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Abstract—In this paper we solve a decentralized basis pursuit ~ Decentralized optimization has several advantages for multi-
problem in a multiagent system where each agent holds part of agent systems. lnentralized computatigrthe agents need to
the linear observations on a common sparse vector. The agentsiansmit all their datad; andb; in our case, to a fusion center

collaborate to recover the sparse vector through limited neigh- . Iti-h icati d the fusi t |
boring communication. The proposed decentralized linearized via mult-hop communication an e fusion center solves

Bregman algorithm solves the Lagrange dual of an augmented, (1) and broadcasts the solutions to the agents. This approach
model that is equivalent to basis pursuit. The fact that this dual is energy-consuming and vulnerable to network and fusion
problem is unconstrained and differentiable enables a lightweight center failures. Irdecentralized computatipeach agent only
yet efficient decentralized gradient algorithm. We prove nearly  oychanges a limited amount of information with its one-hop
linear convergence of the dual and primal variables to their . . .
optima. Numerical experiments demonstrate the effectiveness of ”e'gh_bor%" aﬂd keeps its da_tta ed; ar_1d b;) private. The
the proposed algorithm. optimization is completed without a fusion cent8}, [[9].
Consider the decentralized basis pursuit problem where the
sensing matrixA is partitioned by rows. The optimization
variable is common to all agents and each agent holds part
of the objective function and part of the constraint. For this
) ) o kind of problem, existing decentralized algorithms include
Consider a multiagent system ofdistributed agents who yisyrihyted subgradient descerit(], distributed stochastic
collaboratively recover a sparse signat R” from the linear g qradient projectiofif], and alternating direction algorithm
measurements that they individually collect. Agertollects ¢ multipliers (ADMM) [8], [12], [13]. In these algorithms,
measurements; = Az, whereb; € R* andA; € R“"?. Let  gach agent holds a local solution; at each iteration, agents
b1 —A— exchange the local solutions with their one-hop neighbors.
b2 | @ | eRy, A2 : € RI¥P, For distributed subgradient descent, each agent first com-
b. _A' . putes a new solution through combining local solutions of
" " itself and its one-hop neighbors with weighted average, and
whereg = >~ | ¢;. We propose a decentralized algorithm fothen descends along its local negative subgradient direction
the agents to collaboratively solve the basis pursuit probldid]. Distributed stochastic subgradient projection is similar to

Index Terms—Basis pursuit, linearized Bregman, decentralized
computation

I. INTRODUCTION

[2): distributed subgradient descent but includes an extra projection
min (41 (1) operation to a common constraint s@fll Though easy to
s.t. Az =b. implement and suit for asynchronous networks, these two

algorithms are not competitive in solving the decentralized

Qgg;?g;ngcetr?ame r((:)orgrr'zireesssall\t;:?jissesziflir(]:?e;:ecfkaE:£ I:ncj)éélel basis pursuit problem since they do not handle the constraints
prop y sp ' Ax = b efficiently and subgradient descent does not take

(1) exactly recoverse. If b is contaminated by noise ar is
only approximately sparse, stable recovery can be guarantg((aj antage of the structure Q||;.
! he ADMM approach forTI) explicitly introduces con-

if one replaces the constraintise = b by || Az —b|| < ¢, where : . : .
. . . . sensus constraints. Solving this consensus-constrained prob-
I -]l is thef>-norm ande is the estimated noise level, or stop:? . : : I ;
our algorithm wherj| Az — b|| ~ e em with skillful variable splitting leads to decentralized
: algorithms. ADMM-based decentralized algorithms converge

Disri ; L led i I . (
istributed basis pursuit is applied in collaborative SpeCtruEﬂobaIIy for convex problems, and have linear convergence

sensing 4], [5], [6], [7], where the goal is to recover a S ST .
widebsndjsp[egmgni si[grjml which is spgrse Agerittakes its when each local objective function is differentiable, strongly
) convex and having Lipschitz continuous gradiefd][ For

