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Abstract—A regularized stochastic version of the Broyden-Fletcher-
Goldfarb-Shanno (BFGS) quasi-Newton method is proposed to solve op-
timization problems with stochastic objectives that arise in large scale
machine learning. Stochastic gradient descent is the currently preferred
solution methodology but the number of iterations required to approximate
optimal arguments can be prohibitive in high dimensional problems. BFGS
modifies gradient descent by introducing a Hessian approximation matrix
computed from finite gradient differences. This paper utilizes stochastic
gradient differences and introduces a regularization to ensure that the Hessian
approximation matrix remains well conditioned. The resulting regularized
stochastic BFGS method is shown to converge to optimal arguments almost
surely over realizations of the stochastic gradient sequence. Numerical
experiments showcase reductions in convergence time relative to stochastic
gradient descent algorithms and non-regularized stochastic versions of BFGS.

I. INTRODUCTION

Many problems in machine learning involve minimizing an average
cost written as a sum of individual costs associated with one out of a
large number of data points [1]. E.g., in support vector machines (SVMs)
we are given a training set S = {(θi, yi)}mi=1 containing m pairs (θi, yi)
of feature vectors θi ∈ Rn and their corresponding class yi ∈ {−1, 1}.
The goal is to find a separating hyperplane supported by a vector x such
that xTθi ≷ 0 for points with yi = ±1. Since this hyperplane may not
exist or may not be unique we introduce a loss function l((θ, y);x) and
proceed to select as classifier the hyperplane with supporting vector

x∗ := argmin
λ

2
‖x‖2 +

1

m

m∑
i=1

l((θi, yi);x), (1)

where λ > 0 is a regularization parameter. The vector x∗ in (1)
balances the minimization of the sum of distances to the separating
hyperplane, as measured by the loss function l((θ, y);x), with the
minimization of the L2 norm ‖x‖2 to enforce desirable properties in
x∗ [1]. Common selections for the loss function are the hinge loss
l((θ, y);x) = max(0, 1 − y(xTθ)) and the log loss l((θ, y);x) =
log(1 + exp(−y(xTθ))), e.g. [2].

The focus in recent years has shifted to large scale problems where the
dimension of the vector x as well as the number of training samples m
are very large. In such cases it is convenient to uncover the relationship
with stochastic optimization problems by regarding m as infinite and
invoking the law of large numbers to rewrite (1) as

x∗ := argmin
x

Eθ[f(x,θ)] := argmin
x

F (x). (2)

In (2), we (re-)interpret θ ∈ Θ ⊆ Rn as a random variable taking values
in the convex set Θ according to an unknown probability distribution
mθ(θ). The feature vectors θi in (1) are interpreted as samples of θ and
the loss functions l((θi, yi);x) as instantiations of the random function
f(x,θ). We refer to f(x,θ) as the random or instantaneous functions
and to F (x) := Eθ[f(x,θ)] as the average function. Problems with
the generic form in (2) are also common in optimal resource allocation
problems in wireless systems [3], [4].

Descent algorithms can be used for the minimization of (2) when the
objective function is convex. However, conventional descent methods re-
quire determination of the average gradient ∇xF (x) = Eθ[∇xf(x,θ)],
which is intractable in general. Stochastic gradient descent algorithms
overcome this issue by using unbiased gradient estimates based on
small subsamples of data and are the workhorse methodology used to

Work supported by ARO W911NF-10-1-0388, NSF CAREER CCF-0952867,
and ONR N00014-12-1-0997. The authors are with the Dept. of Electrical and
Systems Eng., University of Pennsylvania, 200 S 33rd Street, Philadelphia, PA
19104. Email: {aryanm, aribeiro}@seas.upenn.edu.

solve large-scale machine learning problems [2], [5], [6]. Useful though
they are, gradient descent methods take a large number of iterations to
converge. This problem is most acute when the variable dimension n
is large as the condition number tends to increase with n. Developing
stochastic Newton algorithms is not always possible because unbiased
estimates of Newton steps are not easy to compute. Recourse to quasi-
Newton methods then arises as a natural alternative. Indeed, quasi-
Newton methods achieve superlinear convergence rates in deterministic
settings while relying on gradients to compute curvature estimates [7],
[8]. Since unbiased gradient estimates are computable at manageable cost,
stochastic generalizations of quasi-Newton methods are realizable and
expected to retain the convergence rate advantages of their deterministic
counterparts [3], [9]. This expectation has been confirmed in numerical
experiments for quadratic objectives [9].

