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Abstract—We develop an Accelerated Back Pressure (ABP)
algorithm using Accelerated Dual Descent (ADD), a distributed
approximate Newton-like algorithm that only uses local information.
Our construction is based on writing the backpressure algorithm as
the solution to a network feasibility problem solved via stochastic
dual subgradient descent. We apply stochastic ADD in place of
the stochastic gradient descent algorithm. We prove that the ABP
algorithm guarantees stable queues. Our numerical experiments
demonstrate a significant improvement in convergence rate, espe-
cially when the packet arrival statistics vary over time.

I. INTRODUCTION

This paper considers the problem of joint routing and schedul-
ing in packet networks. Packets are accepted from upper layers
as they are generated and marked for delivery to intended
destinations. To accomplish delivery of information nodes need
to determine routes and schedules capable of accommodating the
generated traffic. From a node-centric point of view, individual
nodes handle packets that are generated locally as well as packets
received from neighboring nodes. The goal of each node is
to determine suitable next hops for each flow conducive to
successful packet delivery.

A joint solution to this routing and scheduling problem is
offered by the backpressure (BP) algorithm [1]. In BP nodes keep
track of the number of packets in their local queues for each
flow and share this information with neighboring agents. The
differences in the number of queued packets at two neighboring
terminals are computed for all flows and the transmission capacity
of the link is assigned to the flow with the largest queue
differential. We can interpret this algorithm by identifying queue
differentials with pressure to send packets on a link.

A drawback of BP is the slow convergence rate of this iterative
process for route discovery. This is better understood through an
alternative interpretation of BP as a dual stochastic subgradient
descent algorithm [2], [3]. Joint routing and scheduling can be
formulated as the determination of per-flow routing variables that
satisfy link capacity and flow conservation constraints. In this
model the packet transmission rates are abstracted as continuous
variables. The slow convergence rate of BP is thus expected
because the convergence rate of subgradient descent algorithms
is logarithmic in the number of iterations [4]. Simple modifi-
cations can speed up the convergence rate of BP by rendering
it equivalent to stochastic gradient descent [5] – as opposed to
stochastic subgradient descent. Nevertheless, the resulting linear
convergence rate is still a limiting factor in practice.

To speed up the convergence rate of BP we need to incorporate
information on the curvature of the dual function. This could
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be achieved by using Newton’s method, but the determination
of dual Newton steps requires coordination among all nodes in
the network. To overcome this limitation, methods to determine
approximate Newton steps in a distributed manner have been
proposed. Early contributions on this regard are found in [6],
[7]. Both of these methods, however, are not fully distributed
because they require some level of global coordination. Efforts
to overcome this shortcoming include approximating the Hessian
inverse with the inverse of its diagonals [8] and the use of
consensus iterations to approximate the Newton step [9], [10].
Our work makes use of the accelerated dual descent (ADD)
family of algorithms that uses a Taylor’s expansion of the Hessian
inverse to compute approximations to the Newton step [11].
Members of the ADD family are indexed by a parameter N
indicating that local Newton step approximations are constructed
at each node with information gleaned from agents no more
than N hops away. Algorithms ADD-N were proven to achieve
quadratic convergence rate and demonstrated to reduce the time
to find optimal operating points – as measured by the number
of communication instances – by two orders of magnitude with
respect to regular subgradient descent. It has been shown that
stochastic ADD converges for the Network flow optimization
in [12].The goal of this paper is to adapt the ADD family of
algorithm to develop variations of BP that achieve quadratic
convergence.

Section II introduces the problem of stabilizing queues in a
communication network and reviews the backpressure algorithm,
[1]. We proceed to demonstrate that the backpressure algorithm is
equivalent to stochastic subgradient descent (Section II-A). Once
in the optimization framework we review the generalization to
soft backpressure (Section II-B). In Section III, we construct the
accelerated backpressure algorithm, which is an approximation
of Newton’s method using local information and limited com-
munication with neighboring nodes. In Section IV, we prove that
the accelerated backpressure algorithm stabilizes the queues. In
Section V, we present numerical experiments which demonstrate
the performance gains associated with implementing the accel-
erated backpressure algorithm as compared to the backpressure
algorithm from [1] and soft backpressure algorithm from [5].

