
A Linearized Bregman Algorithm for Decentralized
Basis Pursuit

Kun Yuan, Qing Ling, Wotao Yin, Alejandro Ribeiro

Abstract—In this paper we solve a decentralized basis pursuit
problem in a multiagent system where each agent holds part of
the linear observations on a common sparse vector. The agents
collaborate to recover the sparse vector through limited neigh-
boring communication. The proposed decentralized linearized
Bregman algorithm solves the Lagrange dual of an augmented̀1
model that is equivalent to basis pursuit. The fact that this dual
problem is unconstrained and differentiable enables a lightweight
yet efficient decentralized gradient algorithm. We prove nearly
linear convergence of the dual and primal variables to their
optima. Numerical experiments demonstrate the effectiveness of
the proposed algorithm.

Index Terms—Basis pursuit, linearized Bregman, decentralized
computation

I. I NTRODUCTION

Consider a multiagent system ofn distributed agents who
collaboratively recover a sparse signalx ∈ Rp from the linear
measurements that they individually collect. Agenti collects
measurementsbi = Aix, wherebi ∈ Rqi andAi ∈ Rqi×p. Let

b ,

b1

...
bn

 ∈ Rq, A ,

—A1—
...

—An—

 ∈ Rq×p,

whereq =
∑n

i=1 qi. We propose a decentralized algorithm for
the agents to collaboratively solve the basis pursuit problem
[1]:

min
x

||x||1
s.t. Ax = b.

(1)

According to the compressive sensing theory [2], [3], if A
satisfies certain properties andx is sufficiently sparse, model
(1) exactly recoversx. If b is contaminated by noise orx is
only approximately sparse, stable recovery can be guaranteed
if one replaces the constraintsAx = b by ‖Ax−b‖ ≤ ε, where
‖ · ‖ is the`2-norm andε is the estimated noise level, or stops
our algorithm when‖Ax− b‖ ≈ ε.

Distributed basis pursuit is applied in collaborative spectrum
sensing [4], [5], [6], [7], where the goal is to recover a
wideband spectrum signalx, which is sparse. Agenti takes its
measurementbi = Aix with sensing matrixAi, and all agents
collaborate to recoverx through solving model (1).

K. Yuan and Q. Ling are with Dept. of Automation, University of Science
and Technology of China, Hefei, Anhui, China 230026. W. Yin is with Dept.
of Computational and Applied Mathematics, Rice University, Houston, TX,
USA 77005. A. Ribeiro is with Dept. of Electrical and Systems Engineer-
ing, University of Pennsylvania, Philadelphia, PA, USA 19104. Q. Ling is
supported by NSFC grant 61004137. W. Yin is supported by ARL and ARO
grant W911NF-09-1-0383, NSF grants DMS-0748839 and ECCS-1028790. A.
Ribeiro is supported by NSF CAREER CCF-0952867, NSF CCF-1017454,
and AFOSR MURI FA9550-10-1-0567.

Decentralized optimization has several advantages for multi-
agent systems. Incentralized computation, the agents need to
transmit all their data,Ai andbi in our case, to a fusion center
via multi-hop communication and the fusion center solves
(1) and broadcasts the solutions to the agents. This approach
is energy-consuming and vulnerable to network and fusion
center failures. Indecentralized computation, each agent only
exchanges a limited amount of information with its one-hop
neighbors and keeps its data (e.g.,Ai and bi) private. The
optimization is completed without a fusion center [8], [9].

Consider the decentralized basis pursuit problem where the
sensing matrixA is partitioned by rows. The optimization
variable is common to all agents and each agent holds part
of the objective function and part of the constraint. For this
kind of problem, existing decentralized algorithms include
distributed subgradient descent [10], distributed stochastic
subgradient projection [11], and alternating direction algorithm
of multipliers (ADMM) [8], [12], [13]. In these algorithms,
each agent holds a local solution; at each iteration, agents
exchange the local solutions with their one-hop neighbors.

