
Accelerated Dual Descent for Constrained Convex Network
Flow Optimization

Michael Zargham†, Alejandro Ribeiro†, Ali Jadbabaie†

Abstract—We present a fast distributed solution to the capacity
constrained convex network flow optimization problem. Our
solution is based on a distributed approximation of Newtons
method called Accelerated Dual Descent (ADD). Our algorithm
uses a parameterized approximate inverse Hessian, which is
computed using matrix splitting techniques and a Neumann
series truncated after N terms. The algorithm is called ADD-N
because each update requires information from N-hop neighbors
in the network. The parameter N characterizes an explicit
trade off between information dependence and convergence rate.
Numerical experiments show that even for N=1 and N=2, ADD-N
converges orders of magnitude faster than subgradient descent.

I. INTRODUCTION

The goal of this paper is to develop a fast distributed
solution to the capacity constrained convex network flow
optimization problem. Solutions to minimum cost network
flow problems have long been used in operations research
and transportation networks [1], [2]. The seminal results of
Rockafellar in [3] tie the network flow problem to min
cut and other combinatorial problems such as shortest path,
[4][Chapter 1]. Network flow problems also arise in routing
problems for communication networks, [5] where there is a
need for distributed solutions. For example, solving a network
flow problem is key subproblem in the wireless routing and
resource allocation problem in [6].

Dual subgradient descent is a distributed algorithm used
to solve the convex network flow optimization. Analysis of
subgradient methods for convex optimization problems can be
found in [7] and [8] with the latter taking into account uncer-
tainty in the network structure. However, practical applicability
of subgradient type algorithms is limited by exceedingly slow
convergence rates, [9] and [10]. An alternative distributed
algorithm based on the Gauss Seidel method is present in
[11]. Like gradient descent, Gauss Seidel is a first order
method. Faster methods such as dual Newton’s method, require
global information and the existence of a dual Hessian. The
Accelerated Dual Descent (ADD) method is a distributed
algorithm requiring information from an N -hop neighborhood
in order to update the dual variables, [12], [13].

The ADD method is based on Newtons Method and there-
fore requires the existence of the dual Hessian. We show
that capacity constraints result in a nonsmooth dual function.

This research is supported by Army Research Lab MAST Collaborative
Technology Alliance, AFOSR complex networks program, ARO P-57920-
NS, NSF CAREER CCF-0952867, and NSF CCF-1017454, ONR MURI
N000140810747 and NSF-ECS-0347285.
†Michael Zargham, Alejandro Ribero and Ali Jadbabaie are with the De-

partment of Electrical and Systems Engineering, University of Pennsylvania.

Therefore, there are points where dual Hessian does not exist
and Newton type methods such as ADD cannot be directly
applied. In this work we prove the existence of a generalized
dual Hessian. We compute the generalized dual Hessian via
local information and use it to implement the ADD-N algo-
rithm. Using ADD-N with the generalized Hessian is proven
to result in a descent direction guaranteeing convergence of
the algorithm.

We begin the paper in Section II with the formal definition
of the network flow optimization problem considered here.
Network connectivity is modeled as a directed graph and the
goal of the network is to support a single information flow
specified by incoming rates at an arbitrary number of sources
and outgoing rates at an arbitrary number of sinks. Using the
capacity constraints to restrict to positive valued flows recovers
the standard implementation of the network flow optimization
problem in [4], [14]. Each edge of the network is associated
with a convex function that determines the cost of transmitting
a unit of flow across it. The objective is to find the flows
that minimize the sum of link costs by solving a convex
optimization problem with linear constraints.

In Section II-A, we show that the dual problem is non-
smooth and we prove the existence of a generalized dual
Hessian consistent with [15]. In Section III, we construct the
ADD-N update using a Neumann expansion for the Hessian
inverse, [16][Section 5.8] truncated after N terms. Since
our inverse Hessian approximation is an N degree matrix
polynomial our descent direction can be computed using N -
hop neighbor information. In Section III-A, we demonstrate
how the ADD-N direction can be implemented using N one
hop exchanges per dual iteration. In Section IV, the ADD
algorithm is shown to exhibit faster convergence rate relative
to subgradient descent in numerical experiments.

