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Abstract— We study a dynamic game in which a group of
players attempt to coordinate on a desired, but only partially
known, outcome. The desired outcome is represented by an un-
known state of the world. Agents’ stage payoffs are represented
by a quadratic utility function that captures the kind of trade-
off exemplified by the Keynesian beauty contest: each agent’s
stage payoff is decreasing in the distance between her action and
the unknown state; it is also decreasing in the distance between
her action and the average action taken by other agents. The
agents thus have the incentive to correctly estimate the state
while trying to coordinate with and learn from others. We show
that myopic, but Bayesian, agents who repeatedly play this
game and observe the actions of their neighbors in a connected
network eventually succeed in coordinating on a single action.
However, as we show through an example, the consensus action
is not necessarily optimal given all the available information.

I. INTRODUCTION

Consider a group of agents that wish to coordinate on a
desired outcome that is not fully known to any one of them.
Agents choose actions which are close to what they consider to
be the desired outcome; but they also need to coordinate with
other agents by choosing actions that are similar to what they
expect others to choose. There is a trade-off between acting
according to one’s best estimate of the desired outcome and
trying to coordinate with other agents. Such trade-offs are im-
portant in trade decision in financial markets [1], consumption
decisions [2], and in problems in cooperative robotics [3] or
organizational coordination [4]. The decisions of traders in
stock market, for example, depend on their beliefs about the
fundamental stock values. Nonetheless, traders also tend to
consider how other traders will behave as their decisions could
directly affect the gains from trade. When choosing between
substitute products that exhibit network externality, consumers
tend to consider the products that are expected to be chosen by
other consumers, in addition to the alternatives with the highest
perceived quality. In a case of cooperative robotic movement,
the robots’ goal is to rendezvous at a point whose location is
known to the robots only through noisy private observations
while also maintaining the initial formation. In all of these
examples, agents make decisions by attempting to second-guess
the decisions of others while also guessing the value of an
unknown (stock value, product quality, or the location of a goal).
The other complicating factor is that oftentimes agents can only
communicate with a handful of other agents, while at the same
time, trying to coordinate with and learn from everybody else.

We use the framework of dynamic games of incomplete
information to model the agents’ coordination problem. Agents
play a game with payoffs that have two components: an estima-
tion term and a coordination term. The estimation term serves
to capture the agents’ desire to make decisions that are optimal
given their private information about an unknown parameter.
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The coordination term captures the payoffs agents receive by
taking actions that are close to the average action taken by the
rest of the population. The game is played over multiple stages.
At each stage of the game, agents observe the previous choices
made by a subset of other agents, called their neighbors. For
an individual the neighbors represent other individuals in her
social clique, whereas for a mobile robot the neighbors are
other robots in its proximity. An agent’s action may reveal some
information to her neighbors that was previously unknown to
them. The neighbors can use this information to reevaluate their
beliefs about the underlying parameter and their predictions
of others’ future behavior. These reevaluations may, in turn,
lead agents to revise their actions over time.

Given this dynamic environment, different behavioral assump-
tions lead to different outcomes. In particular, the way agents
revise their views in face of new information and the actions
they choose given these views determine the long-run outcome
of the game. In this paper, we assume that agents are Bayesian
and myopic. Bayesian agents use Bayes’ rule to incorporate
new observations in their beliefs. Myopic agents choose actions
at each stage of the game which maximize their stage payoffs,
without regard for the effect of these actions on their future
payoffs. The assumption on myopic agent behavior simplifies
the analysis significantly and results in an essentially unique
equilibrium—which is unlikely with forward-looking agents.1
We use this behavioral assumption to define an equilibrium,
and prove formal results regarding the agents’ asymptotic
equilibrium behavior, assuming a quadratic utility function.