For distributed subgradient descent, each agent first com-
putes a new solution through combining local solutions of
itself and its one-hop neighbors with weighted average, and
then descends along its local negative subgradient direction
[10]. Distributed stochastic subgradient projection is similar to
distributed subgradient descent but includes an extra projection
operation to a common constraint set [11]. Though easy to
implement and suit for asynchronous networks, these two
algorithms are not competitive in solving the decentralized
basis pursuit problem since they do not handle the constraints
Ax = b efficiently and subgradient descent does not take
advantage of the structure of‖x‖1.

The ADMM approach for (1) explicitly introduces con-
sensus constraints. Solving this consensus-constrained prob-
lem with skillful variable splitting leads to decentralized
algorithms. ADMM-based decentralized algorithms converge
globally for convex problems, and have linear convergence
when each local objective function is differentiable, strongly
convex and having Lipschitz continuous gradient [14]. For
(1), the ADMM-based approach requires each agent to solve
a least absolute shrinkage and selection operator (LASSO)
subproblem withp unknown at each iteration, requiring a
rather significant amount of computation on each agent [5],
[7]. [6] elegantly simplifies the subproblem for each agent but
its algorithm requires much more iterations to converge.

This paper proposes a decentralized linearized Bregman
algorithm for solving (1). The proposed algorithm is very
easy to implement, converges fast at a nearly linear rate,

and applies to asynchronous networks. In particular, the main
computation of each at each step is two matrix-vector multi-
plications involvingAi, which are much cheaper than solving
a LASSO subproblem involvingAi. The basic idea is to
apply a decentralized gradient method to a smoothed dual
problem of (1), where the smoothing does not change the
solution yet ensures the applicability and fast convergence
of decentralized gradient iterations. In addition to showing
that the decentralized linearized Bregman algorithm has nearly
linear convergence to the solution of (1), the number of
iterations needed is comparable to that of the ADMM-based
algorithms. Hence, the proposed algorithm appears to have the
state-of-the-art performance.

Notation Ni is the set of one-hop neighbors of agent
i. Shrink(x) is an operator equal tomax{|xi|, 0}sign(xi)
element-wise.‖ · ‖ is vector`2-norm or matrix spectral norm.

II. BACKGROUND OFL INEARIZED BREGMAN

Linearized Bregman solves model (1) by solving

min
x

||x||1 + 1
2α ||x||2

s.t. Ax = b,
(2)

whereα > 0 is chosen so that (2) returns a solution to (1).
In fact, there existsαmin > 0 such that the solution to (2) is
also a solution to (1) for anyα ≥ αmin [15]. For compressive
sensing,αmin = 10‖xo‖∞, wherexo is the original signal,
is shown to work well [16]. Model (2) is easier to solve
than (1) since the Lagrange dual of (2) is unconstrained and
differentiable, subject to efficient gradient algorithms (c.f. [16],
[17]). The Lagrange dual of (2) (posted as a minimization
problem instead of a maximization one) is

min
y

f(y) , α

2
||AT y − Proj[−1,1](A

T y)||2 − bT y, (3)

where y ∈ Rq is the dual variable and Proj[−1,1] denotes
element-wise projection to interval[−1, 1]. Its gradient is

∇f(y) = αAShrink(AT y)− b. (4)

The linearized Bregman algorithm solves (3) by gradient
descent. The updates at iterationk are

y(k + 1) = y(k)− h(k)(Ax(k)− b), (5)

wherex(k) = αShrink(AT y(k)),

andh(k) is the stepsize. [16] shows that (3) is strongly convex
in a restricted sense and thus, if the stepsizes are fixed or
chosen by line search, bothx(k) andy(k) converge linearly.

III. D ECENTRALIZED L INEARIZED BREGMAN

Suppose that the multi-agent system lays over a bidi-
rectionally connected network. For simplicity, we describe
a synchronous version of our algorithm though it can run
asynchronously. Each agenti keepsxi ∈ Rp, which a local
estimate of the commonx. Every xi will converge tox.

Algorithm 1 Decentralized linearized Bregman at agenti

Require: Sensing matrixAi and measurementsbi.
Require: Doubly stochastic weight matrixW .

1: Initialize vi(0) = 0;
2: for k = 0, 1, 2, . . . , K, agenti do
3: Computeui(k + 1) according to (6a);
4: Transmitui(k + 1) to, and receiveuj(k + 1) from j ∈ Ni;
5: Computevi(k + 1) according to (6b);
6: end for
7: Returnxi in (6a).

