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Abstract—We apply recent developments in clustering theory of

asymmetric networks to study the equilibrium configurations of con-

sensus dynamics in trust networks. We show that reciprocal clustering

characterizes the equilibrium opinions of mutual trust dynamics. That is,

clusters in the reciprocal dendrogram correspond to different equilibrium

opinions of mutual trust consensus for varying trust thresholds. Moreover,

for unidirectional trust dynamics, we show that aggregating nonreciprocal

clusters into single nodes does not modify reachability of global consensus,

thus, simplifying the consensus analysis of large networks.

I. INTRODUCTION

Consensus or agreement problems in networked systems have
been extensively studied in the last decade with a wide range of
applications [1]. Formation control [2] and flocking [3] among other
problems have been approached through a consensus perspective.
Furthermore, consensus dynamics have been used to model opinion
propagation in social networks [4], [5]. In this context, agents update
their own opinion by considering the opinion of their neighbors, i.e.
a subset of the community which they trust.

In society, trust relations arise between individuals and can be
modeled through a trust network. We all have an idea of how much
we trust other members of our society like relatives, friends, or
acquaintances. However, it is unclear if we should trust more the
friend of a relative or a direct acquaintance. More generally, it is
unclear who should we trust within a network or, equivalently, who
belongs to our circle of trust. We use hierarchical clustering [6, Ch. 4]
to model these concerns. In particular, we apply recent developments
[7], [8] to hierarchically cluster asymmetric networks.

When sharing opinions in society, it is reasonable to filter whose
opinions to take into account depending on the issue being discussed.
E.g., for a simple and public issue, we might trust the opinion of a
large set of agents in our community whereas when it comes to inti-
mate and private matters we only rely on close friends. In this context,
for every trust threshold we have different consensus dynamics and,
thus, different equilibrium configurations. Our main contribution is
the relation between the hierarchical clustering of a trust network and
the consensus equilibria for different trust thresholds of this network.
In particular, reciprocal clustering determines the equilibria when
mutual trust is required for propagation and nonreciprocal clustering
informs about the equilibria when unidirectional trust is enough for
propagation.

II. PRELIMINARIES

Define a network N = (X,A

X

) as a set of n nodes X endowed
with a real valued dissimilarity function A

X

: X ⇥ X ! R+

defined for all pairs of nodes x, x

0 2 X . Dissimilarities A

X

(x, x

0
)

are nonnegative for all x, x0 2 X , and null if and only if x = x

0, but
need not satisfy the triangle inequality and may be asymmetric, i.e.
A

X

(x, x

0
) 6= A

X

(x

0
, x) for some x, x

0 2 X . When we hierarchically
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Fig. 1. Reciprocal clustering. Nodes x, x

0 cluster at resolution � if they can
be joined with a bidirectional chain of maximum dissimilarity � [cf. (2)].

cluster a network N = (X,A

X

), we obtain a dendrogram D

X

,
i.e. a nested set of partitions D

X

(�) indexed by the resolution
parameter � � 0; see e.g. Fig. 6 and Fig. 7-(a). Partitions in
a dendrogram D

X

must satisfy two boundary conditions: for the
resolution parameter � = 0 each node x 2 X forms a singleton
cluster, i.e., D

X

(0) =

�{x}, x 2 X

 
, and for some sufficiently

large resolution �0 all nodes must belong to the same cluster, i.e.,
D

X

(�0) =

�
X

 
. Partitions being nested implies that if any two

nodes x, x

0 2 X are in the same cluster at a given resolution �

0 then
they stay co-clustered for all larger resolutions � > �

0. If two nodes
x and x

0 belong to the same cluster at resolution � in dendrogram
D

X

then we write x ⇠
DX (�) x

0. For a given dendrogram D

X

, we
denote by u

X

(x, x

0
) the minimum resolution at which nodes x and

x

0 are co-clustered, i.e.