Our analysis yields several interesting results. First, we
show that an equilibrium exists and that it is unique up to sets
of measure zero. Second, we show that the agents’ actions
asymptotically converge for almost all realizations of the game.
Furthermore, given a connected observation network, agents’
actions converge to the same value. In other words, agents
eventually coordinate on the same action. We also show that the
agents reach consensus in their best estimates of the underlying
parameter. These results suggest that in a coordination game—
where the agents’ interests are aligned—repeated interactions
between agents who are selfish and myopic could eventually
lead them to coordinate on the same outcome. However, as
we show through an example, the agents do not necessarily
coordinate on the action which is optimal given the information
dispersed among them. The results extend our previous work
in [7] and [8] on consensus in beauty contest games, and
complement our work in [9] wherein we present a tractable and
decentralized algorithm for computing the equilibrium actions.

This paper is related to two major lines of research in game
theory. The first one is on learning in games. This literature

1A series of results in game theory, all of them known by the name
“folk theorem”, establishes that in games played by sufficiently patient
forward-looking agents, any individually rational payoff can be obtained as
an equilibrium payoff. We are not aware of any such theorem that directly
applies to our model. However, based on the results proved in the literature,
a unique equilibrium is unlikely to obtain in our setting if the agents are
forward-looking. For two examples of a folk theorem, a classic result and
a more recent result proved for games played on networks, see [5], [6].
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goes back to the seminal work of Aumann and Maschler [10].
Other works in the same spirit include [11]–[15]. The central
question in this literature is whether and how agents can learn
to play a Nash (or Bayesian Nash) equilibrium. In the current
work, in contrast, we assume that the agents always behave
as prescribed by an equilibrium. Said differently, agents in
our model learn in equilibrium rather than learning about
the equilibrium. Our work is also related to the literature on
social learning and distributed estimation where a canonical
model consists of a set of agents connected via a network and
exchanging their estimates of an unknown state. The focus
of the social learning literature is on modeling the way agents
use their observations to update their beliefs (or estimates) and
characterizing the outcomes of the learning process. There are
two distinct families of social learning models: In Bayesian
models, sophisticated agents incorporate the information about
the unknown parameter using Bayes’ rule and discard the
redundant information [16]–[18]. The focus in this family of
models is on asymptotic outcomes. In non-Bayesian models,
a heuristic update rule is employed by naı̈ve agents [19]–[22].
These simple rules make a more complete characterization of
the learning process possible, but they are also often harder to
motivate. In this paper, we extend the Bayesian social learning
framework to an environment with payoff externalities, i.e.,
one where an agent’s stage payoff is a function of other agents’
actions, in addition to the realization of an unknown parameter.

II. THE MODEL

A. Agents and payoffs
Consider n agents indexed by i ∈ {1, . . . , n} who repeatedly

play a game with uncertain payoffs. The payoff relevant
uncertainty is captured by a common unknown parameter θ (also
known as the state of the world) that takes values in Θ = R. De-
spite having incomplete information about θ, agents start with
a common prior belief about the unknown parameter, denoted
by P. We make the following technical assumption about P.

Assumption 1: θ is square integrable with respect to P, i.e.,∫
Θ

θ2dP(θ) <∞.

The game is played over a countable number of time periods
that are indexed by the positive integers. At every stage of the
game, each agent privately observes a signal, takes an action
simultaneously with other agents, and receives a payoff. We
use sit ∈ Si to denote the private signal observed by agent i
at time t, where Si is a complete separable metric space. We
also let st = (s1t, . . . , snt) ∈ S = ×ni=1Si denote the signal
profile observed by agents at time t. The action taken by
agent i at time t is denoted by ait ∈ Ai = R. Finally, we use
ui(at, θ) to denote the payoff received by agent i at time period
t when the action profile at = (a1t, . . . , ant) ∈ A = Rn is
chosen and the realized parameter is θ.

B. Information structure
The space of plays is the measurable set Ω = Θ× (S×A)N

with the generic element ω called the path of play.
The set of all possible histories at time t is defined as
Ht = Θ× St−1 ×At−1 with the generic element denoted by
ht. The history ht is a complete description of the realization
of the unknown parameter θ in addition to the signals observed
by the agents and actions taken by them up to time period t.