The main contribution of this work is the introduction of a
locally computable second order method for solving the queue
stabilization problem. This is particular relevant for cases where
the packet arrival statistics vary with time. As shown in Figure
3, the accelerated backpressure algorithm can effectively stabilize
queues in networks whose arrival rates vary at higher frequencies
than its first order parent algorithms.

II. PRELIMINARIES

Consider a given a network G = {V, E} where V is the set
of nodes and E ⊆ V × V is the set of links between nodes.
Denote as Cij the capacity of link (i, j) ∈ E and define the
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neighborhood of i as the set ni = {j ∈ V|(i, j) ∈ E} of nodes
j that can communicate directly with i. There is also a set of
information flows K with the destination of flow k ∈ K being
the node ok ∈ V .

At time index t terminal i 6= ok generates a random number
aki (t) of units of information to be delivered to ok. The random
variables aki (t) ≥ 0 are assumed independent and identically
distributed across time with expected value E

[
aki (t)

]
= aki . In

the same time slot node i routes rkij(t) ≥ 0 units of information
through neighboring node j ∈ ni and receives rkji(t) ≥ 0 packets
from neighbor j. The difference between the total number of
received packets aki (t)+

∑
j∈ni

rkji(t) and the sum of transmitted
packets

∑
j∈ni

rkij(t) is added to the local queue – or subtracted
if this quantity is negative. Therefore, the number qki (t) of k-flow
packets queued at node i evolves according to

qki (t+ 1) =

[
qki (t) + aki (t) +

∑
j∈ni

rkji(t)− rkij(t)
]+
, (1)

where the projection [·]+ into the nonnegative reals is necessary
because the number of packets in queue cannot become negative.
We remark that (1) is stated for all nodes i 6= ok because packets
routed to their destinations are removed from the system.

To ensure packet delivery it is sufficient to guarantee that all
queues qki (t + 1) remain stable. In turn, this can be guaranteed
if the average rate at which packets exit queues do not exceed
the rate at which packets are loaded into them. To state this
formally observe that the time average limit of arrivals satisfies
limt→∞ aki (t) = E

[
aki (t)

]
:= aki and define the ergodic limit

rkij := limt→∞ rkij(t). If the processes rkij(t) controlling the
movement of information through the network are asymptotically
stationary, queue stability follows if 1∑

j∈ni

rkij − rkji ≥ aki ∀ k, i 6= ok. (2)

For future reference define the vector r := {rkij}k,i 6=ok,j grouping
variables rkij for all flows and links. Since at most Cij packets
can be transmitted in the link (i, j) the routing variables rkij(t)
must satisfy ∑

k

rkij(t) ≤ Cij . (3)

The joint routing and scheduling problem can be now formally
stated as the determination of nonnegative variables rkij(t) ≥ 0
that satisfy (3) for all times t and whose time average limits rkij
satisfy (2). The BP algorithm solves this problem by assigning all
the capacity of the link (i, j) to the flow with the largest queue
differential qki (t)−qkj (t). Specifically, for each link we determine
the flow pressure

k∗ij = argmax
k

[
qki (t)− qkj (t)

]+
. (4)

If the maximum pressure maxk
[
qki (t)− qkj (t)

]+
> 0 is strictly

positive we set rkij(t) = Cij for k = k∗ij . Otherwise the link
remains idle during the time frame. The backpressure algorithm

1Stability is guaranteed only if the inequalities hold in a strict sense, i.e.,∑
j∈ni

rkij − rkji > aki . Equality is allowed here to facilitate connections with
optimization problems to be considered later on.

works by observing the queue differentials on each link and then
assigning the capacity for each link to the data type with the
largest positive queue differential, thus driving the time average
of the queue differentials to zero– stabilizing the queues. For
the generalizations developed in this paper it is necessary to
reinterpret BP as a dual stochastic subgradient descent as we
do in the following section.