u

X

(x, x

0
) := min

�
� � 0, x ⇠

DX (�) x
0 
. (1)

A hierarchical clustering method is then a map H : N ! D
mapping every network in N to a dendrogram in D. Two clustering
methods of interest are reciprocal and nonreciprocal clustering [7].
The reciprocal clustering method HR with output dendrogram D

R

X

=

HR
(X,A

X

) merges nodes x and x

0 at resolution u

R
X

(x, x

0
) given by

u

R
X

(x, x

0
) := min

C(x,x0)
max

i|xi2C(x,x0)
¯

A

X

(x

i

, x

i+1), (2)

where ¯

A

X

(x, x

0
) := max(A

X

(x, x

0
), A

X

(x

0
, x)) for all x, x0 2 X .

Intuitively, in (2) we search for chains C(x, x

0
) linking nodes x and

x

0. Then, for a given chain, walk from x to x

0 and determine the
maximum dissimilarity, in either the forward or backward direction,
across all links in the chain. Then u

R
X

(x, x

0
) is the minimum of this

value across all possible chains; see Fig. 1.

Reciprocal clustering joins x to x

0 by going back and forth at
maximum cost � through the same chain. Nonreciprocal clustering
HNR permits different chains. Define the minimum directed cost as

ũ

NR
X

(x, x

0
) := min

C(x,x0)
max

i|xi2C(x,x0)
A

X

(x

i

, x

i+1), (3)

and the nonreciprocal merging resolution as the maximum of the two
minimum directed costs from x to x

0 and x

0 to x

u

NR
X

(x, x

0
) := max

⇣
ũ

NR
X

(x, x

0
), ũ

NR
X

(x

0
, x)

⌘
. (4)

In (4) we implicitly consider forward chains C(x, x

0
) going from x to

x

0 and backward chains C(x

0
, x) from x

0 to x. We then determine the
respective maximum dissimilarities and search independently for the
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Fig. 2. Nonreciprocal clustering. Nodes x, x

0 cluster at resolution � if they
can be joined in both directions with possibly different chains of maximum
dissimilarity � [cf. (4)].

forward and backward chains that minimize the respective maximum
dissimilarities. The nonreciprocal merging resolution u

NR
X

(x, x

0
) is the

maximum of these two minimum values; see Fig. 2.

In the present paper we also consider directed, unweighted graphs
G = (X,E) on the node set X, where E ✓ X ⇥X is the edge set.
By definition, E does not contain self-loops. For every node x, we
define its neighborhood E

x

as the subset of nodes where the edges
starting at x end, i.e. E

x

:= {x0 2 X|(x, x0
) 2 E}. We also define

the adjacency matrix A
G

= [a

ij

] of graph G as a binary matrix where
a

ij

= 1 if (x

i

, x

j

) 2 E and a

ij

= 0 otherwise. The degree matrix
�

G

= [d

ij

] of graph G is a diagonal matrix with d

ii

= |E
xi | and

d

ij

= 0 for i 6= j. The Laplacian matrix L

G

associated with graph
G is then given by

L

G

= �

G

�A
G

. (5)

In this paper we focus on the continuous time consensus dynamics
given by

ṗ(t) = �L

G

p(t), p(0) = p0, (6)

where p(t) 2 Rn for all times t, with p

i

(t) describing the state – or
opinion in our context – of node x

i

at time t. In the dynamics given
by (6), the change in a given node’s opinion is determined by the
average disagreement with its neighbors. I.e., if my opinion is equal
to the average of my neighbors’ opinion, then my opinion will remain
unchanged for the next time instant. We say that global consensus is
reached when every node converges to the same opinion.