Algorithm 1 gives the proposed algorithm. Agenti does

descent: ui(k + 1) = vi(k)− h(k)AT
i (Aixi(k)− bi), (6a)

wherexi(k) = α Shrink(nvi(k)),

averaging: vi(k + 1) =
∑

j∈Ni

wijuj(k + 1), (6b)

whereui, vi ∈ Rp are two auxiliary variables, andW = [wij]
is a doubly stochastic weight matrix satisfying:

∑n
j=1 wij = 1,∑n

j=1 wji = 1, andwij 6= 0 if and only if j ∈ Ni ∪ i. Prior
to (6b), agenti transmitsui(k +1) to, and receivesuj(k +1)
from, its one-hop neighborsj ∈ Ni. Its raw data (i.e.,Ai and
bi) is kept locally.

To see how algorithm (6) is related to (5), we partition
y = [y1; . . . ; yn] whereyi ∈ Rqi . We similarly partition (5)
and then multiplyAT

i to both sides, arriving at

AT
i yi(k + 1) = AT

i yi(k)− h(k)AT
i (Aix(k)− bi)

over i = 1, . . . , n. Comparing the left-hand side of this
with that of (6a), we see ui ∼ AT

i yi (“∼” means “is
an local estimate of”). Suppose for moment that (6b) is
repeated infinitely many times at eachk, then vi(k) =
1
n

∑n
j=1 uj(k) ∼ 1

n

∑n
i=1 AT

i yi(k) = 1
nAT y and thus

xi(k) = α Shrink(nvi(k)) ∼ α Shrink(AT y(k)) = x(k).
Putting together, we haveui ∼ AT

i yi, vi ∼ 1
nAT y, and

xi ∼ x. If “∼” was “=”, summing up (6a) over i gives (5).
The choice ofW affects the diffusion speed of (6b) and thus

the convergence of the algorithm. In an asynchronous network,
W can vary over iterations. As we focus exclusively on the
synchronous case, we fixW according to either the maximum
degree (MD) rule or the Metropolis-Hastings (MH) rule [18].

IV. CONVERGENCEANALYSIS

We first introduce a lemma which describes therestricted
strong convexity propertyof the dual functionf(y) (c.f. [16]).

Lemma 1 Considerf(y) in (3) whereA and b are nonzero.
Assume thatAx = b is consistent. Proj∗(y) denotes the
projection of y onto the solution set of(3). Then ∃ν > 0
such that the objective functionf(y) in (3) satisfies

∇T f(y)(y − Proj∗(y)) ≥ ν‖y − Proj∗(y)‖2, for all y. (7)

An explicit formula ofν can be found in [16].

Definition We define some variables that appear in the theorem
below. Let zi(k) , Aixi(k) − bi ∈ Rqi and yi(k + 1) ,

yi(k)−h(k)zi(k) ∈ Rqi with yi(0) = 0; the recursion implies
that yi(k) = −∑k−1

s=0 h(s)zi(s). Defining

z =

z1

...
zn

 ∈ Rq andy =

y1

...
yn

 ∈ Rq,

y(k) satisfies equationsy(k + 1) = y(k) − h(k)z(k) and
y(k) = −∑k−1

s=0 h(s)z(s). Define x̄(k) , αShrink(nv̄(k))
wherev̄(k) , − 1

n

∑k−1
s=0

∑n
j=1 h(s)AT

j zj(s). Substituting the

equationyi(k) = −∑k−1
s=0 h(s)zi(s) into the definition of

v̄(k), we havev̄(k) = 1
n

∑n
j=1 AT

j rj(k) = 1
nAT y(k). Let

be the unique solution to problem (2).