A. Dual stochastic subgradient descent

Since the parameters that are important for queue stability are
the time averages rkij of the routing variables rkij(t) an alternative
view of the joint routing and scheduling problem is the determi-
nation of variables rkij satisfying (2) and

∑
k r

k
ij ≤ Cij . This can

be formulated as the solution of an optimization problem. Let
fkij(r

k
ij) be arbitrary concave functions on R+ and consider the

optimization problem

r∗ := argmax
∑

k,i 6=oi,j

fkij(r
k
ij) (5)

s.t.
∑
j∈ni

rkij − rkji ≥ aki , ∀ k, i 6= ok,∑
k∈K

rkij ≤ Cij , ∀ (i, j) ∈ E .

where the optimization is over nonnegative variables rkij ≥ 0.
Since only feasibility is important for queue stability, solutions to
(5) ensure stable queues irrespectively of the objective functions
fkij(r

k
ij).

Since the problem in (5) is maximization of a concave function,
it can be solved by descending on the dual domain. Start by as-
sociating multipliers λki with the constraint

∑
j∈ni

rkij−rkji ≥ aki
and keep the constraint

∑
k r

k
ij ≤ Cij implicit. The correspond-

ing Lagrangian associated with the optimization problem in (5)
is

L(r, λ) =
∑

k,i 6=ok,j

fkij(r
k
ij)+

∑
k,i 6=ok

λki

(∑
j∈ni

rkij−rkji−aki
)

(6)

where we introduced the vector λ := {λki }k,i 6=ok grouping
variables λki for all flows and nodes. The corresponding dual
function is defined as h(λ) := max∑

k r
k
ij≤Cij

L(r, λ).
To compute a descent direction for h(λ) define the pri-

mal Lagrangian maximizers for given λ as rkij(λ) :=
argmax∑

k r
k
ij≤Cij

L(r, λ). A descent direction for the dual func-
tion is available in the form of the dual subgradient whose
components ḡki (λ) are obtained by evaluating the constraint slack
associated with the Lagrangian maximizers

ḡki (λ) :=
∑
j∈ni

rkij(λ)− rkji(λ)− aki . (7)

Since the Lagrangian L(r, λ) in (6) is linear in the routing
variables rkij the determination of the maximizers rkij(λ) :=
argmax∑

k r
k
ij≤Cij

L(r, λ) can be decomposed into the maxi-
mization of separate summands. Considering the coupling con-
straints

∑
k r

k
ij ≤ Cij it suffices to consider variables {rkij}k for

all flows across a given link. After reordering terms it follows
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that we can compute rkij(λ) as

rkij(λ) = argmax
∑
k

fkij(r
k
ij) + rkij

(
λki − λkj

)
(8)

s.t.
∑
k∈K

rkij ≤ Cij .

Introducing a time index t, subgradients ḡki (λ(t)) could be
computed using (7) with Lagrangian maximizers rkij(λ(t)) given
by (8). A subgradient descent iteration could then be defined to
find the variables r∗ that solve (5); see e.g., [13].

The problem in computing ḡki (λ) is that we don’t know the av-
erage arrival rates aki . We do observe, however, the instantaneous
rates aki (t) that are known to satisfy E

[
aki (t)

]
= aki . Therefore,

gki (λ) :=
∑
j∈ni

rkij(λ)− rkji(λ)− aki (t), (9)

is a stochastic subgradient of the dual function in the sense that
its expected value E

[
gki (λ)

]
= ḡki (λ) is the subgradient defined

in (7). We can then minimize the dual function using a stochastic
subgradient descent algorithm. At time t we have multipliers λ(t)
and determine Lagrangian maximizers rkij(t) := rkij(λ(t)) as per
(8). We then proceed to update multipliers along the stochastic
subgradient direction according to

λki (t+ 1) =

[
λki (t)− ε

(∑
j∈ni

rkij(t)− rkji(t)− aki (t)

)]+
, (10)

where ε is a constant stepsize chosen small enough so as to ensure
convergence; see e.g., [5].