Agents’ private signals are functions of the realized state as
well as the actions previously taken by the agents. Given the

history ht ∈ Ht, signal profile st is generated according to
some probability distribution πt(ht)[·] over S. More formally,
the signaling function πt is a transition probability from Ht

to S that maps histories to probability distributions over S.
Agents do not observe the realized state; neither do they

observe the realized histories. Rather, at time t, agent i’s
information is limited to the private observations she has made
so far. The information available to agent i at time t is denoted
by hit = (si1, . . . , sit−1) and called the time t private history
of agent i.2 We let Hit = St−1

i denote the set of all possible
time t private histories for agent i and let Hi = ∪∞t=1Hit.

The information content of histories can be expressed as
σ-algebras over the measurable space (Ω,F), where F is
the Borel σ-algebra. The time t history ht as well as the
time t private histories hit are uniquely determined given the
path of play ω. In other words, ht and hit are Ht-valued and
Hit-valued random variables, respectively. We can therefore
define Ht and Hit to be the σ-algebra of subsets of Ω
generated by ht and hit, respectively. Likewise, we can define
Hi∞ to be the σ-algebra generated by the union of Hit over
all t. It represents agent i’s information at the end of the game.

Although previous action profiles might remain unknown to
every agent, we assume that each agent observes the previous
actions chosen by a subset of the population. The observability
of agents’ actions is captured by the observation network
G ∈ {0, 1}n×n, where Gij = 1 if and only if i can observe
the actions previously taken by j. We impose the following
restrictions on the observation network.

Assumption 2:
1) Gii = 1 for all i.
2) Gij = Gji for all i, j.
3) The network G is connected.

We let Ni = {j : Gij = 1} denote the set of neighbors of agent
i in the observation network whose actions she can observe.
ajt−1 is measurable with respect to Hit for all i and j ∈ Ni.

C. Strategies
Each agent’s actions at any given time period can only

depend on the information available to her at that time period.
A strategy is a function that captures this dependence. More
formally, a pure behavior strategy for agent i is a function
σi : Hi → Ai. This is a complete contingency plan determining
the action to be taken by agent i at all time periods and
given any private history. Similarly, the behavior of the
agents is completely characterized by the strategy profile σ =
(σ1, . . . , σn), where σi is the strategy of agent i. We also use
σ(ht) to mean (σ1(h1t), . . . , σn(hnt)), where hit is the private
history observed by agent i up to time t when the time t history
is given by ht. Given a strategy profile σ, the action chosen by
agent i at time t is given by ait = σi(hit). This is a random
variable over (Ω,F) which is measurable with respect to Hit.

Fixing a strategy profile for the agents rules out the
possibility of observing certain histories that are off the path
of play. Given σ and for t ≥ 1, the history ht+1 = (ht, st, at)
is said to be on the path of play if ht is on the path of play,
st is in the support of πt(ht), and at = σ(ht). The history
h1 = (θ) is on the path of play if θ is in the support of P.

Any strategy profile, together with the agents’ common
prior and the signaling functions, induces a probability
distribution over the measurable space (Ht,Ht) for any t ∈ N.

2Throughout, we use the convention that hi1 = ∅ and that a function with
domain ∅ is a constant.
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We use Ptσ to denote this induced probability distribution
defined as follows: For all ht+1 off the path of play let
dPt+1σ(ht+1) = 0; for ht+1 = (ht, st, at) on the path of
play, on the other hand, define Pt+1σ recursively as

dPt+1σ(ht+1) = dPtσ(ht)dπt(ht)[st],

with
dP1σ(h1) = dP1σ(θ) = dP(θ).

Since the sequence of probability measures {Ptσ}t∈N is
consistent, by Kolmogorov’s extension theorem, there exists
a probability measure Pσ on (Ω,F) whose marginal on
(Ht,Ht) agrees with Ptσ . Finally, we use Eσ to denote the
expectation operator corresponding to Pσ .

D. Equilibrium
So far, we have not constrained the behavior of the agents

in any way. As mentioned in the introduction, however, we
assume that agents behave selfishly and myopically optimal.
To make this restriction precise, we first need to define the
agents’ expected utilities given a strategy profile. Given that
other agents follow strategy profile σ and the agents’ beliefs
are induced by σ, the expected utility to agent i at time t of
following strategy σ̃i is any random variable satisfying

Uit(σ̃i;σ) = Eσ [ui(σ̃i(hit), σ−i(h−it), θ)|Hit] ,

where ht and θ are understood to be random variables over
(Ω,F).