Theorem 1 Consider Algorithm1 defined by(6a)-(6b). As-
sume that the largest eigenvalue of the weigh matrixW is
1 and the second largest isβ < 1. Assume a fixed stepsize
h(k) = h and ‖z(k)‖ ≤ L whereL is a positive constant.
Then

‖y(k + 1)− Proj∗(y(k + 1))‖
≤ρ‖y(k)− Proj∗(y(k))‖+ γ, (8)

ρ =
√

1 + δ2 − 2hν < 1 andγ = h2Lαn
3
2

δ(1−β) (maxi ‖Ai‖)2 +hL
with δ being an arbitrary positive constant. Further

‖xi(k)− x∗‖
≤α‖A‖‖y(k)− Proj∗(y(k))‖+

αnhL

1− β
max

j
‖Aj‖. (9)

Proof: Step 1: Bounding‖vi(k)− v̄(k)‖.
Combining (6a) and (6b) and usingvi(0) = 0, we eliminate

ui and obtain the expression ofvi(k) as

vi(k) = −
k−1∑
s=0

n∑

j=1

(W k−s)ijhAT
j zj(s), (10)

where(W s+1)ij denotes the(i, j)th entry of the matrixW s+1.
Recall that the largest eigenvalue ofW is 1 and the second
largest isβ < 1. Then

‖
n∑

j=1

(W k−s)ijhAT
j zj(s)− 1

n

n∑

j=1

hAT
j zj(s)‖

≤‖ 1
n

n∑

j=1

βk−shAT
j zj(s)‖. (11)

Becausēv(k) = − 1
n

∑k−1
s=0

∑n
j=1 hAT

i zi(s), we know

‖vi(k)− v̄(k)‖

≤
k−1∑
s=0

‖ 1
n

n∑

j=1

βk−shAT
j zj(s)‖

≤
k−1∑
s=0

βk−sh max
j
‖Aj‖‖ 1

n

n∑

j=1

zj(s)‖

≤
k−1∑
s=0

βk−sh max
j
‖Aj‖‖[z1(s); . . . ; zn(s)]‖

=h max
j
‖Aj‖

k−1∑
s=0

βk−s‖z(s)‖. (12)

By assumption‖z‖ ≤ L, therefore

‖vi(k)− v̄(k)‖

=h max
j
‖Aj‖

k−1∑
s=0

βk−s‖z(s)‖

≤hLmax
j
‖Aj‖

k−1∑
s=0

βk−s

≤ hL

1− β
max

j
‖Aj‖. (13)

The right-hand-side of (13) is irrelevant withi, hence

max
i
‖vi(k)− v̄(k)‖

≤ hL

1− β
max

i
‖Ai‖. (14)

Step 2: Bounding‖y(k)− Proj∗(y(k))‖.
Utilizing the property of projection as well as the recursion

y(k + 1) = y(k)− hz(k), we know that

‖y(k + 1)− Proj∗(y(k + 1))‖2
≤‖y(k + 1)− Proj∗(y(k))‖2
=‖y(k)− Proj∗(y(k))− hz(k)‖2. (15)

Expanding (15) results in

‖y(k + 1)− Proj∗(y(k + 1))‖2
≤‖y(k)− Proj∗(y(k))‖2 + h2‖z(k)‖2
− 2hz(k)T [y(k)− Proj∗(y(k))]

=‖y(k)− Proj∗(y(k))‖2 + h2‖z(k)‖2
− 2h[Ax̄(k)− b]T [y(k)− Proj∗(y(k))]

+ 2h[Ax̄(k)− b− z(k)]T [y(k)− Proj∗(y(k))]. (16)

Consider−2h[Ax̄(k)− b]T [y(k)−Proj∗(y(k))]. Recall that
v̄(k) = 1

nAT y(k) and x̄(k) = αShrink(nv̄(k)). According to
(4), the gradient off(y) at y(k) is

∇f(y(k))

=αAShrink(AT y(k))− b

=αAShrink(nv̄(k))− b

=Ax̄(k)− b. (17)

Replacing∇f(y(k)) = Ax̄(k)− b to (7) leads to

[Ax̄(k)− b]T [y(k)− Proj∗(y(k))]

≥ν‖y(k)− Proj∗(y(k))‖2. (18)

For 2h[Ax̄(k) − b − z(k)]T [y(k) − Proj∗(y(k))], we have
the inequality

2h[Ax̄(k)− b− z(k)]T [y(k)− Proj∗(y(k))]