The contribution of this paper is to develop a stochastic regularized
version of the Broyden-Fletcher-Goldfarb-Shanno (BFGS) quasi-Newton
method to solve (2). In BFGS the Hessian is approximated by a positive
definite matrix that tracks the curvature of the last two iterates while
being closest to the previous matrix in terms of differential entropy. It
is well known that this approximation approaches a positive semidefinite
matrix as the iteration index grows, but this is not a problem because
the null eigenvector is perpendicular to the descent direction. In a
stochastic setting, however, noise along the null eigenvector direction,
which corresponds to an infinite in the inverse Hessian, is amplified by
an arbitrary factor and results in a non convergent algorithm – see Section
IV. Our regularization consists of modifying the differential entropy
condition so that the approximant is a matrix with eigenvalues larger than
a given lower bound. We show that this regularization guarantees almost
sure convergence to the optimal argument x∗ when the functions f(x,θ)
are strongly convex (Section III). Numerical experiments illustrate the
improvement in convergence time relative to stochastic gradient descent
algorithms and non-regularized stochastic versions of BFGS (Section IV).

II. PROBLEM FORMULATION

Throughout the paper we assume that the functions f(x,θ) are
strongly convex. As a consequence, the objective function F (x) in (2)
is strongly convex and gradient descent algorithms can be used to find
the optimal argument x∗. To do so we need to compute gradients of the
stochastic function F (x) which according to (2) are given by

s(x) := ∇xF (x) = Eθ[∇xf(x,θ)]. (3)

Since there are infinitely many functions f(x, θ), exact evaluation of s(x)
is not possible unless there is a closed form expression available for the
expectation in (3). In practice, the number of functions is finite but very
large and gradient computations are possible but impractical. Whether
impossible or impractical we can avoid this problem by using stochastic
gradients in lieu of actual gradients. For a given sample of L random
variables θ̃ := [θ1; ...;θL] drawn independently from the distribution of
θ we define the stochastic gradient at x given θ̃ as

ŝ(x, θ̃) :=
1

L

L∑
l=1

∇xf(x,θl). (4)

To compute the stochastic gradient ŝ(x, θ̃) we find the gradient of the
random function f(x,θ) for each θl component of θ̃ and compute their
average at manageable computational cost. Introducing now a time index
t, an initial iterate x1, and a step size sequence εt the stochastic gradient
descent algorithm is defined by the iteration

xt+1 = xt − εtŝ(xt, θ̃t). (5)
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Given that Eθ̃[ŝ(x, θ̃)] = s(x), the stochastic gradient ŝ(x, θ̃) in (4)
is an unbiased estimate of the (average) gradient s(x) in (3). Thus, the
iteration in (5) is such that, on average, iterates descend along a negative
gradient direction. It is thus not surprising to learn that selecting the step
size sequence to be nonsummable but square summable, i.e.,

∞∑
t=1

εt =∞, and
∞∑
t=1

ε2t <∞, (6)

iterates xt generated by (5) converge towards the optimal argument x∗

if subsequent samples θ̃ are drawn independently. Selecting step sizes
for which (6) holds is not difficult. A customary choice is to make εt =
ε0τ/(τ + t), for given parameters ε0 and τ that control the initial step
size and its speed of decrease, respectively.

Convergence notwithstanding, the number of iterations required to
approximate x∗ can be prohibitive if the condition number of F (x) is
large as is common in large dimensional problems. To reduce the number
of iterations required by (5) we resort to quasi-Newton methods whereby
gradient descent directions are premultiplied by a matrix B−1

t ,

xt+1 = xt − εtB−1
t s(xt). (7)

The idea is to select matrices Bt close to the Hessian H(xt) :=
∇2F (xt) of the objective function. While various methods are known to
select matrices Bt – see e.g., [7], [8] – those used in BFGS have been
observed to work best in prior literature [7].