Definition 1: Strategy profile σ∗ is a myopic weak
perfect Bayesian equilibrium if for all i and t the random
equilibrium action σ∗i (hit) is Pσ∗ -square integrable and with
Pσ∗ -probability one,

Uit(σ
∗
i ;σ∗) ≥ Uit(σi;σ∗), (1)

for any strategy σi.
The square integrability of equilibrium actions is a technical

condition that is imposed to rule out the equilibria where each
agent’s expected payoff is −∞ regardless of her own strategy.

Agents who play according to a myopic Bayesian equilibrium
are selfish in that they choose actions that maximize their own
expected utilities. They are myopic in that they do not account
for the effect of their current actions on their future payoffs.
An alternative equilibrium notion is obtained by assuming that
agents choose actions that maximize the average (or discounted
sum) of their payoffs over their lifetime. However, imposing
this requirement will significantly complicate the calculations
agents need to perform in order to find their optimal actions.

E. Quadratic coordination games
We restrict our attention to a model for agents’ payoffs that is

presented in [23] and induces strategic behavior in the spirit of
the “beauty contest” example in Keynes’s General Theory [24].

Assumption 3: Agents’ stage payoffs have the following
form

ui(at, θ) = −(1− λ)(ait − θ)2 − λ(ait − āit)2, (2)

where λ ∈ (0, 1) is a constant and

āit =
1

n− 1

∑
j 6=i

ajt.

The first term in the payoff is a standard quadratic loss in
the distance between the realized parameter and agent’s action,
whereas the second term is the beauty contest term that

measures the distance between the action of agent i and the
average action taken by the rest of the population.

Given an equilibrium σ∗, the action profiles a∗t = σ∗(ht)
prescribed by the equilibrium maximize the agents’ payoffs
over the path of play, that is,

Eσ∗
[
ui(a

∗
it, a

∗
−it, θ)|Hit

]
≥ Eσ∗

[
ui(ait, a

∗
−it, θ)|Hit

]
,

for all i and any other Hit-measurable random variable ait.
When agents play the quadratic coordination game with payoffs
as in (1) and Assumption 1 is satisfied, in particular, the equi-
librium is characterized by the following first-order condition

∂

∂ait
Eσ∗ [ui(ait, a

∗
−it, θ)|Hit]

∣∣∣
ait=a∗it

= 0 for all i,

which can be written more explicitly as

a∗it = (1−λ)Eσ∗ [θ|Hit]+
λ

n− 1

∑
j 6=i

Eσ∗ [a∗jt|Hit] for all i.

(3)
Any a∗t that satisfies the fixed-point equation (3) can be the
action profile chosen at time t given some equilibrium; that
is, any such {a∗t }t∈N defines an equilibrium.

Proposition 1: There exists a myopic Bayesian equilib-
rium σ∗ which is unique up to histories of Pσ∗ -measure zero.

Proof: Proof in the Appendix.
In the sequel, we repeatedly employ the characterization of

the equilibrium given in (3). We also use P∗ and E∗ to denote
the probability distribution and expectation operator over
(Ω,F), respectively, given an arbitrary (but fixed) equilibrium.

III. CONSENSUS IN ACTIONS

In this section we show that in a connected network agents
eventually reach consensus in their actions. To prove this
result, we first prove that the agents’ actions converge.

Lemma 1: Let a∗it = σ∗i (hit) for some equilibrium σ∗.
Then, for all i,

a∗it
L1

−→ a∗i∞ as t→∞,

where a∗i∞ is a square integrable Hi∞-measurable random
variable satisfying

E∗
[
ui(a

∗
i∞, a

∗
−i∞, θ)|Hi∞

]
≥ E∗

[
ui(ai∞, a

∗
−i∞, θ)|Hi∞

]
,

(4)
for any square integrable Hi∞-measurable random variable
ai∞.

Proof: First, define the L2-norm of ai as

‖ai‖2 = E∗[|ai|].