≤h2

δ2
‖Ax̄(k)− b− z(k)‖2 + δ2‖y(k)− Proj∗(y(k))‖2,

(19)

whereδ is an arbitrary positive constant.
Substituting (18) and (19) to (16) and collecting terms, we

have

‖y(k + 1)− Proj∗(y(k + 1))‖2
≤[1 + δ2 − 2hν]‖y(k)− Proj∗(y(k))‖2 + h2‖z(k)‖2

+
h2

δ2
‖Ax̄(k)− b− z(k)‖2. (20)

By definition zi(k) , Aixi(k)− bi andz , [z1; . . . ; zn]

‖Ax̄(k)− b− z(k)‖2
≤n max

i
‖Aix̄(k)− bi − zi(k)‖2

=n max
i
‖Aix̄(k)−Aixi(k)‖2

≤n max
i

[‖Ai‖2‖xi(k)− x̄(k)‖2]
≤n(max

i
‖Ai‖)2(max

i
‖xi(k)− x̄(k)‖)2. (21)

Sincexi(k) = αShrink(nvi(k)) and x̄(k) = αShrink(nv̄(k))

max
i
‖xi(k)− x̄(k)‖

=max
i
‖αShrink(nvi(k))− αShrink(nv̄(k))‖

=max
i

α‖Shrink(nvi(k))− Shrink(nv̄(k))‖
≤max

i
α‖nvi(k)− nv̄(k)‖

=max
i

αn‖vi(k)− v̄(k)‖, (22)

then we have

‖Ax̄(k)− b− z(k)‖2
≤α2n3(max

i
‖Ai‖)2(max

i
‖vi(k)− v̄(k)‖)2. (23)

Substituting (23) to (20), we can obtain the upper bound of
‖y(k + 1)− Proj∗(y(k + 1))‖2

‖y(k + 1)− Proj∗(y(k + 1))‖2
≤[1 + δ2 − 2hν]‖y(k)− Proj∗(y(k))‖2 + h2‖z(k)‖2

+
h2α2n3

δ2
(max

i
‖Ai‖)2(max

i
‖vi(k)− v̄(k)‖)2, (24)

which implies that

‖y(k + 1)− Proj∗(y(k + 1))‖
≤

√
1 + δ2 − 2hν‖y(k)− Proj∗(y(k))‖+ h‖z(k)‖

+
hαn3/2

δ
max

i
‖Ai‖max

i
‖vi(k)− v̄(k)‖. (25)

Substituting (14) and‖z(k)‖ ≤ L to (25) yields

‖y(k + 1)− Proj∗(y(k + 1))‖
≤

√
1 + δ2 − 2hν‖y(k)− Proj∗(y(k))‖+ h‖z(k)‖

+
hαn3/2

δ
max

i
‖Ai‖max

i
‖vi(k)− v̄(k)‖

≤
√

1 + δ2 − 2hν‖y(k)− Proj∗(y(k))‖+ hL

+
h2Lzαn3/2

δ(1− β)
(max

i
‖Ai‖)2

=ρ‖y(k)− Proj∗(y(k))‖+ γ. (26)

Step 3: Bounding‖xi(k)− x∗‖.
Given any dual solutiony(k), the primal optimum of (2)

is x∗ = αShrink(AT Proj∗(y(k))). According to the iterate of
xi(k) = αShrink(nvi(k))

‖xi(k)− x∗‖
=‖αShrink(nvi(k))− αShrink(AT Proj∗(y(k)))‖
=‖αShrink(AT y(k))− αShrink(AT Proj∗(y(k)))

+ αShrink(nvi(k))− αShrink(AT y(k))‖
≤‖αShrink(AT y(k))− αShrink(AT Proj∗(y(k)))‖

+ ‖αShrink(nvi(k))− αShrink(AT y(k))‖. (27)

Using the nonexpansive property of the shrinkage operator

‖αShrink(AT y(k))− αShrink(AT Proj∗(y(k)))‖
≤α‖AT y(k)−AT Proj∗(y(k))‖
≤α‖A‖‖y(k)− Proj∗(y(k))‖. (28)

Sincev̄ = 1
nAT y(k), we have

‖αShrink(nvi(k))− αShrink(AT y(k))‖
≤α‖nvi(k)−AT y(k)‖
=α‖nvi(k)− nv̄(k)‖
=αn‖vi(k)− v̄(k)‖. (29)

Substituting (28) and (29) to (27) leads to

‖xi(k)− x∗‖
≤α‖A‖‖y(k)− Proj∗(y(k))‖+ αn‖vi(k)− v̄(k)‖. (30)

Further using (13), we obtain (9).