In BFGS the function’s curvature is approximated by a finite difference.
Specifically, define the variable and gradient variations at time t as

yt := xt+1 − xt, rt := s(xt+1)− s(xt), (8)

respectively. We select the matrix Bt+1 to be used in the next time
step so that it satisfies the secant condition Bt+1yt = rt. The rationale
for this selection is that the Hessian H(xt) satisfies this condition for
vanishing yt, i.e., for xt+1 tending to xt. Since there are many matrices
that satisfy the secant condition Bt+1yt = rt we further notice that it
is reasonable to expect the Hessians H(xt+1) and H(xt) to be close
to each other and therefore select Bt+1 as the closest matrix to the
previous Hessian approximation Bt among all those that satisfy the
secant condition Bt+1yt = rt. Closeness between Bt and Bt+1 is
specified in terms of the differential entropy between random variables
with zero-mean Gaussian distributions N (0,Bt) and N (0,Z) having
covariance matrices Bt and Z. Hence, the matrix Bt+1 is defined as the
solution of the semidefinite program

Bt+1 = argmin tr(B−1
t Z)− log det(B−1

t Z)− n,
s. t. Zyt = rt, Z � 0. (9)

It is not difficult to see that for convex functions the solution of (9) is
positive definite when Bt is. It then follows that Bt � 0 is positive
definite for all iterations t as long as the initial matrix B1 � 0 is
positive definite [8]. However, it is possible for the smallest eigenvalue
of Bt to become arbitrarily close to zero which means that the largest
eigenvalue of B−1

t becomes very large. This has been proven not to be
an issue in BFGS implementations but is a more significant challenge
in the stochastic version proposed here motivating the regularization that
we introduce in the following section.

A. Regularized BFGS

The most important property of Hessian approximations in quasi-
Newton methods is satisfaction of the secant condition. Therefore, we
introduce a regularization of (9) that keeps the constraint Zyt = rt but
ensures the smallest eigenvalue of the solution Bt+1 is larger than a
positive constant δ,

Bt+1 = argmin tr[B−1
t (Z−δI)]−log det[B−1

t (Z−δI)]−n,
s. t. Zyt = rt, Z � 0. (10)

Since the negative logarithm determinant − log det[B−1
t (Z − δI)] di-

verges as the smallest eigenvalue of Z approaches δ, the smallest
eigenvalue of the Hessian approximation matrices Bt+1 computed as
solutions of (10) exceed the lower bound δ. Subsequently, the largest
eigenvalue of B−1

t+1 is bounded above by 1/δ thereby limiting the effect
of the noise inherent to the stochastic gradient. In the following lemma
we show that the regularized approximations in (10) can be computed
by an explicit formula1.

Lemma 1 Consider the semidefinite program in (10) where the matrix
B−1
t � 0 is positive definite and the inner product (rt − δyt)Tyt > 0.

Then, the solution Bt+1 of (10) satisfies

Bt+1 = Bt +
r̃tr̃

T
t

yTt r̃t
− Btyty

T
t Bt

yTt Btyt
+ δI, (11)

where r̃t := rt − δyt is the corrected gradient variation.

When δ = 0 the update in (11) coincides with standard nonregularized
BFGS [7], [8]. Therefore, the differences between BFGS and regularized
BFGS are the replacement of the gradient variation rt in (8) by the
corrected variation r̃t := rt − δyt and the addition of the regularization
term δI. We use (11) in the construction of the stochastic BFGS algorithm
in the following section.

B. Stochastic BFGS

As can be seen from (11) the regularized BFGS curvature estimate
Bt+1 is obtained as a function of previous estimates Bt, the iterates xt
and xt+1, and corresponding gradients s(xt) and s(xt+1). We can then
think of a method in which gradients s(xt) are replaced by stochastic
gradients ŝ(xt, θ̃t) in both the curvature approximation update in (11)
and the descent iteration in (7). These substitutions lead to the stochastic
BFGS algorithm that we introduce in the following.

Start at time t with current iterate xt and let B̂t stand for the Hessian
approximation computed by stochastic BFGS in the previous iteration.
Obtain a batch of channel samples θ̃t = [θt,1; ...;θt,L] and for each of
the θt,l samples determine the values of the stochastic gradient ŝ(xt, θ̃t)
as per (4). Add ΓI to the Hessian inverse approximation B̂−1

t to guarantee
positive definiteness of pre-multiplier of stochastic gradient. Descend then
along the direction (B̂−1

t + ΓI)ŝ(xt, θ̃t) moderated by the stepsize εt

xt+1 = xt − εt(B̂−1
t + ΓI)ŝ(xt, θ̃t). (12)

For the iteration of xt+1 compute the stochastic gradient ŝ(xt+1, θ̃t)
associated with the same set of radnom variable samples θ̃t used to
compute the stochastic gradient ŝ(xt, θ̃t). Define then stochastic gradient
variation at time t as

r̂t := ŝ(xt+1, θ̃t)− ŝ(xt, θ̃t), (13)

as well as the variable variation

yt := xt+1 − xt. (14)

Now based on the idea of regularized BFGS, we define the modified
stochastic gradient variation as

r̃t := r̂t − δyt. (15)

The Hessian approximation B̂t+1 for the next iteration is defined as the
matrix that satisfies the stochastic secant condition B̂t+1yt = r̂t and
is closest to B̂t in the sense of (10). As per Lemma 1, when (r̂t −
δyt)

Tyt = r̃Tyt > 0 we can compute B̂t+1 explicitly as the matrix

B̂t+1 = B̂t +
r̃tr̃

T
t

yTt r̃t
− B̂tyty

T
t B̂t

yTt B̂tyt
+ δI. (16)

Conditions to guarantee that r̃Tt yt > 0 are introduced in Section III.