Also, define the L2-norm of a = (a1, . . . , an) as

‖a‖2 =

n∑
i=1

‖ai‖2.

The condition expressed in (4) can be characterized (up to
sets of measure zero) by the following first-order condition:

a∗i∞ = (1− λ)E∗[θ|Hi∞] +
λ

n− 1

∑
j 6=i

E∗[a∗j∞|Hi∞].
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By Lemma 3, the above set of equations have a solution
which is unique up to sets of measure zero. Let a∗i∞ be a
solution. We have that

a∗it − a∗i∞ = (1− λ) (E∗[θ|Hit]− E∗[θ|Hi∞])

+
λ

n− 1

∑
j 6=i

(
E∗[a∗jt|Hit]− E∗[a∗j∞|Hi∞]

)
.

Adding and subtracting λ
n−1

∑
j 6=i E∗[a∗j∞|Hit] and using

the triangle inequality,

‖a∗it − a∗i∞‖2 ≤ (1− λ) ‖E∗[θ|Hit]− E∗[θ|Hi∞]‖2
+

λ

n− 1

∑
j 6=i

∥∥E∗[a∗jt − a∗j∞|Hit]∥∥2

+
λ

n−1

∑
j 6=i

∥∥E∗[a∗j∞|Hit]−E∗[a∗j∞|Hi∞]
∥∥

2
.

(5)

Since conditional expectation is a contraction in L2,∑
j 6=i

∥∥E∗[a∗jt − a∗j∞|Hit]∥∥2
≤
∑
j 6=i

∥∥a∗jt − a∗j∞∥∥2
.

Summing (5) over i and using the above inequality results in

‖a∗t − a∗∞‖2 ≤ (1− λ)

n∑
i=1

‖E∗[θ|Hit]− E∗[θ|Hi∞]‖2

+ λ‖a∗t − a∗∞‖2

+
λ

n−1

n∑
i=1

∑
j 6=i

∥∥E∗[a∗j∞|Hit]−E∗[a∗j∞|Hi∞]
∥∥

2
,

which implies that

‖a∗t − a∗∞‖2

≤
n∑
i=1

‖E∗[θ|Hit]− E∗[θ|Hi∞]‖2

+
λ

1−λ
1

n−1

n∑
i=1

∑
j 6=i

∥∥E∗[a∗j∞|Hit]−E∗[a∗j∞|Hi∞]
∥∥

2
.

It is easy to verify that E∗[θ|Hit] is a martingale with respect
to the filtration Hit ↑ Hi∞. Furthermore,

sup
t
‖E∗[θ|Hit]‖2 ≤ ‖θ‖2 <∞,

where the first inequality is a consequence of the fact that
conditional expectation is a contraction and the second one is
due to Assumption 1. Thus, by the Lp convergence theorem,
E∗[θ|Hit] converges in the L2 sense to E∗[θ|Hi∞].3 That is,

lim
t→∞

‖E∗[θ|Hit]− E∗[θ|Hi∞]‖2 = 0.

By a similar argument, relying on the fact that a∗j∞ is square
integrable, for all j,

lim
t→∞

∥∥E∗[a∗j∞|Hit]− E∗[a∗j∞|Hi∞]
∥∥

2
= 0.

Therefore,

‖a∗t − a∗∞‖2 −→ 0 as t→∞,

3For a statement and proof of the Lp convergence theorem, see, for
instance, p. 215 of Durrett [25].

which proves the desired result.
So far we have shown that each agent’s action converges

in the L2 sense to some limit action. The next result asserts
that agents can identify the limit actions of all their neighbors.

Lemma 2: If j ∈ Ni, then agent i can asymptotically
identify the limit action of agent j, i.e., a∗j∞ ∈ Hi∞.