II. CONSTRAINED NETWORK OPTIMIZATION

Consider a network represented by a directed graph G =
(N , E) with node set N = {1, . . . , n}, and edge set E =
{1, . . . , E}. The network is deployed to support a single
information flow specified by incoming rates bi > 0 at
source nodes and outgoing rates bi < 0 at sink nodes. Rate
requirements are collected in a vector b, which to ensure
problem feasibility has to satisfy

∑n
i=1 b

i = 1. Our goal is
to determine a flow vector x = [xe]e∈E , with xe denoting the
amount of flow on edge e = (i, j). Flow conservation implies
that it must be Ax = b, with A the n×E node-edge incidence

52nd IEEE Conference on Decision and Control
December 10-13, 2013. Florence, Italy

978-1-4673-5717-3/13/$31.00 ©2013 IEEE 1037

matrix defined as

[A]ij =

 1 if edge j leaves node i,
−1 if edge j enters node i,
0 otherwise.

We define the reward as the negative of a sum of convex cost
functions φe(xe) denoting the cost of xe units of flow travers-
ing edge e. We assume that the cost functions φe are strictly
convex, surjective and twice continuously differentiable on the
interval cel ≤ xe ≤ ceu where cel ≤ 0 and ceu ≥ 0 are the
capacity constraints on edge e. The direction of flow can be
forced to match the direction of the edge by choosing cel = 0.
The network flow optimization problem is then defined as

min f(x) =
∑E
e=1 φe(x

e)
subject to: Ax = b

cl ≤ x ≤ cu.
(1)

Keeping the capacity constraints and dualizing the equality
constraint, we have the partial dual

q(λ) = minx
E∑
e=1

φe(x
e) + λ′(Ax− b) (2)

subject to: cl ≤ x ≤ cu.

We separate this equation into an edge dimensional sum of
optimization problems

q(λ) = −λ′b+
∑E
e=1 min

x
φe(x

e) + xe(∆λe) (3)

subject to: cel ≤ xe ≤ ceu

where ∆λe = λj − λi where e = (i, j). Each one of these
optimization problems is a constrained convex optimization
local to one edge allowing us to write the primal optimizers
explicitly

xe(∆λe) =

[
d

dxe
φe
]−1

(∆λe)

∣∣∣∣∣
ceu

cel

. (4)

We are therefore interested in solving

λ∗ = arg max
λ

q(λ) (5)

and computing the primal variables x∗ = x(λ∗) which
are guaranteed to be optimal by strong duality via Slater’s
condition, [10]. Considering (2), we can compute the gradient
g(λ) = ∇q(λ) in terms of the primal optimizers,

g(λ) = Ax(λ)− b (6)

where x(λ) denotes the vector of xe(∆λe). The projection in
(4) causes (6) to become a non-smooth function. This work
focuses on addressing this non-smoothness.

A. Non-smooth Newton Method

Consider an iteration index k, an arbitrary initial vector λ0

and define iterates λk generated by the following recursion

λk+1 = λk + αkdk for all k ≥ 0, (7)

where dk is an ascent direction satisfying g′kdk > 0, gk =
g(λk) and αk is a given stepsize sequence. The Newton
method is obtained by making dk in (7) the Newton step,
gk = −Hkdk. The Newton step is explicitly given by
dk = −H†kgk for any k where the dual Hessian Hk exists1.

To obtain an expression for the dual Hessian, consider given
dual λk and primal xk = x(λk) variables, and consider the
second order approximation of the primal objective centered
at the current primal iterates xk,

f̂(y) = f(xk) +∇f(xk)′(y − xk) (8)

+
1

2
(y − xk)′∇2f(xk)(y − xk).

The primal optimization problem in (1) is now replaced by
the minimization of the approximating function f̂(y) in (8)
subject to the constraints Ay = b and cl ≤ y ≤ cu. This
approximated problem is a quadratic program whose dual is
a piece-wise quadratic function

q̂(λk) = −1

2
λ′A

[
∇2f(xk)−1A′λk

]cu
cl

+ p′λk + r (9)

−1

2

[
λ′kA∇2f(xk)−1

]cu
cl
∇2f(xk)