1Proofs are available in [10]
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Algorithm 1 Stochastic BFGS

Require: Variable x1. Hessian approximation B̂1 � δI.
1: for t = 1, 2, . . . do
2: Acquire L independent channel samples θ̃t = [θt,1, . . . ,θt,L]

3: Compute ŝ(xt, θ̃t) =
1

L

L∑
l=1

∇xf(xt,θt,l) [cf. (4)].

4: Descend along direction (B̂−1
t + ΓI) ŝ(xt, θ̃t) [cf. (12)]

xt+1 = xt − εt(B̂−1
t + ΓI) ŝ(xt, θ̃t).

5: Compute ŝ(xt+1, θ̃t) =
1

L

L∑
l=1

∇xf(xt+1,θt,l) [cf. (4)].

6: Compute variable variation yt = xt+1 − xt [cf. (14)].
7: Compute modified stochastic gradient variation [cf. (15)]

r̃t = ŝ(xt+1, θ̃t)− ŝ(xt, θ̃t)− δyt

8: Update approximation of Hessian [cf. (16)]

B̂t+1 = B̂t +
r̃tr̃Tt
yTt r̃t

−
B̂tytyTt B̂t

yTt B̂tyt
+ δI.

9: end for

The stochastic BFGS algorithm is summarized in Algorithm 1. Step
2 comprises the observation of L channel samples that are required
to compute the stochastic gradients in steps 3 and 5. The stochastic
gradient ŝ(xt, θ̃t) in Step 3 is used in the descent iteration in Step 4.
The stochastic gradient of Step 3 and the stochastic gradient ŝ(xt+1, θ̃t)
of Step 5 are used to compute the variations in steps 6 and 7 that
permit carrying out the update of the Hessian approximation B̂t in Step
8. Iterations are initialized at arbitrary variable x1 and positive definite
matrix B̂1 with the smallest eigenvalue larger than δ.

Remark 1 One may think that the natural substitution of the gradient
variation rt = s(xt+1) − s(xt) is the stochastic gradient variation
ŝ(xt+1, θ̃t+1) − ŝ(xt, θ̃t) instead of the one that we actually use
r̂t = ŝ(xt+1, θ̃t) − ŝ(xt, θ̃t). This would have the advantage that
ŝ(xt+1, θ̃t+1) is the stochastic gradient used to descend in iteration t+1
whereas ŝ(xt+1, θ̃t) is not and is just computed for the purposes of
updating Bt. Therefore, using the variation r̂t = ŝ(xt+1, θ̃t)− ŝ(xt, θ̃t)
requires twice as many stochastic gradient computations as using the
variation ŝ(xt+1, θ̃t+1) − ŝ(xt, θ̃t). However, the use of the variation
r̂t = ŝ(xt+1, θ̃t)− ŝ(xt, θ̃t) is necessary to ensure that (r̂t−δyt)Tyt =
r̃Tt yt > 0. This is necessary for (16) to be true and cannot be guaranteed
if we use the variation ŝ(xt+1, θ̃t+1) − ŝ(xt, θ̃t) – see Lemma (2) for
details. The same observation holds true for the nonregularized version
of stochastic BFGS introduced in [9].

III. CONVERGENCE

For the subsequent analysis it is convenient to define the instantaneous
objective function associated with samples θ̃ = [θ1, . . . ,θL]

f̂(x, θ̃) :=
1

L

L∑
l=1

f(x,θl). (17)

The definition of the instantaneous objective function f̂(x, θ̃) in associ-
ation with the fact that F (x) := Eθ[f(x,θ)] implies

F (x) = Eθ[f̂(x, θ̃)]. (18)

Our goal is to show as time progresses the sequence of xt approaches the
optimal value x∗. To prove this result we make following assumptions.