Proof: Since a∗jt converges to a∗j∞ in L2 (and hence
in L1) and Hit ↑ Hi∞,

E∗
[
a∗jt−1|Hit

]
−→ E∗

[
a∗j∞|Hi∞

]
as t→∞,

in the L1 sense.4 On the other hand, since a∗jt−1 ∈ Hit,

E∗
[
a∗jt−1|Hit

]
= a∗jt−1

L1

−→ a∗j∞ as t→∞,

which implies that E∗
[
a∗j∞|Hi∞

]
= a∗j∞. Therefore,

a∗j∞ ∈ Hi∞.
Agents’ strategies at any stage of the game are mappings

from their private histories to their action spaces. Consequently,
agent i’s action at time t is constrained to be measurable
with respect to Hit, her information at time t. The previous
lemma shows that if agent j is a neighbor of i, her actions
are measurable with respect to agent i’s information at infinity.
Therefore, agent i can asymptotically imitate the actions of
agent j. Because the observation graph is assumed to be
undirected, agent j can imitate the actions of agent i as well.
Agents i and j must, therefore, each asymptotically believe
that their actions are better than the ones taken by the other.
The following proposition shows that this is only possible
if any two neighbors asymptotically play the same action,
regardless of the realization of the state of the world.

Proposition 2: For any two neighboring agents i and j,
a∗i∞ = a∗j∞ except on a set of P∗-probability zero.

Proof: By construction,

E∗
[
ui(a

∗
i∞, a

∗
−i∞, θ)|Hi∞

]
≥ E∗

[
ui(ai∞, a

∗
−i∞, θ)|Hi∞

]
,

for any square integrable Hi∞-measurable random variable
ai∞. By Lemma 2, a∗j∞ ∈ Hi∞. Therefore,

E∗
[
ui(a

∗
i∞, a

∗
−i∞, θ)|Hi∞

]
≥ E∗

[
ui(a

∗
j∞, a

∗
−i∞, θ)|Hi∞

]
.

Taking expectations of the above equation with respect to P∗,

E∗
[
ui(a

∗
i∞, a

∗
−i∞, θ)

]
≥ E∗

[
ui(a

∗
j∞, a

∗
−i∞, θ)

]
. (6)

By a similar argument,

E∗
[
uj(a

∗
j∞, a

∗
−j∞, θ)

]
≥ E∗

[
uj(a

∗
i∞, a

∗
−j∞, θ)

]
. (7)

Summing (6) and (7) and simplifying the result, we can
conclude that

E∗
[(
a∗i∞ − a∗j∞

)2] ≤ 0,

which proves the proposition.
The proposition implies that in a connected network all

the agents asymptotically take the same action.
Corollary 1: For any two agents i and j, a∗i∞ = a∗j∞ with

P∗-probability one.

4See for instance Exercise 5.5.8. in Durrett [25].
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IV. ASYMPTOTIC EFFICIENCY

In this section we explore the question of whether agents’
consensus action is optimal given all the information available
to the whole population. First, we have to characterize this
optimal action. Let H∞ be the σ-algebra generated by the
union of Hi∞ over all i. This is all the information available
to the agents at the end of the game. Given H∞, the socially
optimal action profile is defined as the action profile that
maximizes the expected social welfare

E∗
[

n∑
i=1

ui(a, θ)

∣∣∣∣H∞
]
.

It is easy to see that a∗∗ = (a∗∗1 , . . . , a
∗∗
n ) defined below is

the maximizer of the above expression.

a∗∗ = (E∗[θ|H∞], . . . ,E∗[θ|H∞]) (8)

The optimal action profile requires the agents to coordinate on
playing the expectation of θ given the information collectively
available to them.

Corollary 1 suggests that, as agents reach consensus in
their actions, their coordination motive would disappear and
their realized utilities would only depend on how close their
actions are to the realized state of the world. The following
proposition formalizes this observation.

Proposition 3: For all i,

a∗it − E∗ [θ|Hit]
L1

−→ 0 as t→∞.
Proof: By construction,

a∗i∞ = (1− λ)E∗[θ|Hi∞] +
λ

n− 1

∑
j 6=i

E∗[a∗j∞|Hi∞],

which since a∗j∞ = a∗i∞ for all j with P∗-probability one,
results in

a∗i∞ = E∗[θ|Hi∞].

On the other hand, since Hit ↑ Hi∞,

E∗ [θ|Hit]
L1

−→ E∗ [θ|Hi∞] as t→∞.