measuremerti; = A;x with sensing matrix4;, and all agents .
: (1), the ADMM-based approach requires each agent to solve
collaborate to recover through solving modell). a least absolute shrinkage and selection operator (LASSO)
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and applies to asynchronous networks. In particular, the mdMgorithm 1 Decentralized linearized Bregman at agent
computation of each at each step is two matrix-vector mulffequire: Sensing matrix4; and measurements.
plications involvingA;, which are much cheaper than solvingéauire: Doubly stochastic weight matrik’.
a LASSO subproblem involvingd4;. The basic idea is to ; }g'rt'zl'ie&il(o% fP’K agenti do
apply a decentralized gradient method to a smoothed dug! ~computew, (k + 1) according to62):
problem of /), where the smoothing does not change the::  Transmitu;(k + 1) to, and receives; (k + 1) from j € A;
solution yet ensures the applicability and fast convergencg Computev;(k + 1) according to/h);
of decentralized gradient iterations. In addition to showing? end for
r

that the decentralized linearized Bregman algorithm has nea v Returnz; in (69).

linear convergence to the solution of)( the number of ’
iterations needed is comparable to that of the ADMM-based _ _ _ .
algorithms. Hence, the proposed algorithm appears to have thélgorithm 1 gives the proposed algorithm. Agentioes

state-of-the-art performance. descentus(k + 1) = vs(k) — h(k)AT (Ass (k) — by), (6a)

Notation N; is the set of one-hop neighbors of agent wherez;(k) = a Shrink(nv;(k)),
i Shrmk(m_) is an operator equal t@IlaX{|xi|,0}Slgr‘(CEi) averaging v;(k + 1) = Z wijui(k + 1), (6b)
element-wise|| - || is vector¢,-norm or matrix spectral norm. Jen
wherew;, v; € RP are two auxiliary variables, and” = [w;;]
Il. BACKGROUND OFLINEARIZED BREGMAN is a doubly stochastic weight matrix satisfying_, w;; = 1,
Linearized Bregman solves moddl) (by solving > i1 wji =1, andw;; # 0 if and only if j € A; Ui. Prior

to (6b), agenti transmitsu, (k + 1) to, and receives;; (k+ 1)

min - [[zf[; + o ||| ? from, its one-hop neighborg € N;. Its raw data (i.e.A; and

@)

s.t. Az =hb, b;) is kept locally.
) . To see how algorithm/6) is related to %), we partition
wherea > 0 is chosen so tha2j returns a solution tol). , — [y1;...;ya] Wherey; € R%. We similarly partition [5)

In fact, there existsv,,;, > 0 such that the solution t(QI is and then rnu|t|p|yj431 to both sides, arriving at

also a solution tol) for any a > ayi, [15]. For compressive

sensing,aumin = 10||2°[|o, Wherez? is the original signal, Alyi(k +1) = Alyi(k) — h(k) AT (A (k) — b;)
is shown to work well [16]. Model (2) is easier to solve
than ) since the Lagrange dual c2)(is unconstrained and
differentiable, subject to efficient gradient algorithms (&8][
[17]). The Lagrange dual of2) (posted as a minimization
problem instead of a maximization one) is

over i = 1,...,n. Comparing the left-hand side of this
with that of 6g), we seeu; ~ ATy, (“~” means ‘is
an local estimate of”). Suppose for moment théb)(is
repeated infinitely many times at eadh then v;(k) =
%Z?ZI u;(k) ~ + i AzTyz(k): +ATy and thus
min  f(y) £ Z||ATy = Proj_, y(ATy)I[2—bTy, (@) ilk) = aShrinknui(k) ~ aShinkATy(k) = (k).
Y Putting together, we have; ~ A;y;, v; ~ ; A%y, and

wherey € R? is the dual variable and Proj ; denotes *i ™ - If “ ~" was =", summing up 62) overi gives §).
element-wise projection to intervéak-1,1]. Its gradient is The choice ofl" affects the diffusion speed d8if) and thus
the convergence of the algorithm. In an asynchronous network,
Vf(y) = aAShrink ATy) — b. (4) W can vary over iterations. As we focus exclusively on the

synchronous case, we fi¥ according to either the maximum

The linearized Bregman algorithm solve8) (by gradient degree (MD) rule or the Metropolis-Hastings (MH) rulig].
descent. The updates at iteratibrare

y(k+1) = y(k) — h(k)(Az(k) — b), (5) IV. CONVERGENCEANALYSIS

wherez(k) = aShrink ATy(k)), We first introduce a lemma which describes testricted

strong convexity propertgf the dual functionf (y) (c.f. [16]).
andh(k) is the stepsize 6] shows that8) is strongly convex

in a restricted sense and thus, if the stepsizes are fixed.§fmma 1 Considerf(y) in (3) where A and b are nonzero.