[
∇2f(xk)−1A′λk

]cu
cl

The vector p and the constant r can be expressed in closed
form as functions of ∇f(xk) and ∇2f(xk), but they are
irrelevant for the discussion here. When f̂(xk) is centered at
xk = x(λk), we have f̂(x(λk)) = f(x(λk)) and it follows
that q̂(λk) = q(λk) for any λk where the implicit primal
optimizers xk = x(λk) are used. The important consequence
of (9) is that we can compute the dual Hessian. When the
cl ≤ f(xk)−1A′λk ≤ cu, the projection is inactive and we
recover the Hessian

Hk = −A∇2f(xk)−1A′ (10)

discussed in [13]. We define the set of unsaturated edges

Uk = {e ∈ E|cel < xe(λk) < ceu} . (11)

The dual Hessian ∇2q(λk) is dependent on which edges e are
unsaturated, i.e. e ∈ Uk. When edge e = (i, j) saturates, we
have that the ith element of the gradient gi(λk) is unaffected
by changes in λjk so ∂g(λk)/∂λjk = 0. Thus the Hessian
elements [Hk]i,j = [Hk]j,i are zero. We define the off
diagonal elements of the generalized Hessian Hk = ∇2q(λk),
according to

∂2q(λk)

∂λjk∂λ
i
k

=

{
−[A∇2f(xk)−1A′]ij if (i, j) ∈ Uk

0 if (i, j) 6∈ Uk
(12)

1H†k denotes the Moore-Penrose pseudoinverse of the dual function’s
Hessian Hk = H(λk) and gk ∈ 1⊥ for all k.

1038

and the diagonal elements are the sums of the off diagonals

[Hk]ii = −
∑

j:(i,j)∈Uk

[A∇2f(xk)−1A′]ij . (13)

From the definition of f(x) in (1) it follows that the primal
Hessian ∇2f(xk) is a diagonal matrix, which is positive
definite by strict convexity of f(x). Therefore, its inverse
exists and can be computed locally. Further observe that
Lk = A∇2f(xk)−1A′ is a weighted version of the network
graph’s Laplacian. One consequence of its Laplacian form is
that Hk = −Lk is negative semi-definite. Another is that 1
is an eigenvector of Hk associated with eigenvalue 0 and that
Hk is invertible on the subspace 1⊥.

B. Existence of the Generalized Hessian

We still need to understand how the projection in (4) and
resulting non-smoothness in (6) impacts the existence of this
dual Hessian.

Theorem 1. Properties of the Dual Gradient:
1) The function g : Rn → Rn is Lipschitz Continuous.

||g(λ)− g(λ̄)|| ≤ L||λ− λ̄|| ∀λ, λ̄ ∈ Rn (14)

2) The function g : Rn → Rn is Semi-smooth:

lim
V ∈∂g(λ+th),t→0

{V h} Exists∀h ∈ Rn (15)

where ∂g(λ) is the generalized Hessian defined

∂g(λ) = co

{
lim

λ̄→λ,λ̄∈Dg

∇g(λ̄)

}
(16)

where co{·} denotes convex hull and Dg is the set of
points on which g(λ) is differentiable.

Proof: From our assumptions on f(x) in Section II we
know that φe(xe) is strictly convex, surjective and twice con-
tinuously differentiable, therefore the function

[
d
dxeφ

e
]−1

(·)
is continuous. We denote the vector of these functions
∇f−1(·).The primal optimal variables are computed according
to (4), the saturation operator |c

e
u
cel

preserves continuity but the
function is no longer differentiable. Applying (6), we observe
from

g(λ− λ̄) = A
(
x(λ)− x(λ̄)

)
(17)

that continuity of x(λ) is sufficient for continuity of g(λ). In
order to show g(λ) is Lipschitz we substitute the definition of
x(λ) from (4).∥∥g(λ)− g(λ̄)

∥∥ =
∥∥A(∇f−1(∆λ)|cucl −∇f

−1(∆λ̄)|cucl)
∥∥
(18)

Since f(x) is twice continuously differentiable and surjective,
it follows that∇f−1 is continuously differentiable. Let y(x) =
∇f−1(x) which means ∇f(y(x)) = x by the definition of the
function inverse. We take the gradient of this expression with
respect to x yielding ∇2f(y(x))∇y(x) = 1 by the chain rule.
Since f(x) is strictly convex we have an expression for the
gradient of ∇f−1

∇y(x) = ∇[∇f−1](x) = [∇f(y(x))]−11. (19)

f (x)-1

γ f (c)f (c)

c

c u

u

l

l
x

Fig. 1. The constant γ is the steepest gradient point of the function ∇f−1(x)
on its active domain, thus making it a property of the primal objective f(x)
and the capacity constraints. This image simplifies the problem to 1 dimension
to make it visualizable.