Assumption 1 The instantaneous functions f̂(x, θ̃) are twice differen-
tiable and the eigenvalues of the instantaneous Hessian Ĥ(x, θ̃) =
∇2

xf̂(x, θ̃) are bounded between constants m̃ > 0 and M̃ < ∞ for
all random variables θ̃,

m̃I � Ĥ(x, θ̃) � M̃I. (19)

The lower bound comes from the fact that we have assumed the random
functions f̂(x, θ̃) are strongly convex. Having the upper bound for the
eigenvalues of the instantaneous Hessian Ĥ(x, θ̃) is equivalent to saying
that each gradient ŝ(x, θ̃) is Lipschitz-countinuous with constant M̃ .

Assumption 2 The second moment of the norm of the stochastic gradi-
ent is bounded for all x. i.e., there exists a constant S2 such that for all
variables x it holds

E
[
‖ŝ(xt, θ̃t)‖2

]
≤ S2, (20)

As a consequence of Assumption 1 similar eigenvalue bounds hold
for the function F (x). It follows from the linearity of the expectation
operator and the expression in (18) that the Hessian is ∇2

xF (x) =
H(x) = E[Ĥ(x, θ̃)]. Combining this observation with the bounds in
(19) implies that there are constants m ≥ m̃ and M ≤ M̃ such that

m̃I � mI � H(x) �MI � M̃I. (21)

The bounds in (21) are customary in convergence proofs of descent
methods. For the results here the stronger condition spelled in Assump-
tion 1 is needed. The restriction imposed by Assumption 2 is typical
of stochastic descent algorithms, its intent being to limit the random
variation of stochastic gradients.

According to Lemma 1 the update in (16) is a solution to (10) –
with the substitutions B̂t for Bt and Zyt = r̂t for the secant condition
Zyt = rt – as long as the inner product (r̂t − δyt)Tyt = r̃Tt yt > 0 is
positive. Our first result is to show that selecting δ < m̃ guarantees that
this inequality is satisfied for all times t.

Lemma 2 Consider the modified stochastic gradient variation r̃t defined
in (15) and the variable variation yt defined in (14). Let Assumption 1
hold and recall the lower bound m̃ on the smallest eigenvalue of the
instantaneous Hessians. Then, for all constants δ < m̃ it holds

r̃Tt yt = (r̂t − δyt)Tyt > 0. (22)

Initializing the curvature approximation matrix B̂1 � δI, which
implies B̂−1

1 � 0, and setting δ < m̃ it follows from Lemma (2) the
hypotheses of Lemma (1) are satisfied for t = 1. Hence, the matrix B̂2

computed from (16) is the solution of the semidefinite program in (10)
and satisfies B̂2 � δI, which in turn implies B̂−1

2 � 0. Proceeding
recursively we can conclude that B̂−1

t � 0 and B̂t � δI; i.e., that the
minimum eigenvalue of B̂t is at least δ for all times t. Equivalently we
can conclude that 1/δI � B̂−1

t which implies the largest eigenvalue of
B̂−1
t is at most 1/δ for all times t. Observe that since the constant m̃ is

not known in general we interpret the hypothesis δ < m̃ as requiring δ
to be suffieciently small. Adaptive selection of δ will be used in practice.

Having matrices B̂−1
t that are strictly positive definite and the eigen-

value are bounded by constant 1/δ leads to the conclusion that if
ŝ(xt, θ̃t) is a descent direction, the same holds true of B̂−1

t ŝ(xt, θ̃t).
The stochastic gradient ŝ(xt, θ̃t) is not a descent direction in general, but
we know that its conditional expectation E[ŝ(xt, θ̃t)

∣∣xt] = ∇xF (xt) is
a descent direction. Therefore, we conclude that B̂−1

t ŝ(xt, θ̃t) is an av-
erage descent direction because E[B̂−1

t ŝ(xt, θ̃t)
∣∣xt] = B̂−1

t ∇xF (xt).
Stochastic optimization algorithms whose displacements xt+1 − xt are
descent directions on average are expected to approach optimal argu-
ments. This is indeed true as we claim in the following theorem.

Theorem 1 Consider the stochastic BFGS algorithm as defined by (12)-
(16). If assumptions 1 and 2 hold true and the sequence of step sizes
satisfies conditions (6), then the limit infimum of the squared Euclidean
distance to optimality ‖xt − x∗‖2 satisfies

lim inft→∞‖xt − x∗‖2 = 0 (23)

with probability 1 over realizations of the random samples {θ̃t}∞t=1.