chosen by line search, bott(k) andy(k) converge linearly. Assume thatdz = b is consistent. Proj(y) denotes the
projection of y onto the solution set of3). Thendv > 0

such that the objective functiof(y) in (3) satisfies

vt — Proj > v|ly — Proj 2 forally. (7
Suppose that the multi-agent system lays over a bidi- fWy () 2 vlly W) v (D

rectionally connected network. For simplicity, we describan explicit formula of v can be found in16].

a synchronous version of our algorithm though it can run

asynchronously. Each agentkeepsz; € RP, which a local Definition We define some variables that appear in the theorem
estimate of the commomn. Every z; will converge tozx. below. Letz;(k) & A;x;(k) —b; € R% andy;(k + 1) £

Ill. DECENTRALIZED LINEARIZED BREGMAN



yi(k) —h(k)z;(k) € R% with y;(0) = 0; the recursion implies s
thatyl( )= _z’:;g h(s)z(s). Defining <ZOB homax |4 l[[fz1(s); -5 2n ()]l
5 y k—1
! ! =hmax A; gE=s (12)
co | | emvandy=| ;| eme | II§ [[2(s)]l-
Zn Yn By assumption|z|| < L, therefore
y(k) satisfies equationg(k + 1) = y(k) — h(k)z(k) and [vi(k) — v(k)]|
y(k) = —2’;*3 h(s)z(s). Define z(k) £ aShrinkno(k)) L
whered(k) £ —1 57575 | h(s)ATz;(s). Substituting the —hmaXHA 1Y 85 12(s)
equationy;(k) = — > ") h(s)z(s) into the definition of .
o(k), we havewv(k) = 13" ATr;(k) = LATy(k). Let <hL A, k—s
be the unique solution to p?obler%)( max 1451 ;}5
L
<Lmax||,4 I (13)

Theorem 1 Consider Algorithmll defined by(6g)-(6k). As- 1-p

sume that the largest eigenvalue of the weigh makkixis The right-hand-side ofi) is irrelevant withi, hence
1 and the second largest i8 < 1. Assume a fixed stepsize

h(k) = h and ||z(k)|| < L where L is a positive constant. max [|v; (k) — o(k)l|
Th
en <% ma || Ai]. (14)
llytk +1) = Proj. (y(k + 1) Step 2: Boundingly (k) — Proj, (y(k))|.
<plly(k) — Proj, (y(k))| +~, 8) Utilizing the property of projection as well as the recursion

y(k +1) = y(k) — hz(k), we know that
ly(k + 1) — Proj, (y(k + 1))
<[ly(k + 1) — Proj. (y(k))|?
[|i(k) — 2| =|ly(k) — Proj, (y(k)) — hz(k)||>. (15)

<ol Al ly(k) — Proj, (u(k))] + “””g

p=V1+02—-2hv<landy= h(s(%a%)? (max; [|A;||)>+hL
with § being an arbitrary positive constant. Further

max [|4;]|. (9) ExpandingL5) results in
J
ly(k + 1) = Proj, (y(k + 1))

Proof: Step 1: Bounding|v;(k) — v(k)]|. <lly(k) — Proj.(y(k))|12 + h2||=(k)|2
Combining 6¢) and 6b) and usingy;(0) = 0, we eliminate N oh (Y (k) — Proi (u(f
u; and obtain the expression of(k) as = 2ha(k)" [y (k) — Proj, (y(k))]

N Il (k) — Proi (y(k)) I+ B [=(0)
1 on B . _
; ; +2h[Az(k) — b — 2(k)]"[y(k) — Proj, (y(k))]. ~ (16)
Consider—2h[Az (k) —b] T [y(k) — Proj, (y(k))]. Recall that
v(k) = 2 ATy(k) andz(k) = aShrinknv(k)). According to
(4), the gradlent off (y) aty(k) is

where(W*T1),; denotes théi, j)th entry of the matrixy s+
Recall that the largest eigenvalue @f is 1 and the second
largest isg < 1. Then