Remark Let us consider the dual convergence result (8). If
we chooseδ2 = hν, then the two constantsρ =

√
1− hν

andγ = h
3
2 Lαn

3
2

ν
1
2 (1−β)

(maxi ‖Ai‖)2 +hL. Setting stepsizeh to be

small enoughγ is in the order ofh. This way, the algorithm
converges to a small neighborhood of the dual optimum set
with linear rateρ =

√
1− hν.

In the primal convergence result (9), if we ignore the term
αnhL
1−β maxj ‖Aj‖, a local solutionxi converges to the primal

optimum with nearly R-linear rate. The termαnhL
1−β maxj ‖Aj‖

is proportional toh, suggesting that a small stepsizeh enables
xi to converge to a small neighborhood of the primal optimum.

Theorem 1 assumes that‖z(k)‖ ≤ L. By definitionz(k) =
[A1x1(k)−b1; . . . ;Anxn(k)−bn], ‖z(k)‖ is upper bounded if
every‖xi(k)‖ is upper bounded. This assumption is common
in convergence analysis.

V. NUMERICAL EXPERIMENTS

In the simulation, we generate a multiagent system with
n = 50 agents. The agents are uniformly randomly deployed in
a 100×100 area and two agents are one-hop neighbors if their
distance is within30. The generated network is connected. The
sparse signal to recover isx ∈ R200 and its sparsity is20;
nonzero elements ofx are generated following the Gaussian
distribution. The sensing matrixA ∈ R100×200 is generated
following the Gaussian distribution. The measurementsb =

Ax are noise-free. Each agent holds two rows ofA andb, i.e.,
Ai ∈ R2×200 andbi ∈ R2.

We compare the proposed Algorithm1 (DLB) with two
existing algorithms, DLASSO in [6] and DADMM in [7]. We
consider the standard DLB (DLB-STD) and its variant with
restarted Nesterov acceleration (DLB-ACC) [19]. Recall from
Section I that DADMM has the most expensive iteration since
each agent solves a LASSO subproblem at each iteration. In
DLASSO, each agent solves a ridge regression subproblem at
each iteration. The two DLB iterations have the lowest per-
iteration cost.

In the numerical experiments, we first compare the conver-
gence rates of DLB, DLASSO, and DADMM, and then study
how the weight matrixW influences the convergence rate of
DLB. The convergence is measured by relative error, which is
defined as

1
n

n∑

i=1

‖xi(k)− x∗‖.

The parameterα in (2) is set as4 as suggested in [16]. In DLB-
ACC the Nesterov acceleration is restarted every50 iterations.
The parameters in DLASSO and DADMM are both hand-
tuned to the best.

Fig. 1 compares the convergence rates of DLB, DLASSO,
and DADMM. The stepsize is set ash(k) = 0.03 for DLB-
ACC and h(k) = min(0.06, 1

k) for DLB-STD; the weight
matrix W is set according to the Metropolis-Hastings (MH)
rule. DLB-ACC is the fastest among the four algorithms.
Compared to DLB-STD, DLB-ACC reduces the number of
iterations from∼ 700 to ∼ 200 to reach10−6 accuracy.
DADMM is slower than DLB-ACC; further, each agent takes
much more time at each iteration. DLASSO has modest per-
iteration but is the slowest.

In Fig. 2 we compare the performance of DLB with two
different weight matricesW : maximum degree (MD) and
Metropolis-Hastings (MH). The stepsizes are adjusted to the
best. In DLB-ACC,0.02 for MD and 0.03 for MH; in DLB-
STD, h(k) = min(0.04, 1

k) for MD and h(k) = min(0.06, 1
k)

for MH. Experimental results suggest that MH is better than
MD in both the standard and the accelerated DLB algorithms.