III. TRUST NETWORKS AND CONSENSUS DYNAMICS

Define a trust network N = (X,A

X

) as one where nodes x 2 X

represent agents, e.g. people in society, and A

X

(x, x

0
) represents a

measure of how much x distrusts x

0, i.e. A
X

(x, x

0
) < A

X

(x, x

00
)

implies that x trusts more in x

0 than in x

00. Notice that the function
A

X

is inherently asymmetric since trust relations between people
need not be bidirectional. Indeed, it is usually the case in social
networks that some influential agents, say celebrities or politicians,
are heard by a big portion of the network but they do not take into
account the opinions of all of their followers.

If we want to model opinion propagation through consensus
in a trust network, one possibility is extending (5) and (6) for
weighted graphs as considered in, e.g., [9]. In this case, an agent
weighs the importance of others’ opinions depending on how much
he trusts them. However, we consider different dynamics where the
neighborhood of an agent is a function of the issue being discussed in
the network. E.g., if we need advice on where to have dinner we trust
the opinion of a larger set of people than when we need advice on how
to approach a relationship problem. Thus, a given trust network N

has associated an infinite number of consensus problems indexed by
a trust threshold parameter �. In this way, for low values of � we only
listen to the opinion of our intimate circle of trust whereas for large
values of � we admit the opinion of more distant acquaintances. In this
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Fig. 3. Graphs induced by the network N for different resolutions � under
the assumption of mutual trust.

paper, we consider two different ways of determining neighborhoods
given a trust parameter �: mutual and unidirectional trust.

A. Mutual trust consensus

Given a trust network N = (X,A

X

), in mutual trust consensus
we require that for two agents x and x

0 to share their opinions they
should distrust each other less than a given threshold �. In other
words, communication between agents only occurs when there is a
minimum of trust in both directions. Hence, given a trust network
N and a threshold � we define the mutual communication graph
G

N

(�) = (X,E) with adjacency matrix A
GN (�) given by

[A
GN (�)]

ij

=

(
1 if A

X

(x

i

, x

j

)  � and A

X

(x

j

, x

i

)  �,

0 otherwise,
(7)

for all i 6= j and [A
GN (�)]

ii

= 0 for all i. To facilitate understanding
refer to Fig. 3. Note that definition (7) is symmetric implying that
the graph G

N

(�) is undirected for all � � 0.

From (5), we compute the Laplacian matrix L

GN (�) for every
resolution � and obtain the mutual trust consensus dynamics

ṗ(t) = �L

GN (�) p(t), p(0) = p0, (8)

which is just a specialization of (6) for a particular Laplacian matrix.
Note that in (8) we actually have an infinite number of consensus
problems indexed by the resolution parameter �. We are interested
in the equilibrium configuration lim

t!1 p(t) of the consensus, i.e.
the opinions of the agents after a long time has elapsed. When � =

0, we obtain A
GN (0) = L

GN (0) = 0 implying that there is no
communication at all. In this situation, every node in the network
preserves its original opinion through time. On the other hand, for a
sufficiently large resolution � = �0, the adjacency network is that of
a complete graph and global consensus is achieved. For resolutions
in between, we want to characterize local equilibrium configurations.

B. Unidirectional trust consensus

In unidirectional trust consensus, for a given agent to be in-
fluenced by the opinion of another, the first agent must trust the
second one independently of the trust relation in the inverse direction.
Given a trust network N = (X,A

X

) and a trust threshold � we
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Fig. 4. Graphs induced by the network N for different resolutions � under
the assumption of unidirectional trust.

define the unidirectional communication graph G

u

N

(�) = (X,E) with
adjacency matrix A

G

u
N
(�) defined as

[A
G

u
N
(�)]

ij

=

(
1 if A

X

(x

i

, x

j

)  �,

0 otherwise,
(9)

for all i 6= j and [A
G

u
N
(�)]

ii

= 0 for all i; see Fig. 4. Note
that definition (9) is asymmetric entailing a directed graph G

u

N

(�).
Also, edges in the graphs G

u

N

(�) denote trust relations and, hence,
information flows in the opposite direction of the edges. E.g., in graph
G

u

N

(1) in Fig. 4, x3 trusts in x1 implying that the opinion of x1

influences that of x3. Similar to (8), we can define

ṗ(t) = �L

G

u
N
(�) p(t), p(0) = p0, (10)

which contains an infinite number of consensus problems indexed
by the resolution parameter �. The extremal results for � = 0 and
� = �0 sufficiently large guaranteeing G

u

N

(�0) to be a complete
graph, coincide with the mutual trust case in (8). As for mutual trust,
we are interested in characterizing the equilibrium for intermediate
resolutions.