" Vf(y(k))
\|Z (WE=%)i;h AT 2;(s lz =aAShrink ATy(k)) — b
i=1 "= —aAShrinkna(k)) — b
SIS R AT 255 (1) =Az(k) =, an
"= ReplacingV f (y(k)) = Az(k) — b to (7) leads to
Becausen(k) = — = ¥ 705" hATzi(s), we know [AZ(k) — b]" [y (k) — Proj(y(k))]
>vly(k) — Proj, (y(k))|*. (18)
Hvil(k) vl o For Qh[Alx( ) —b—z(k)]T[y(k) — Proj,(y(k))], we have
1 — the inequality
S - k s*hATZj | -
sz:: I sz 2h[Az(k) — b — 2(k)]" [y(k) — Proj.(y(k))]
S ﬂk “hmax||4, ||||7 ZZ] S%HAJE(’C) = b—z(k)||* + 8%|ly (k) — Proj. (y(k))[I*,

(19)

@
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whereé is an arbitrary positive constant.

Substituting [1.8) and (L9) to (16) and collecting terms, we

have

ly(k + 1) — Proj, (y(k + 1))||?
<[1+ 6% = 2hv]|ly(k) — Proj (y(k))|I* + 1?||=(k)|*

h2 )
+ =5 [ Az(k) b — (k)]

By definition z; (k)

| Az (k) = b= (k)|
<nmax || A;z (k) — b; — (k)|
7nmax||A z(k) — Axi (k)|
<nmax(|| Ai*[|lzi (k) — 2(k)||*)
<n(max | A;]))? (max [lz: (k) - 3(k)]))%
Sincez; (k) = aShrinknv;(k)) andz(k) = aShrinkno (k)
max [|l;(k) — z(k) |
:m?xHaShrink(nvi( )) — aShrinkno(k))||
:miaxaHShrink(nvi( )) — Shrinkno(k))||
< maxal|n; (k) — no (k)|
= maxan|jvi(k) = (k)]
then we have
| Az (k) — b — =(k)|?
<a’n® (max || A;))* (max[|vi (k) — o(k)|)*.

Substituting 23) to (20), we can obtain the upper bound 0{3

ly(k + 1) = Proj, (y(k + 1))|?

ly(k + 1) — Proj, (y(k + 1)) |2
<[1+ 6% = 2hv]||y(k) — Proj, (y(k))||*> + h*||z(k)||*

h2a2n3 B
—52 (max 14:1)? (max [|vi (k) — o (k)[1)?,
which implies that

ly(k +1) — Proj,(y(k + 1))

<V1+ 6% = 2hv|ly(k) — Proj,(y(k))|| + k|| =(k)]|

han3/2
_|_

max || A;|| max [Jvi (k) — o(k)]].
Substituting 14) and ||z(k)|| < L to (25) yields
ly(k + 1) — Proj (y(k + 1)) ||

<V/1+ 62 = 2hv|ly(k) — Proj,(y(k))|| + || =(k)]|

han3/?

+ max || ;]| max [[v; (k) — o (k)|

<V1+02—2hv|y(k
n h2L,an3/?
6(1-p3)

=plly(k) — Proj (y(k))|l +~.

— Proj. (y(k))[| + hL

(max HAinf

£ Ale(k') —b; andz & [2’1; .. .;Zn]

(26)

Step 3: Bounding|x; (k) — z*||.

Given any dual solutiory(k), the primal optimum of 2)
is x* = aShrink ATProj, (y(k))). According to the iterate of
x;(k) = aShrink(nv; (k))

i (k) — =]
—||aShrink(nv;(k)) — aShrink AT Proj, (y(k)))||
=||aShrink ATy(k)) — aShrink AT Proj, (y(k)))

+ aShrink(nv; (k)) — aShrink ATy(k))||
<[lashrink A™y(k)) — aShrink A” Proj, (y(k)))

+ [|aShrinknw; (k) — aShrink ATy (k))]. (27)

Using the nonexpansive property of the shrinkage operator
lashrink ATy (k)) — aShrink AT Proj, (y(k)))||
<a|ATy(k) — AProj, (y(k))|
<al|All[ly(k) — Proj(y(k))ll. (28)
Sincev = 2 ATy(k), we have
HaShrlnk(nvl( )) — aShrink ATy (k)|
<allnvi(k) — ATy(k)|

=al|nvi(k) — no(k)||
|

=an|lvi(k) — (k). (29)
Substituting 28) and 29) to (27) leads to

(k) — 27|
<allAl[[ly(k) — Proj,(y(k))|| + anllvi(k) — o(k)].  (30)

Further using/13), we obtain ). [ ]

emark Let us consider the dual convergence re<8jt (f
e chooses? = hv, then the two constants = /1 — hv

3 3
andy = hi“f"”?(maxz |A;|)2 4+ hL. Setting stepsizé to be

small enoughy Is in the order ofh. This way, the algorithm
converges to a small neighborhood of the dual optimum set
with linear ratep = /1 — hu.