REFERENCES

[1] S. Chen, D. Donoho, and M. Saunders, “Atomic decomposition by basis
pursuit,” SIAM Review, vol. 43, pp. 129–159, 2001

[2] D. Donoho, “Compressed sensing,” IEEE Transactions on Information
Theory, vol. 52, pp. 1289–1306, 2006

[3] E. Candes, J. Romberg, and T. Tao, “Robust uncertainty principles: exact
signal reconstruction from highly incomplete frequency information,”
IEEE Transaction on Information Theory, vol. 52, pp. 5406–5425, 2006

[4] Z. Tian, “Compressed wideband sensing in cooperative cognitive radio
networks,” Proceedings of GLOBECOM, 2008

[5] J. Bazerque and G. Giannakis, “Distributed spectrum sensing for cogni-
tive radio networks by exploiting sparsity,” IEEE Transactions on Signal
Processing, vol. 58, pp. 1847–1862, 2010

[6] G. Mateos, J. Bazerque, and G. Giannakis, “Distributed sparse linear
regression,” IEEE Transactions on Signal Processing, vol. 58, pp. 5262–
5276, 2010

[7] J. Mota, J. Xavier, P. Aguiar, and M. Puschel, “Distributed basis pursuit,”
IEEE Transactions on Signal Processing, vol. 60, pp. 1942–1956, 2012

[8] I. Schizas, A. Ribeiro, and G. Giannakis, “Consensus in ad hoc WSNs
with noisy links - Part I: distributed estimation of deterministic signals,”
IEEE Transactions on Signal Processing, vol. 56, pp. 350–364, 2008

0 500 1000 1500
10

−6

10
−4

10
−2

10
0

Iteration

R
el

at
iv

e
E

rr
or

DLB−ACC
DLB−STD
DADMM
DLASSO

Fig. 1. Comparison of DLB, DLASSO, and DADMM.

0 500 1000 1500
10

−6

10
−4

10
−2

10
0

Iteration

R
el

at
iv

e
E

rr
or

DLB−ACC: MH
DLB−ACC: MB
DLB−STD: MH
DLB−STD: MB

Fig. 2. DLB with different weight matrixW : maximum degree (MD) and
Metropolis-Hastings (MH).

[9] J. Predd, S. Kulkarni, and H. Poor, “A collaborative training algorithm
for distributed learning,” IEEE Transactions on Information Theory, vol.
55, pp. 1856–1871, 2009

[10] A. Nedic and A. Ozdaglar, “Distributed subgradient algorithms for multi-
agent optimization,” IEEE Transactions on Automatic Control, vol. 54,
pp. 48–61, 2009

[11] S. Ram, A. Nedic, and V. Veeravalli, “Distributed stochastic subgradient
projection algorithms for convex optimization,” Journal of Optimization
Theory and Applications, vol. 147, pp. 516–545, 2010

[12] D. Bertsekas and J. Tsitsiklis,Parallel and Distributed Computation:
Numerical Algorithms, Second Edition, Athena Scientific, 1997

[13] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein, “Distributed
optimization and statistical learning via the alternating direction algo-
rithm of multipliers,” Foundations and Trends in Machine Learning, vol.
3, pp. 1–122, 2010

[14] W. Shi, Q. Ling, K. Yuan, G. Wu, and W. Yin, “Linearly convergent
decentralized consensus optimization with the alternating direction al-
gorithm of multipliers,” Proceedings of ICASSP, 2013

[15] M. Friedlander and P. Tseng, “Exact regularization of convex programs,”
SIAM Journal on Optimization, vol. 18, pp. 1326–1350, 2007

[16] M. Lai and W. Yin, “Augmented̀ 1 and nuclear-norm models with a
globally linearly convergent algorithm,” Manuscript

[17] W. Yin, “Analysis and generalizations of the linearized Bregman algo-
rithm,” SIAM Journal on Imaging Sciences, vol. 3, pp. 856–877, 2010

[18] S. Boyd, P. Diaconis, and L. Xiao, “Fastest mixing Markov chain on a
graph,” SIAM Review, vol. 46, pp. 667–689, 2004

[19] Y. Nesterov, “Gradient algorithms for minimizing composite objective
function,” CORE Discussion Paper, 2007