Properties of the descent algorithm in (10) vary with the
selection of the functions fkij(r

k
ij). Two cases of interest are when

fkij(r
k
ij) = 0 and when fkij(r

k
ij) are continuously differentiable,

strongly convex, and monotone decreasing on R+ but otherwise
arbitrary. The classical backpressure algorithm, [1] can be recov-
ered by setting fkij(r

k
ij) = 0 for all links flows k and links (i, j)

and choosing the step size ε = 1.

B. Soft backpressure

Assume now that the functions fkij(r
k
ij) are continuously

differentiable, strongly convex, and monotone decreasing on R+

but otherwise arbitrary. In this case the derivatives ∂fkij(x)/∂x of
the functions fkij(x) are monotonically increasing and thus have
inverse functions that we denote as

F kij(x) :=
[
∂fkij(x)/∂x

]−1
(x). (11)

The Lagrangian maximizers in (8) can be explicitly written
in terms of the derivative inverses F kij(x). Furthermore, the
maximizers are unique for all λ implying that the dual function
is differentiable. We detail these two statements in the following
proposition.

Proposition 1 If the functions fkij(r
k
ij) in (5) are continuously

differentiable, strongly convex, and monotone decreasing on R+,
the dual function h(λ) := max∑

k r
k
ij≤Cij

L(r, λ) is differentiable
for all λ. Furthermore, the gradient component along the λki
direction is gki (λ) as defined in (9) with

rkij(λ) = F kij

(
−
[
λki − λkj − µij(λ)

]+)
(12)

where µij(λ) is 0 if
∑
k F

k
ij

(
−
[
λki − λkj

]+) ≤ Cij and in any
other case is the solution to the equation∑

k

F kij

(
−
[
λki − λkj − µij(λ)

]+)
= Cij . (13)

Proof: The dual problem minλ h(λ) is strongly smooth
because the primal (5) is maximization of a strongly concave
function, [14]. Strong smoothness implies the dual function is
everywhere differentiable and thus there must be unique primal
maximizers. In our case, the dual gradient comes from differen-
tiating (6) with respect to λki which yields (9). Substituting the
unique maximizers we have the unique dual gradient.

In order to find the previously mentioned unique maximizers
we consider the primal optimization (8). We dualize the addi-
tional constrain to get the extended Lagrangian

L̄(r, µ) =
∑
k

f(rkij) + rkij(λ
k
i − λkj ) + µij(Cij −

∑
k

rkij). (14)

Considering the KarushKuhnTucker (KKT) optimality conditions
as defined in [15][Section 5.5] for (14) yields the equations

f ′(rkij) = −
[
λki − λkj − µij

]+
(15)∑

k

rkij ≤ Cij (16)

for all (i, j) ∈ E . Applying the definition of F kij(·) from equation
(11) to (15) we get the desired relation in (12). It remains to
enforce (16) by selection of µij which gives us condition (13).
The assertion that µij = 0 when

∑
k F

k
ij

(
−
[
λki − λkj

]+) ≤ Cij
hold by the principal of complementary slackness, detailed in
[15][Section 5.5].
While (13) does not have a closed for solution it can be computed
quickly numerically using a binary search because it is a simple
single variable root finding problem. Computation time cost
remains small compared to communication time cost.

An important difference between backpressure and soft back-
pressure is that the former is equivalent to stochastic subgradient
descent whereas the latter is tantamount to stochastic gradient
descent because the dual function is differentiable. This improves
the average convergence rate from logarithmic – expected dis-
tance to optimal variables decreasing like c/t for some constant
c – to linear – expected distance to optimality proportional
to ct for some c. Linear convergence is still not satisfactory,
however, motivating the accelerated backpressure algorithm that
we introduce in the following section.

III. ACCELERATED BACKPRESSURE

Backpressure type algorithms exhibit slow convergence be-
cause they are fundamentally first order methods. In the cen-
tralized deterministic case we can speed up using the Newton
method. In our case, the stochastic nature of the problem is not
an issue because the arrival rates aki do not appear in the Hessian

H =


H11 H12 · · · H1n

H21
. . .