The last two equations together with Lemma 1 complete the
proof.

This result, together with Corollary 1, implies that
E∗[θ|Hi∞] = E∗[θ|Hj∞] with P∗-probability one for all i, j.
That is, agents eventually also reach consensus in their best
estimate of θ. However, E∗ [θ|Hi∞] is generally different than
E∗ [θ|H∞]. The following example shows that agents might
asymptotically reach consensus on an action that is different
from the optimal action a∗∗, even if the observation network
is the complete network.

Example 1: Consider two agents who are endowed with
the common prior P with suppP = {−1, 1} and P(1) =
P(−1) = 1/2. Agents’ private signals belong to the sets
S1 = S2 = {H,T}, and the signaling functions πt are given by

πt(ht) =


1

2
δ(H,H) +

1

2
δ(T,T) if θ = 1,

1

2
δ(H,T) +

1

2
δ(T,H) if θ = −1,

where δst is the degenerate probability distribution with unit
mass on the signal profile st. At each stage of the game, each
agent receives a signal that is Heads (Tails) with probability
one half, regardless of the realization of θ. Agents’ private

signals are thus completely uninformative about the realized
state. A single observation of the signal profile, on the other
hand, completely reveals the realized state: agents’ signals
are perfectly correlated if the state is θ = 1, whereas they
are perfectly negatively correlated if the state is θ = −1.

Since the agents’ signals are completely uninformative and
given their prior, it is optimal for them both to choose ai1 = 0
in the first stage of the game. At time period t = 2, each
agent observes the other agent’s action. These observations,
however, contain no information regarding the agents’ private
signals. Therefore, agents play ait = 0 at time t = 2, and in
all subsequent stages of the game. Agents choose the same
action (a1t = a2t = 1) and have the same best estimate of
the state (E∗[θ|H1t] = E∗[θ|H2t] = 0) starting from the first
stage of the game. However, the information available to agents
is not fully aggregated in this example: a∗∗ = E∗[θ|H∞] =
θ 6= ai∞ = 0. Agents fail to reach consensus on the socially
optimal action for all realizations of the game.5

V. CONCLUSION

This paper studies a repeated game in which agents
attempt to coordinate on an outcome about which they have
incomplete and asymmetric information. Any agent’s actions
reveal information which is used by other agents to revise
their beliefs, and hence, their actions. We prove formal results
regarding the asymptotic outcomes obtained when myopic
agents play the actions prescribed by the Bayesian Nash
equilibrium. In particular, we show that agents reach consensus
in their actions if the observation network is connected.

We proved these results assuming that the agents’ payoffs
are represented by a quadratic utility function. However, the
insights of our analysis do not seem to hinge on the particular
utility function used. In fact, similar results can be proved
for more general coordination games with payoffs that satisfy
some symmetry, concavity, and supermodularity conditions.
We intend to investigate this extension in future work.

Example 1 showed that agents do not necessarily coordinate
on the optimal action. However, our extensive simulations
suggest that “generically” agents reach consensus on the
optimal action—at least when their private observations
are independent of the history of the game.6 We intend to
formalize and investigate this conjecture in future research.

APPENDIX

We first prove a technical lemma.
Lemma 3: Let (X,F , P ) be a probability triple, and let

E be the expectation operator corresponding to P . Let θ be
a square integrable random variable measurable with respect
to F . Also let Gi ⊂ F be σ-algebras for i = 1, . . . , n. Then,
there exist square integrable random variables a1, . . . , an such
that ai is measurable with respect to Gi and a = (a1, . . . , an)
is an essentially unique fixed-point of the equation

ai = (1− λ)E[θ|Gi] +
λ

n− 1

∑
j 6=i

E[aj |Gi].

5If agents were forward-looking, they could coordinate on the optimal
action by signaling their private signals through their actions. For instance,
by following the strategy that requires each agent to choose action ε (action
-ε) at the first stage of the game if her private signal is Heads (Tails), agents
learn the realized state in the second stage. As a result of following this
strategy, agents’ expected payoffs are lower in the first period but higher
in all subsequent period compared to when playing according to the myopic
equilibrium. When agents are sufficiently patient and ε is sufficiently small, the
strategy described above is a (non-myopic) weak Bayesian perfect equilibrium.