IV. CIRCLES OF TRUST AND CONSENSUS EQUILIBRIA

We are all part of trust networks in our social lives, thus
motivating the question: who should we trust? or equivalently, which
nodes form our circle of trust? This question is in fact ill-posed
as discussed in Section III since the issue being discussed would
determine the extent of our circle of trust, i.e. an intimate matter
determines a close circle whereas a trivial matter admits an extended
circle of trust. Moreover, it is reasonable for the circles of trust to
be nested in the sense that if you trust someone with a very intimate
matter then you would trust that same person with a more trivial
issue. Hence, dendrograms are natural representations for circles
of trust in networks, where the resolution parameter � denotes the
level of intimacy of the issue in discussion, with lower � denoting
more intimate matters. Consequently, we can reinterpret hierarchical
clustering methods H as maps that assign a nested collection of circles
of trust H(N) to every trust network N .

It is reasonable to expect agents in the same circle of trust to
converge to the same opinion through consensus dynamics. Indeed,
the reciprocal clustering method HR solves the mutual trust problem
(8) as the following proposition asserts.
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Fig. 5. A trust network N with five agents. Undrawn edges correspond to
trust dissimilarities greater than 5.
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Fig. 6. Reciprocal dendrogram of the network in Fig. 5. At resolution � =
2.5 clusters {x2, x5}, {x3, x4} and {x1} are formed whereas at resolution
� = 3.5 nodes are clustered into {x2, x5, x3, x4} and {x1}. According to
Proposition 1, these clusters correspond to identical equilibrium opinions in
the consensus problem (8).

Proposition 1 In the mutual trust consensus dynamics (8) with

parameter �, for every initial condition p0,

lim

t!1
p

i

(t) = lim

t!1
p

j

(t) () u

R

X

(x

i

, x

j

)  �, (11)

where u

R

X

is defined as in (2).

Proof: See [10].

Proposition 1 implies that the reciprocal dendrogram of a given
trust network contains information about opinion convergence for
the infinite family of consensus problems in (8) indexed by �. To
explain this assertion, consider the five-node trust network N in Fig.
5. Using the algorithms developed in [8] we compute the reciprocal
dendrogram HR

(N) and depict it in Fig. 6. If we want to obtain the
equilibrium opinion profile for the consensus problem (8) for a given
�, we just perform a cut in the dendrogram at the desired resolution.
The clusters at this resolution coincide with opinion clusters in
equilibrium. In this way, from Fig. 6 we can observe that three opinion
profiles arise when � = 2.5 while two profiles arise when � = 3.5.

For the case of the unidirectional trust consensus problem in (10),
an equivalence result as the one found in Proposition 1 is impossible
since the clusters of nodes converging to the same opinion are not
nested. To see this, consider the graphs Gu

N

(1) and G

u

N

(1.5) induced
by network N in Fig. 4. For Gu

N

(1), we have that x3 listens to x1 and
will eventually converge to his opinion while x2 preserves his original
opinion through time. Thus, there are two opinions in equilibrium.
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Fig. 7. (a) Nonreciprocal dendrogram of the network in Fig. 5. When cutting
the dendrogram at resolution � = 2.5 we obtain two clusters. (b) The network
of equivalence classes N

2.5
Z

and the corresponding unidirectional trust graph
G

u

N

2.5
Z

(2.5). Global consensus in this graph implies global consensus in the
network in Fig. 5 for resolution � = 2.5.