...
...

. . .
...

Hn1 · · · · · · Hnn

 (17)
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where

[Hij ]ks =
∂2L(r(λ), λ)

∂λki ∂λ
s
j

. (18)

Proposition 2 The Dual (Generalized) Hessian, H(λ) =
∇2L(r(λ), λ) is block sparse with respect to the graph G:

Hij = 0 ∀i 6= j s.t (i, j), (j, i) 6∈ E (19)

and the diagonal blocks are Hii are positive semidefinite.

Proof: The existence of the generalized Hessian is guaran-
teed by [16]. In order to compute the dual (generalized) Hessian,
we begin by computing the optimal flow rates rkij(λ) from the
optimal queue priorities as defined in (12). Substituting into

∂L(r(λ), λ)

∂λki
=
∑
j∈ni

rkji(t)− rkij(t)− aki (20)

and differentiating with respect to λ we construct the Hessian.
Since aki is a constant the key is differentiating rkij(λ) with
respect to λ. We can differentiate (12) using the chain rule
yielding

∂rkij(λ)

∂λki
=
∂F kij(x)

∂x

∂

∂λki

(
−
[
λki − λkj − µij

]+)
(21)

The existence of ∂F kij(x)/∂x is guaranteed by our assumptions
on the edge costs fkij . Differentiating −

[
λki − λkj − µij

]+
is

done by observing that this function becomes a saturated linear
function of rkij when rkij is non-zero and exactly zero when
rkij = 0. The slope of the linear function is determined by whether
the edge (i, j) is at capacity (µij > 0). Discontinuities in rkij
occur when rkij = 0 and when the projection becomes active,
resulting in points from the derivative. We define the derivatives
to be zero out these points since they are adjacent to regions
where the derivatives are defined and equal to zero. We express
the derivative in terms of the active sets

Aij = {k ∈ K : rkij(λ) > 0} (22)

for each edge (i, j) and the local variables µij and {rkij}. Using
(21) the diagonal elements Hii are defined

[Hii]kk =
∑
j∈ni

F ′(rkij)1(k ∈ Aij)
(
1(µij > 0)

|Aij |
− 1

)
+ F ′(rkji)1(k ∈ Aji)

(
1(µji > 0)

|Aji|
− 1

)
. (23)

Using same method the off diagonal elements of Hii are com-
puted

[Hii]ks =
∑
j∈ni

F ′(rkij)1(k, s ∈ Aij)
(
1(µij > 0)

|Aij |

)
+ F ′(rkji)1(k, s ∈ Aji)

(
1(µji > 0)

|Aji|

)
. (24)

We observe that
∑
j∈ni

[Hij ]kk = [Hii]kk from the definitions
in (23) and (24). Also, F ′(rkij) ≤ 0 from (11) and the our
assumption that fkij(·) is monotone decreasing, therefore the
diagonal elements are positive and according to [17][Section 6.2]
Hii is positive semidefinite.

We can also compute the off diagonal blocks by differentiating
using (21). The diagonal elements of the the off-diagonal blocks
Hij are given by

[Hij ]kk = F ′(rkij)1(k ∈ Aij)
(

1− 1(µij > 0)

|Aij |

)
+ F ′(rkji)1(k ∈ Aji)

(
1− 1(µji > 0)

|Aji|

)
(25)

and the off-diagonal elements of the off-diagonal blocks are

[Hij ]ks = −F ′(rkij)1(k, s ∈ Aij)
(
1(µij > 0)

|Aij |

)
− F ′(rkji)1(k, s ∈ Aji)

(
1(µji > 0)

|Aji|

)
. (26)

Observe that the action set Aij is empty by definition if there
is no link (i, j) ∈ E , therefore k cannot be an element of Aij .
Plugging this fact into the definition of the off diagonal blocks
Hij found in equations (25) and (26) we conclude that Hij = 0
whenever i 6= j and (i, j), (j, i) 6∈ E .