Now we will find the steepest possible slope of ∇f−1

γ = max ||∇y(x)|| (20)
s.t. ∇f(cl) ≤ x ≤ ∇f(cu).

We need not consider any x outside of the set J = {∇f(cl) ≤
x ≤ ∇f(cu)} because using that fact that ∇f−1 is monotonic
increasing we know that any such x yields ∇f−1(x) ≤ cl
or ∇f−1(x) ≥ cu. We can guarantee the existence of γ as
defined in (20) by restricting the domain of ∇y to the set J
because any continuous function from a compact space into a
metric space is bounded. Using (20) we can conclude that

||(∇f−1(∆λ)|cucl −∇f
−1(∆λ̄)|cucl)|| ≤ γ||∆λ−∆λ̄|| (21)

Recalling that ∆λ = Aλ for any λ and subsituting (21) back
into (18) we have∥∥g(λ)− g(λ̄)

∥∥ ≤ γ||A||2||λ− λ̄|| (22)

which completes the proof of part 1) with L = γ||A||2.
To continue with part 2), we consider the points for which
g(λ) is not differentiable

S =

{
λ :

[
d
dxeφ

e
]−1

(∆λe) = cel for any e or[
d
dxeφ

e
]−1

(∆λe) = ceu, for any e

}
. (23)

For any λ 6∈ S, we have ∂g(λ) = {H(λ)} as defined in (12)
and (13) because g(λ) is differentiable at those points. The
limit as we approach a point in S depends which edges are
saturating and on whether the direction of the limit is from
inside or outside of the saturation region. From within the
saturation region, λ̄ ∈ {λ ∈ Rn|(i, j) ∈ Uk}[

lim
λ→λ̄,λ∈Rn−S

∇g(λ̄)

]
ij

= 0 (24)

but when outside the saturation region λ̄ ∈ {λ ∈ Rn|(i, j) ∈
Uk} [

lim
λ→λ̄,λ∈Rn−S

∇g(λ̄)

]
ij

= [Hk]ij (25)

1039

with Hk as defined in (10). The set of generalized Hessians
∂g(λ) defined in (16) allows

[∇g(λ)]i,j ∈ [[Hk]ij , 0] (26)

for any edge e = (i, j) for which xe(λ) = cel or xe(λ) = ceu.
By our construction of the set ∂g(λ) in (24)-(26), for any
matrix V ∈ ∂g(λ) including λ ∈ S, the expression V h exists
for all h ∈ Rn. We conclude that (15) holds, completing the
proof.

Theorem 1 characterizes the dual gradient g(λ), providing
a set of generalized Hessian matrices at the points where g(λ)
is not differentiable. In our proof, equation, (26) it is shown
that our choice of H(λ) defined in (12) and (13) is an extreme
point in the set of generalized Hessians ∂g(λ). While we have
shown that the entire set of generalized Hessians exists our
algorithm uses this extreme point for its direct relationship to
the Hessian in the unconstrained (smooth) version of network
flow optimization problem analyzed in [13]. Theorem 1 also
specifies that the dual gradient g(λ) is Lipshitz continuous
which is a building block for our convergence analysis.

Theorem 2. Suppose g(λ) is semi-smooth at λ∗ and all V ∈
∂g(λ) are non-singular and g(λ) is Lipshitz continous, then
the iteration

λk+1 = λk − V −1
k g(λk) (27)

is well defined and globally convergent to the unique solution
λ∗ of

g(λ) = 0 (28)

at a q-superlinear rate.

Theorem 2 is Newton’s Method for piecewise quadratic
functions taken from [15][Theorem 1.1]. It states that we
can solve a peicewise quadratic optimization problem such
as the one we have in (9) using Newton’s method as long as
the generalized Hessian exists and is full rank. In our case,
it converges as long as the inverse of the primal Hessian
∇2f(xk)−1 is full rank and the reduced graph Ĝk = {V,Uk}
remains connected. Unfortunately, we cannot guarantee Ĝk
will remain connected. However, the approximate Newton
method, called ADD developed in [13] when applied with an
enhance splitting technique, allows us to sidestep this concern.
Furthermore, unlike the true Newton method, can be computed
using only local information.