For the larger resolution � = 1.5, we have that in G

u

N

(1.5), x3 listens
to both x1 and x2 and will reach their average opinion in equilibrium
while x1 and x2 maintain their original opinions. This outputs three
different equilibrium opinions. Thus, opinion clusters are not nested
as we modify the resolution parameter and cannot be represented by
a dendrogram.

Nonetheless, nonreciprocal clustering HNR as defined in (4) does

provide insight to further understand the consensus dynamics in
(10). Indeed, nonreciprocal clustering is the correct way to aggregate
data while maintaining the global consensus behavior of the original
network. In order to explain this precisely, we need to define the
network of equivalence classes N�

Z

at a given resolution �. Recall that
nodes x and x

0 belong to the same nonreciprocal cluster at resolution
�, i.e x ⇠

D

NR
X (�) x

0, if and only if u

NR

X

(x, x

0
)  �. Consider the

space Z

�

:= X mod ⇠
D

NR
X (�) of equivalence classes and the map

�

�

: X ! Z

� that maps each point of X to its equivalence class.
Notice that x and x

0 are mapped to the same point z if they belong
to the same cluster at resolution �, that is

�

�

(x) = �

�

(x

0
) () u

NR

X

(x, x

0
)  �. (12)

We define the network N

�

Z

= (Z

�

, A

�

Z

) by endowing Z

� with the
dissimilarity function A

�

Z

derived from the dissimilarity A

X

as

A

�

Z

(z, z

0
) = min

x2�

�1
� (z),x02�

�1
� (z0)

A

X

(x, x

0
). (13)

The dissimilarity A

�

Z

(z, z

0
) compares all the dissimilarities

A

X

(x, x

0
) between a member of the equivalence class z and a

member of the equivalence class z

0 and sets A

�

Z

(z, z

0
) to the

value corresponding to the least dissimilar pair. Global consensus
reachability of networks N and N

�

Z

is equivalent for every resolution
� as the following proposition asserts.

Proposition 2 Given a trust network N = (X,A

X

), for the uni-

directional trust consensus dynamics (10) with parameter �, the

graph G

u

N

(�) reaches global consensus if and only if G

u

N

�
Z
(�)

reaches global consensus where the network of equivalence classes

N

�

Z

= (Z

�

, A

�

Z

) is defined in (12) and (13).

Proof: See [10].

In general, clustering in networks seeks to aggregate data while
preserving relevant features of the original network. Proposition 2
shows that nonreciprocal clustering aggregates the data in N into the
equivalence class network N

�

Z

while preserving reachability of global
consensus in (10) for every resolution �. To exemplify this, in Fig.
7-(a) we depict the nonreciprocal dendrogram of the network in Fig.
5 computed with the algorithm in [8]. At resolution � = 2.5, there are
two equivalence classes given by Z

2.5
= {{x2, x3, x4, x5}, {x1}}.

From (13) we compute A

2.5
Z

and we depict the network N

2.5
Z

at
the leftmost part of Fig. 7-(b). From this network we compute the
corresponding directed graph G

u

N

2.5
X

(2.5) using (9) and illustrate it in
the rightmost part of Fig. 7-(b). This two-node graph trivially reaches
global consensus. Hence, by Proposition 2 we can assert that the five-
node graph G

u

N

(2.5) derived from the network in Fig. 5 also reaches
global consensus. Furthermore, in Fig. 7-(b) we see that the node
containing x2 through x5 adopts the opinion of x1. Thus, the global
consensus opinion of the five-node graph G

u

N

(2.5) coincides with the
original opinion of agent x1.

V. CONCLUSION

We applied a theory for hierarchical clustering of asymmetric
networks to study equilibrium configurations of consensus problems.
Reciprocal clustering was shown to describe opinion profiles in mu-
tual trust consensus problems whereas nonreciprocal clustering was
shown to be the right way to aggregate data while maintaining global
consensus reachability in unidirectional trust consensus problems.
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