFP will be

ci(t) = argmax log(ci)− λi(t)ci (34)

pif (t) =
1

L

L∑
l=1

argmax λi(t) log(1 +
hif (t, l)pif

N0
)− µpif (35)

if (t) =
1

L

L∑
l=1

argmax
i

λi(t) log(1 +
hif (t, l)pif (t)

N0
)−µpif (t) (36)

and set aif (t)(t) = 1 and aif (t) = 0 for all other i 6= if (t).
The Stochastic DFP algorithm for optimal resource allocation in an
FDMA broadcast channel is simulated for a system with J = 10 nodes
using 2 frequency tones for communication. We consider two different
cases. In the first scenario the Fading channels are i.i.d. Rayleigh with

average powers 1 for all nodes. In the second case the fading channels
are Rayleigh with the average 1 for the first five nodes and 103 for
the second five nodes which corresponds to nodes that are about 10
times farther away from the access point. We call the first case well
conditioned optimization problem and the second one is an ill conditioned
optimization problem. Noise power is 1 and average power budget is
P0 = 1.

As you can see in the Figure 1, the speed of convergence for stochastic
gradient descent and stochastic DFP are very similar when the condition
number is small. The reason is for both algorithms the largest stepsize that
we can use for small condition number is ε = 0.1. However, it is obvious
in Figure 2 the stochastic DFP has a faster convergence in comparison
with stochastic gradient descent. The reason is by changing the condition
number the largest step size that we can use for the stochastic gradient
descent changes and we should set ε = 0.01 to make sure that the
sequence converges. While for the Stochastic DFP the same stepsize
ε = 0.1 also works for the problem with large condition number.

V. CONCLUSIONS

Optimal resource allocation problems in wireless systems were con-
sidered. A stochastic version of the DFP algorithm was introduced
to find optimal dual variables. The proposed method inherits manage-
able computational complexity from stochastic gradient descent and
reasonable convergence speed from deterministic DFP. Future research
directions include further characterization of convergence properties,
more exhaustive numerical experiments, and stochastic generalizations
of other quasi-Newton methods.
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