6See the complementary paper by the authors for numerical examples [9].
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Proof: Let L2
i (X) be the set of P -almost everywhere

equivalent class of Gi-measurable random variables with the
norm

‖ai‖2 =

(∫
X

a2
i dP

) 1
2

.

By the Riesz-Fischer theorem, L2
i (X) is a Banach space. Let

L2(X) = ×ni=1L
2
i (X) with the norm ‖a‖2 =

∑n
i=1‖ai‖2.

Define T : L2(X)→ L2(X) as

Ti(a) = (1− λ)E[θ|Gi] +
λ

n− 1

∑
j 6=i

E[aj |Gi].

Note that

‖Ti(a)− Ti(b)‖2 =
λ

n− 1

∥∥∥∥∥∥
∑
j 6=i

E[aj − bj |Gi]

∥∥∥∥∥∥
2

≤ λ

n− 1

∑
j 6=i

‖E[aj − bj |Gi]‖2

≤ λ

n− 1

∑
j 6=i

‖aj − bj‖2,

where the first inequality is the triangle inequality and the
second one is due to the fact that conditional expectation is
a contraction in L2. Therefore,

‖T (a)− T (b)‖2 =

n∑
i=1

‖Ti(a)− Ti(b)‖2

≤ λ

n− 1

n∑
i=1

∑
j 6=i

‖aj − bj‖2

= λ‖a− b‖2.

That is, T is a contraction mapping with Lipschitz constant
λ < 1. Hence, by the Banach fixed-point theorem, T has
a fixed-point a ∈ L1(X) which is unique—up to sets of
P -measure zero.

Proof of Proposition 1: The proof is constructive. We start
at t = 1 and inductively construct some functions σ∗it. The
equilibrium strategy is given by σ∗i (Hit) = σ∗it(Hit). For
all t, let Ωt = Θ× St−1 × At−1 and let F t be the product
σ-algebra over Ωt.

Let P 1 be the probability distribution over (Ω1,F1) induced
by P and π1, and let E1 be the corresponding expectation
operator. Note that the marginal of Pσ over (Ω1,F1) is equal
to P 1 for any strategy profile σ. Furthermore, θ is measurable
with respect to F1 and agent i’s time 1 action need to
be measurable with respect to Hi1 ⊂ F1. Therefore, the
first-order equilibrium condition at time t = 1 can be written as

ai1 = (1− λ)E1[θ|Hi1] +
λ

n− 1

∑
j 6=i

E1 [aj1|Hi1] .

By Lemma 3, the above equation has an essentially unique
square integrable solution a∗1 = (a∗11, . . . , a

∗
n1). Since a∗i1 is

Hi1-measurable, there exists σ∗i1 such that a∗i1 = σ∗i1(hi1).
Let P 2 be the probability distribution over (Ω2,F2) induced

by P, π1, π2, and (σ∗11, . . . , σ
∗
n1), and let E2 be the expectation

operator corresponding to P 2. The marginal of Pσ1 over
(Ω2,F2) is equal to P 2 for any σ1 with σ1

i (Hi1) = σ∗i1(Hi1),

that is, for all beliefs which are consistent with σ∗i1. Therefore,
the time 2 first-order equilibrium condition can be written as

ai2 = (1− λ)E2[θ|Hi2] +
λ

n− 1

∑
j 6=i

E2 [aj2|Hi2] ,

which by Lemma 3 has an essentially unique square integrable
solution a∗2 = (a∗12, . . . , a

∗
n2). Since a∗i2 is Hi2-measurable,

there exists σ∗i2 such that a∗i2 = σ∗i2(hi2).
Proceeding inductively, one can construct an equilibrium

strategy profile σ∗ with σ∗i (Hit) = σ∗it(Hit) for all i and t.
Lemma 3 guarantees that the resulting random equilibrium
actions a∗it = σ∗i (hit) are square integrable and unique up
to sets of measure zero. �
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