In the primal convergence resuB)( if we ignore the term

arlt max; [|4;]|, a local solutionz; converges to the primal

optimum with nearly R-linear rate. The terﬁ% max; || A,

is proportional toh, suggesting that a small stepsi’zenables

x; to converge to a small neighborhood of the primal optimum.
Theorem 1 assumes thkpx( )|| < L. By definitionz(k) =

[A1z1(k)=b1;. .. Anxn (k) —by], ||2(k)|| is upper bounded if

every||z;(k)|| is upper bounded. This assumption is common

in convergence analysis.

V. NUMERICAL EXPERIMENTS

In the simulation, we generate a multiagent system with
n = 50 agents. The agents are uniformly randomly deployed in
a 100 x 100 area and two agents are one-hop neighbors if their
distance is withir80. The generated network is connected. The
sparse signal to recover is ¢ R2%0 and its sparsity i0;
nonzero elements of are generated following the Gaussian
distribution. The sensing matrixd € R190%200 js generated
following the Gaussian distribution. The measuremeénts



Ax are noise-free. Each agent holds two rowsAadindb, i.e.,
A; e R2%200 andb; € R2.

We compare the proposed Algorithih (DLB) with two
existing algorithms, DLASSO irg] and DADMM in [7]. We
consider the standard DLB (DLB-STD) and its variant with
restarted Nesterov acceleration (DLB-ACQE]. Recall from
Section | that DADMM has the most expensive iteration since
each agent solves a LASSO subproblem at each iteration. It%
DLASSO, each agent solves a ridge regression subproblem
each iteration. The two DLB iterations have the lowest per-
iteration cost.

In the numerical experiments, we first compare the conver-
gence rates of DLB, DLASSO, and DADMM, and then study
how the weight matriX?” influences the convergence rate of
DLB. The convergence is measured by relative error, which is
defined as

Error

& 10

10

-2

* —-DLB-ACC|
—6-DLB-STD
—5- DADMM
o — DLASSO
0 500 1000 1500
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Fig. 1. Comparison of DLB, DLASSO, and DADMM.

1 n
- (k) — 2.
2 2 i) =]

The parametett in (2) is set asl as suggested iiif]. In DLB-
ACC the Nesterov acceleration is restarted ev#rjterations.
The parameters in DLASSO and DADMM are both hand-
tuned to the best.

Fig. 1 compares the convergence rates of DLB, DLASSO,
and DADMM. The stepsize is set d@gk) = 0.03 for DLB-
ACC and h(k) = min(0.06, ;) for DLB-STD; the weight
matrix W is set according to the Metropolis-Hastings (MH)
rule. DLB-ACC is the fastest among the four algorithms.
Compared to DLB-STD, DLB-ACC reduces the number of
iterations from~ 700 to ~ 200 to reach10~% accuracy.
DADMM is slower than DLB-ACC; further, each agent takes
much more time at each iteration. DLASSO has modest per-
iteration but is the slowest.

Relative Error

10" €

—©-DLB-ACC: MH
—&-DLB-ACC: MB
—$—DLB-STD: MH
——DLB-STD: MB ||

1072

1000
Iteration

500

1500

In Fig. 2 we compare the performance of DLB with twoFig. 2. DLB with different weight matrix!¥: maximum degree (MD) and

different weight matricesi¥: maximum degree (MD) and
Metropolis-Hastings (MH). The stepsizes are adjusted to the
best. In DLB-ACC,0.02 for MD and 0.03 for MH; in DLB- (o]
STD, h(k) = min(0.04, +) for MD and h(k) = min(0.06, )
for MH. Experimental results suggest that MH is better than

MD in both the standard and the accelerated DLB algorithnis?!
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