Proposition 2 guarantees that all elements of the Hessian can
be computed using local information. Elements of the Hessian
require knowledge of the local active sets Aij from (3), which
are computed using the local flow values {rkij}k. Furthermore,
Proposition 2 gives us positive semi-definiteness of the diagonal
blocks Hii indicating that the nodes depend positively on their
own queues. This fits our intuition because we expect penalties
on a specific queue to become larger when those queues become
larger. Later we will use this fact to show that our splitting matrix
D̄ is invertible.

Newtons method is centralized because it requires the inverse
of the Hessian matrix. At each time instance nodes send their
multipliers λki (t) to their neighbors. After receiving multiplier
information from its neighbors, each node can compute the
multiplier differentials λki (t) − λkj (t) for each edge. The nodes
then solve for µij on each of its outgoing edges by using a
rootfinder to solve the local constraint in (13), The capacity
of each edge is then allocated to the commodities via reverse
waterfilling as defined in (12). Once the transmission rates are
set each node can observe its net packet gain which is equivalent
to the stochastic gradient as defined in (9). The nodes must also
compute the matrix of second derivatives, Hij for each of its
outgoing edges according to (23)–(26) which are functions of
local transmission rates {rkij}k,j∈n(i). In order to compute the
Newton direction nodes must then send their sub gradients and gi
and all of their Hessian blocks Hij to every node in the Network,
With this information each node can invert the global Hessian
matrix and compute its Newton direction di = −

∑
j [H

−1]ijgj .
Finally, each node updates its multipliers by adding dki to its
current multipliers. In this algorithm the multipliers are no longer
equivalent to the queue lengths but can be thought of as ”queue
priorities” which take into account the queue lengths and the
networks ability to handle this queues.

A. A distributed approximation of the Newton direction

In order to accelerate backpressure and retain its distributed
nature we compute the dual update direction based on the ADD-
N algorithm defined in [18] which leverages the sparsity of
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Algorithm 1: Local Approximation of Newton’s Direction
1 for all neighbors j ∈ n(i) do
2 Observe local flows {rkij}k and {rkji}k
3 Compute active sets

Aij = {k ∈ K : rkij(λ) > 0}

4 Compute Hij according to (25) and (26).
5 Set B̄ij = −Hij .
6 end
7 Compute Hii according to (23) and (24).
8 Compute D̄−1

ii = (Hii + I)−1

9 Set B̄ii = I
10 Compute gi = {gki }k according to

gki =
∑
j∈ni

rkji(t)− rkij(t)− aki (t)

11 for all neighbors j ∈ n(i) do
12 Communicate D̄−1

ii and gi
13 Receive D̄−1

jj and gj
14 end
15 Compute di = {dki }k according to

di = −D̄−1
ii gi −

∑
j∈ni

D̄−1
ii B̄ijD̄

−1
jj gj

the Hessian to approximate its inverse. The ADD-N algorithm
requires a splitting of the Hessian. We define a block splitting
H = (D + I)− (B + I) where D is block diagonal defined by

Dii = Hii (27)

and B is block sparse defined by

B = D −H. (28)

The ADD-N method gives us the approximate Hessian inverse

H−1 ≈ H̄(N) =

N∑
τ=0

(
(D + I)−1(B + I)

)τ
(D + I)−1. (29)

The diagonal blocks [D + I]ii are positive definite for all i
because Dii is positive semi-definite from Proposition 2. We
define simplified notation for our splitting

H = D̄ − B̄ (30)

where D̄ = D + I and B̄ = B + I giving us the expression

H̄(N) =

N∑
τ=0

(
D̄−1B̄

)τ
D̄−1. (31)

By construction, the matrix H̄(N) is block sparse such that
H̄

(N)
ij > 0 only if node i and j are N or fewer hops apart

in G. We are interested in the fully distributed case where only
one hop neighbor information is required. Selecting N = 1, the
dual update direction is computed as

di(t) = −D̄−1ii gi(t)−
∑
j∈ni

D̄−1ii B̄ijD̄
−1
jj gj(t). (32)