III. NON-SMOOTH ACCELERATED DUAL DESCENT

The ADD-N algorithm uses matrix splitting to generate an
approximation of the Newton direction requiring information
from no more than N hops away. We consider a finite number
of terms of a suitable Taylor’s expansion representation of
the Newton direction. At iteration k, split the Hessian Hk =
Bk−Dk, with diagonal elements Dk and off diagonal elements
Bk where both Dk and Bk are nonnegative elementwise. To
handle potential singularities we apply an enhanced splitting
Hk = B̄k − D̄k where

D̄k = 2Dk + I and B̄k = Dk + I +Bk (29)

observing that D̄k is a still a diagonal matrix and B̄k retains
the structure of a weighted adjacency. Using our spitting, we
can define the approximate Hessian inverse as defined in [13],

H̄
(N)
k = −

N∑
r=0

D̄
− 1

2

k

(
D̄
− 1

2

k B̄kD̄
− 1

2

k

)r
D̄
− 1

2

k

= −
N∑
r=0

(
D̄−1
k B̄k

)r
D̄−1
k (30)

which exploits the Neumann series for the inverse of a matrix
of the form (I −X). Given the approximate Hessian inverse
H̄

(N)
k our approximate Newton direction is given

d
(N)
k = H̄

(N)
k gk (31)

where the accelerated dual descent iteration is

λk+1 = λk + αkd
(N)
k (32)

and αk is the step size at iteration k.
The N th order approximation H̄(N)

k adds a term of the form(
D̄−1
k B̄k

)N
D̄−1
k to the N − 1st order approximation. The

sparsity pattern of this term is that of B̄Nk , which coincides
with the N -hop neighborhood because it is the N th power of
a weighted adjacency matrix. Thus, computation of the local
elements of the Newton step necessitates information from
N hops away; see [13] for further details. We thus interpret
(31) as a family of approximations indexed by N that yields
Hessian approximations requiring information from N -hop
neighbors in the network.

A. Algorithm Implementation

The direct implementation of the dual update described
in (32) can be computationally cumbersome. In practice we
implement ADD-N as an N steps of the consensus iteration

d
(r+1)
k = D̄−1

k B̄d
(r)
k + D̄−1

k gk (33)

where the iteration is started with d(0)
k = D̄−1

k gk which follows
clearly from (30). Further explanation of the equivalence of
ADD-N and N step consensus methods can be found in [13].
Our practical implementation of ADD-N is given in Algorithm
1. We assume that node i keeps track of the ith element
of node dimensional variables such as λk and the nonzero
elements of the ith row of matrices such as Hk and the
splitting matrices. We also assume that the edge variables such
as xe are observable by both nodes i and j linked by edge
e = (i, j). With this framework, steps 3 and 10 are the only
ones which require communication with neighbors– one hop
neighbors only. Therefore, each full iteration λk+1 ← λk costs
N + 1 local information exchanges.

B. Convergence

Theorem 3. Algorithm 1 with fixed step size αk = α > 0
small enough converges globally to the optimal dual variable
λ∗ for the dual problem in (9) and x∗ = x(λ∗) is the optimal
solution to the original constrained network flow optimization
problem, (1).

1040

Algorithm 1: Accelerated Dual Descent.

1 Initialize dual: λ0

2 for k = 0, 1, 2, . . . do
3 Compute differentials: ∆λk = Aλk
4 Update Primals: xk = ∇f−1(∆λk)

∣∣cu
cl

5 Compute Constraint Violation: gk = Axk − b
6 Compute the Generalized Hessian:

[Hk]ij =

{
1/φ′′e (xek) if e = (i, j) ∈ Uk

0 else

[Hk]ii = −
∑
j

[Hk]ij

7 Compute Splitting: D̄k = I − 2 diag(Hk) and
B̄k = D̄k +Hk

8 Initialize direction: d(0)
k = D̄−1

k gk
9 for r = 0, 1, . . . , N − 1 do

10 Update direction: d(r+1)
k = D̄−1

k B̄d
(r)
k + D̄−1

k gk
11 end
12 Update dual: λk+1 = λk + αkd

(N)
k

13 end

Proof: As per the Descent Lemma [17][A.24], it is
sufficient to show that the approximate Hessian inverse H̄(N)

k

is negative definite for all k to guarantee that the ADD-N
iteration defined in (31) and (32) converges to the optimal
dual variable λ∗ for some fixed step size α. We consider
the individual terms of H̄(N)

k =
∑N
r=0 Tr as defined in (30).