Theorem 1 shows the infimum of the squared distance between iterates
xt and the optimal vector x∗ converges to zero almost surely. The
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Fig. 1. Convergence of stochastic gradient descent, non-regularized stochastic
BFGS, and regularized stochastic BFGS for the function in (24). For both versions
of stochastic BFGS the number of iterations required to achieve a certain accuracy
is smaller than the corresponding number for stochastic gradient descent. Further
note the role of the regularization in providing more stability to stochastic BFGS.
Condition number 10ξ = 102, step-size parameters ε0 = 10−2 and τ = 103.

limit infimum convergence means there is a subsequence of iterates xtj
converges to the optimal vector x∗, rather than the whole sequence.

IV. SIMULATIONS

The goal of this section is to compare the convergence times of
stochastic BFGS and stochastic gradient descent in problems with small
and large condition numbers as well as to illustrate the advantage of
regularizing stochastic BFGS. To explore these facts, we consider an
optimization problem with a stochastic quadratic objective function. Let
Θ = [−θ0, θ0]n for some θ0 < 1 and θ be uniformly drawn from Θ.
Further consider given positive definite diagonal matrix A ∈ S++

n and
vector b ∈ Rn and define the quadratic stochastic function

Eθ [f(x, θ)] := Eθ
[

1

2
xT (A + Adiag(θ))x + bTx

]
. (24)

The elements of b are fixed but chosen uniformly at random from [0, 1]
in different experiments. The elements Aii of A are likewise fixed but
chosen unfitly at random from the set {1, 10−1, . . . , 10−ξ} so that the
condition number is 10ξ. In the well conditioned problem we select ξ = 0
and in the ill conditioned problem ξ = 2. For the objective in (24) the
average function can be computed in closed form as (1/2)xTAx+bTx
which permits determination of x∗ for comparison against xt. Algorithm
1 is implemented for the function in (24) with θ0 = 0.5 and n = 10.

A representative run of stochastic gradient descent, non-regularized
stochastic BFGS – corresponding to δ = 0 in Algorithm 1 – and
regularized stochastic BFGS with δ = 10−2 when ξ = 2 is shown
in Fig. 1. Convergence for both versions of stochastic BFGS is faster
than stochastic gradient descent. It takes gradient descent 4.8 × 102

iterations to reach a distance to optimality of 10−1 but 2.1×102 iterations
for stochastic BFGS. This difference can be made arbitrarily large by
modifying the condition number of A. Further note the role of the
regularization in providing more stability to stochastic BFGS.

A more comprehensive analysis of the relative advantages of BFGS
appears in Figs. 2 and 3. Fig. 2 shows the histogram of the number of
iterations needed to achieve distance ‖xt − x∗‖ ≤ 10−1 for stochastic
BFGS and stochastic gradient descent when ξ = 0. The step-size
parameters are τ = 103 and ε0 = 10−1. As we can see in Fig. 2,
the speed of convergence for stochastic BFGS is better than stochastic
gradient descent, but the number of iterations required for convergence
is of the same order of magnitude. Fig. 3 shows the number of iterations
needed to achieve distance ‖xt − x∗‖ ≤ 10−1 for stochastic BFGS and
stochastic gradient descent when ξ = 2. The step-size parameters are
τ = 103 and ε0 = 10−2 for both algorithms in this case. Fig. 3 shows
that stochastic BFGS reduces the convergence time of stochastic gradient
descent by an order of magnitude. It takes gradient descent an average
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Fig. 2. Convergence of stochastic gradient descent and regularized stochastic
BFGS for a well conditioned problem. Convergence for stochastic BFGS is
better than stochastic gradient descent, but the number of iterations required for
convergence is of the same order of magnitude. Condition number 10ξ = 100,
regularization parameter δ = 10−2, batch size L = 5, step-size parameters ε0 =
10−1 and τ = 103, number of samples = 103, and accuracy ‖xt−x∗‖ ≤ 10−1.
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Fig. 3. Convergence of stochastic gradient descent and regularized stochastic
BFGS for an ill conditioned problem. Stochastic BFGS reduces the convergence
time of stochastic gradient descent by an order of magnitude. Condition number
10ξ = 102, regularization parameter δ = 10−2, batch size L = 5, step-size
parameters ε0 = 10−2 and τ = 103, number of samples = 103, and accuracy
‖xt − x∗‖ ≤ 10−1.

of 6× 103 iterations to reach a distance to optimality of 10−1 whereas
stochastic BFGS achieves the same in an average of 4× 102 iterations.
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