The update direction dki can be computed using only local
information acquired by a single exchange of information with

Algorithm 2: Accelerated Backpressure for node i
1 Observe qki (0).
2 Initialize λk

i (0) = qki (0) for all k and i 6= dest(k)
3 for t = 0, 1, 2, · · · do
4 for all neighbors j ∈ n(i) do
5 Send multipliers {λk

i (t)}k – Receive multipliers {λk
j (t)}k

6 Compute µij such that∑
k

[qki (t)− qkj (t) + βk
ij − µij ]

+

7 Transmit packets at rate

rkij(t) = F (−[qki (t)− qkj (t) + βk
ij − µij ]

+)

8 end
9 Send variables {rkij(t)}kj – Receive variables {rkji(t)}kj

10 Compute stochastic gradient {gki (t)}k

gki (t) =
∑
j∈ni

rkji(t)− rkij(t)− aki (t)

11 Compute dki by executing Algorithm 1
12 Update the dual variables

λk
i (t+ 1) = λk

i (t) + εdki (t)

13 end

neighboring nodes as described in Algorithm 1. Each node uses
knowledge of the flows entering {rkji}k and leaving {rkij}k to
compute the active sets Aij . Using the active sets and the flows
node i can compute the Hessian submatrix Hij for each of its
neighbors j ∈ n(i). The sub matrix Hii = −

∑
j∈n(i)Hij . From

the Hessian submatrices node i can compute the submatrices of
our splitting B̄ij = −Hij , B̄ii = I , D̄ii = I +Hii. The gradient
{gki }k is compute from the flows {rkij}k and {rkji}k. Node i can
invert D̄ locally because it is block diagonal. Node i exchanges its
local variables D̄−1ii and gi = {gki }k with its neighbors j ∈ n(i)
allowing the computation of the approximate newton direction at
node i, di given by equation (32).

The dual update for the accelerated backpressure algorithm is
given by

λi(t+ 1) = λi(t)−
∑
j∈ni

H̄ijgj (33)

where [λi]k = λki is the local vector of duals at node i and
H̄ij is the i, j block of the matrix H̄ . The dual updates for
variables belonging to node i depend only on the variables rkij
and gki belonging to nodes j ∈ ni. The accelerated backpressure
algorithm is given by

Algorithm 2 works like soft backpressure but the set of queue
priorities λki (t) are not equivalent to the queue lengths qki .
The queue priorities are updated using information about not
only node i’s queue but also the queues at neighboring nodes
j ∈ ni. The additional information is weighted according the
approximate inverse Hessian. The cost of this change is that
rather than simply observe the queues as they evolve we must
observe the realized flows rkij and update the queue priorities
according. This requires one additional exchange of information
with neighboring nodes, which appears in Algorithm 1. However
the slightly increased communication overhead of the accelerated
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backpressure algorithm is offset by significant improvement in
convergence rate which we demonstrate in the following sections.

IV. STABILITY ANALYSIS

In order to claim the accelerated backpressure algorithm is an
alternative to the backpressure and soft backpressure algorithms
we need to guarantee that it achieves queue stability. In this
section we leverage results from the the stability analysis of
the backpressure algorithm detailed extensively in [2]. We begin
by proving the stability of the dual variables because they are
analogous to queue lengths in the backpressure analysis.

Proposition 3 Given a Network G with packet arrivals
E[aki (t)] = aki and edge capacities Cij , routing packets according
to Algorithm 2, we have stable dual variables

lim sup
t→∞

1

t

t−1∑
τ=0

∑
i,k

Eλki (τ) ≤ B

2δ
(34)

for each commodity k and node i 6= dest(k), where B, δ > 0.

Corollary 1 Stability of the dual variables λki (t) implies stability
of the queues qti(t).