The matrix Dk is diagonal positive semi-definite, therefore
D̄k = 2Dk + I is diagonal and positive definite. Using the
fact that Lk = −Hk is a Laplacian from (12) and (13) and
the basic splitting Lk = Dk−Bk, the matrix B̄k = Dk+I+Bk
is strictly diagonally dominant. Furthermore, by construction
B̄k is a nonnegative symmetric matrix. A symmetric, nonneg-
ative, strictly diagonally dominant matrix is positive definite
[16][Section 6.1]. We can conclude that each term

Tr = D̄
−1/2
k (D̄

−1/2
k B̄kD̄

−1/2
k)rD̄

−1/2
k (34)

is positive definite because its symmetric and a product of
positive definite matrices. Since each term Tr is positive
definite the finite sum

∑N
r=0 Tr is positive definite, so from

(30) we get that H̄(N)
k is negative definite and we conclude

that the dual iteration converges to λ∗.
The primal problem (1) satisfies Slater’s condition for strong

duality [10][Section 5.2.3], therefore there is a zero duality
gap, indicating that the primal optimal x∗ is the argument of
the minimization in (2) when λ = λ∗. Thus x∗ = x(λ∗)
computed according to (4) is the optimal primal variable,
completing the proof.

Theorem 3 guarantees that the ADD-N algorithm converges
to the optimal primal and dual variables given an appropriately
chosen fixed step size. A relatively loose bound on the
allowable step size can be determined by considering the

0 200 400 600 800 1000
10−6

10−4

10−2

100

102 Primal Feasibility

iteration
||A

x−
b|

|

0 200 400 600 800 1000
0.2

0.4

0.6

0.8

1

iteration

f(x
)

Primal Objective

Proj. Subgrad.
ADD−1
ADD−2

Fig. 2. ADD-1 and ADD-2 out perform projected subgradient by an order
of magnitude on a sparse network with 20 nodes and 35 edges with capacity
constraints

Descent Lemma [17][A.24]. In our case such a bound will
be inversely proportional to the Lipschitz constant L defined
in Theorem 1. In practice, the appropriate step size scale can
be determined by tuning. We also make no theoretical claim
about the convergence rate, which appears in practice to be
consistent with the results in [13].

IV. NUMERICAL EXPERIMENTS

Numerical experiments were run on a variety of problems
ranging in scale from 10 to 100 nodes and 9 to 500 edges.
Two types of networks were considered, uniformly randomly
generated networks and worst case scenario line graphs where
one node is a sink and all other nodes are sources. The strictly
convex objective function

φe(x
e) = exp(xe) + exp(−xe)

can be thought of a prohibitive cost of heavily loading a single
link which encourages the network to make use of all of its
resources. Across the board we observe results consistent with
the unconstrained problem in [13]. The ADD-N algorithm
converges one to two orders of magnitude faster than the
subgradient descent type algorithms for problems large and
small, sparse and dense. Figure 2 is a typical example of the
convergence behavior on a sparse network. Sparse problems
take considerably long to solve due to slower mixing rates
for the information spreading matrix D̄−1B̄. Mixing rates of
markov chains are discussed extensively in [18]. In Figure 3
there is a significant improvement in convergence rate, the

1041

0 50 100 150 200 250 300 350 400
10−15

10−10

10−5

100

Primal Feasibility

iteration

||A
x−

b|
|

0 50 100 150 200 250 300 350 400
0.7

0.8

0.9

1

iteration

f(x
)

Primal Objective

Proj. Subgrad.
ADD−1
ADD−2

Fig. 3. ADD-1 and ADD-2 out perform projected subgradient by an order
of magnitude on a denser network with 20 nodes and 100 edges with capacity
constraints

time required to reach a feasibility of 10−4 goes from 800
iterations in the first example to only 100.

V. CONCLUSION

The Accelerated Dual Descent (ADD) algorithm has been
generalized to the capacity constrained network flow optimiza-
tion problem, through proof and computation of a generalized
dual Hessian. This improvement expands the applicability of
the ADD method. In particular, combining the results for
the capacitated network flow problem with the stochastic
generalization in [19] opens the door to networking applica-
tions via the backpressure formulation, [20], [21]. We have
used the ADD as a foundation for Accelerated backpressure
[22] which stabilizes queues in capacitated multi commodity
communication networks with stochastic packet arrival rates.