Proposition 3 guarantees the stability of the dual variables λki (t)
(queue priorities) which take the role the queues have in BP and
SBP for determining routing in the ABP algorithm. Demonstrat-
ing that the λki (t) sequence is stable tells us that the algorithm
itself is stable in the sense that the routing assignments stabilize
(because they are an explicit function of λki (t)). It is Corollary
1 which guarantees that the queues themselves remain stable.
This is done by observing that the evolution of λki (t) and qki (t)
both evolve based on the sequence of dual gradients gki (t). Since
the ABP algorithm solves the optimization (5), the dual gradient
gki (t) tends to zero on average so we are not surprised to see that
both λki (t) and qki (t) are stable.

V. NUMERICAL RESULTS

Our choice of objective function is

fkij(r
k
ij) = −1

2

(
rkij
)2

+ βkijr
k
ij (35)

with 5 data types. The quadratic term captures an increasing cost
of routing larger quantities of packets across a link and help to
eliminate myopic routing choices that lead to sending packets in
cycles. The linear term β is introduced to reward sending packets
to their destinations. In our simulations, βkij = 10 for all edges
routing to their respective data type destinations j = dest(k) and
all other i, j, k, βkij = 0. The Link capacities are select uniformly
randomly [0, 100].

We demonstrate that the ABP algorithm solved the determin-
istic networking problem (2). In figure 2, the ABP algorithm is
applying to case with fixed arrival rates and the queues stabilize
after only about 30 iterations with under 1000 total queued
packets across all queues. Soft backpressure requires over 100
iterations to stabilize and the queues total around 8000 queued
packets and backpressure appears to be stable after about 100
iterations and over 10000 packets remain queued. An important
observation is that in the deterministic case the accelerated

Fig. 1. The numerical experiments for the ABP algorithm presented in this
section are performed on this simple 10 node network with 5 data types. The
destinations are unique for each data type and are chosen randomly.
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Fig. 2. The Accelerated Backpressure algorithm stabilizes the queues faster
and with smaller queue totals than the Soft Backpressure or the traditional
Backpressure algorithms in the case where the arrivals rates are deterministic.

backpressure algorithm converges exactly to the optimal dual
variables (causing the queue totals to have no variance) while
the backpressure and softbackpressure converge on average and
retain some variance.

In order to demonstrate the effect of having a faster conver-
gence rate we consider the case where the nodes are divided
into two equal sized sets. At time t one of the two sets will
be actively receiving packets from outside the network. The
frequency at which we switch between active sets captures how
fast the system is varying. The example shown in Figures 4 and 3
switches active sets every 10 iterations. The key observation in 4
is that the dual variables are highly volatile for backpressure and
soft backpressure. Recalling that in the case of backpressure and
soft backpressure the duals are equivalent to the queue lengths,
volatility in the duals is volatility in the queues. However, accel-
erated backpressure converges quickly enough that the variations
in the underlying statistics at a rate of once every 10 iterations
has no significant effect. From Figure 3 it is clear that by having
much more stable dual variables we are able to compute more
effective transmission rate assignments and keep the queues from
growing.
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Fig. 3. The variation in the underlying statistics for the packet arrival rates
causes the backpressure and soft backpressure algorithm to stabilize much more
slowly and in some cases not at all.
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Fig. 4. The Accelerated Backpressure algorithm converges to the optimal dual
variables at a rate significantly greater than the backpressure or soft backpressure
algorithm, allowing the algorithm to track the optimal duals even when the
underlying arrival rates vary.

VI. CONCLUSION

In this work we have presented a novel method for computing
packet routes in networks based on applying an approximate
Newton’s method to the backpressure routing problem. This
approach retains the distributed information structure necessary
for implementing the algorithm efficiently at the node level. We
presented node level protocols and proved that our algorithm
stabilizes queues provided the arrival rates and capacities are
chosen such that it is possible to stabilize the queues. In nu-
merical experiments, we demonstrate significant improvements in

convergence rate leading to much smaller queues and the ability
to stabilize queues even when the arrival rate statistic vary. Our
forthcoming work focuses on extending the analysis of the ABP
algorithm to explicitly consider the convergence rates.
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