In this work, simulations demonstrated that N = 1 and
N = 2, respectively denoted as ADD-1 and ADD-2 perform
best in practice. ADD-1 corresponds to Newton step approxi-
mations using information from neighboring nodes only, while
ADD-2 requires information from nodes two hops away. While
we observe a per iteration improvement when increasing N ,
we do so at the cost of additional communication. Since
further increases in N yield diminishing returns with respect
to convergence rate, we recommend the use of ADD-1 and
ADD-2 which outperform gradient descent by upwards of two
orders of magnitude.

REFERENCES

[1] J. B. Orlin. Minimum convex cost dynamic network flows. MATHE-
MATICS OF OPERATIONS RESEARCH, May 1984.

[2] E. Miandoabchi R. Farahani. Graph Theory for Operations Research
and Management. IGI Global, 2012.

[3] R. T. Rockafellar. Network Flows and Monotropic Programming. Wiley,
New York, NY, 1984.

[4] D. P. Bertsekas. Network Optimization: Continuous and Discrete
Models. Athena Scientific, Belmont, MA, 1998.

[5] Michal Piro and Deepankar Medhi. Routing, Flow, and Capacity Design
in Communication and Computer Networks. Elsevier, 2004.

[6] Lin Xiao, M. Johansson, and S.P. Boyd. Simultaneous routing and
resource allocation via dual decomposition. IEEE Transactions on
Communications, 52(7):1136–1144, 2004.

[7] A. Nedic and A. Ozdaglar. Distributed subgradient methods for multi-
agent optimization. IEEE Transactions on Automatic Control, 54, 2009.

[8] I. Lobel and A. Ozdaglar. Distributed subgradient methods for convex
optimization over random networks,. IEEE Transactions on Automatic
Control, 56, 2011.

[9] N. Z. Shor. Minimization Methods for Non-differentiable Functions.
Springer, 1985.

[10] S. Boyd and L. Vandenberghe. Convex Optimization. Cambridge
University Press, Cambridge, UK, 2004.

[11] Dimitri P. Bertsekas and Didier El Baz. Distributed asynchronous
relaxation methods for convex network flow problems. SIAM Journal
of Optimization and Control, 1987.

[12] M. Zargham, A. Ribeiro, A. Ozdaglar, and A. Jadbabaie. Accelerated
dual descent for network optimization. In Proceedings of IEEE ACC,
2011.

[13] M. Zargham, A. Ribeiro, A. Ozdaglar, and A. Jadbabaie. Accelerated
dual descent for network optimization. IEEE Transactions on Automatic
Control, (submitted).

[14] A. V. Goldberg, E. Tardos, and R. E. Tarjan. Network Flow Algorithms.
Springer-Verlag, Berlin, 1990.

[15] J. Sun and H. Kuo. Applying a newton method to strictly convex
separable network quadratic programs. SIAM Journal of Optimization,
8, 1998.

[16] R. Horn and C. R. Johnson. Matrix Analysis. Cambridge University
Press, New York, 1985.

[17] D.P. Bertsekas. Nonlinear Programming. Athena Scientific, Cambridge,
Massachusetts, 1999.

[18] S. Boyd, A. Ghosh, B. Prabhakar, and D. Shah. Gossip algorithms:
Design, analysis, and applications. In Proceedings of IEEE INFOCOM,
2005.

[19] M. Zargham, A. Ribeiro, and A. Jadbabaie. Network optimization under
uncertainty. Proceedings of IEEE CDC, 2012.

[20] L. Tassiulas and A. Ephremides. Stability properties of constrained
queueing systems and scheduling policies for maximum throughput in
multihop radio networks. IEEE Transactions on Automatic Control,
37:1936–1948, 1992.

[21] M. J. Neely. Stochastic Network Optimization with Application to
Communication and Queueing Systems. Morgan and Claypool, 2010.

[22] M. Zargham, A. Ribeiro, and A. Jadbabaie. Accelerated backpressure
algorithm. ArXiv: http://arxiv.org/abs/1302.1475, 2013.

1042

