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Abstract— We consider a wireless control system where
multiple power-constrained sensors transmit plant output mea-
surements to a controller over a shared wireless medium. A
centralized scheduler, situated at the controller, grants channel
access to a single sensor on each time step. Given plant and
controller dynamics, we design scheduling and transmit power
policies that adapt opportunistically to the random wireless
channel conditions experienced by the sensors. The objective
is to obtain a stable system, by minimizing the expected
decrease rate of a given Lyapunov function, while respecting the
sensors’ power constraints. We develop an online optimization
algorithm based on the random channel sequence observed
during execution which converges almost surely to the optimal
protocol design.

I. INTRODUCTION

Wireless control systems in, e.g., industrial or building

automation applications, often involve sensing and actuating

devices at different physical locations that communicate

control-relevant information over shared wireless mediums.

Scheduling access to the medium is critical to avoid inter-

ferences between transmissions but also affects the overall

control performance. Previous work in wired and/or wireless

networked control systems, focused on deriving stability

conditions under given scheduling protocols – see, e.g., [1]–

[3]. Stability is typically examined by a switching system

reformulation [2], often under additional network phenomena

such as communication delays, uncertain communication

times, packet drops.

Beyond the question of stability, the problem of design-

ing schedulers suitable for control applications has also

been addressed. The proposed protocols can be generally

classified as either fixed or dynamic. Typical examples

of the first type are periodic protocols, i.e., repeating in

a predefined sequence (e.g., round-robin). Fixed protocols

leading to stability [4], controllability and observability [5],

or minimizing linear quadratic objectives [6] have been

proposed. Deriving otherwise optimal scheduling sequences

is recognized as a hard combinatorial problem [7]. Dynamic

scheduler design constitutes a different approach based on

the current plant/control system states, where, informally, the

subsystem with the largest state discrepancy is scheduled to

communicate – see examples in, e.g., [2], [8]–[10].

In this paper we focus on designing scheduling protocols

for wireless control systems and, in contrast to the above

approaches, we examine how to opportunistically exploit the

channel conditions affecting the transmissions on the shared
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wireless medium. Channel conditions refer to the channel

fading effects which vary randomly over time and also differ

among the users [11, Ch. 14]. As a result, dynamically

assigning channel access based on current channel conditions

can exploit the fact that at different points in time transmis-

sions for some users become more favorable than others.

Such channel-aware mechanisms have been developed for

wireless networking frameworks [12]. In previous work we

have shown how they can be adopted when scheduling in-

dependent control tasks whose control performance require-

ments translate to different channel utilization demands [13].

Here we consider the problem of scheduling different sensors

transmitting outputs of a single plant to a controller when

the sensors have limited power resources (Section II). These

power resources can be used to counteract channel fading

effects during transmission and obtain a higher decoding

probability at the receiver/controller [14]. Sensor scheduling

should make an efficient use of the available power resources,

while additionally it should lead to a closed loop control

system with stability guarantees.

We formulate the design of channel-aware scheduling

and power allocation policies in a stochastic optimization

framework (Section II-A), under the sensors’ power con-

straints. The objective is to optimize a closed-loop stability

margin measured as the decrease rate of a given Lyapunov

function, in expectation over the random channel conditions.

Conceptually, the Lyapunov function helps to abstract control

performance in a single-time-step, avoiding the complexity

of designing scheduling sequences over time horizons as

in other approaches, e.g., [7]. Based on the Lagrange dual

of our problem, an optimization algorithm is developed in

Section III. The algorithm does not require prior knowledge

of the channel distribution, but can be implemented instead

as an online protocol based on a random observed channel

sequence. We show that the protocol converges almost surely

to the tightest stability margin and meets the power con-

straints. We note that in general this does not imply system

stability. However, if the system is stabilizable with respect

to the selected Lyapunov function, the online protocol leads

to a stable system. We close with numerical simulations and

conclusions.

Notation: A set of variables a0, a1, . . . ak is denoted

compactly as a0:k. We denote by ≥,�,≻ the comparison

with respect to the cones of Rm
+ , of the real n×n symmetric

positive semi-definite matrices Sn
+, and of the real n × n

symmetric positive definite matrices Sn
++ respectively.

II. PROBLEM FORMULATION

We consider the wireless control architecture of Fig. 1

where m sensors measuring plant outputs communicate over
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Fig. 1. Opportunistic sensor scheduling in a wireless control architecture.
Each sensor i measures and transmits a plant output yi to a centralized con-
troller over a shared wireless medium. A scheduler at the receiver/controller
opportunistically selects which sensor transmits at each time step based on
the random channel conditions h1, . . . , hm experienced by the sensors.

a shared wireless medium to a controller. A centralized

scheduler selects at most one sensor to access the medium

at each time step. Due to uncertainties in the wireless

channel, which we model in detail next, the transmitted

sensor measurements might get lost.

Let γi,k ∈ {0, 1} denote the event that sensor i is

scheduled at the discrete time step k and the respective

transmission is successful. Let also γ0,k ∈ {0, 1} denote

the event that no sensor transmits successfully at time k.

Let xk ∈ R
n denote the overall state of the system before

transmission at time k. System evolution from xk to xk+1

depends on whether a successful transmission occurs at time

k and which sensor transmits. Suppose the system follows

linear dynamics denoted by Ai ∈ R
n×n if sensor i transmits

successfully (γi,k = 1), and A0 ∈ R
n×n when no sensor

transmits (γ0,k = 1). We describe then the system evolution

by the switched linear discrete time system

xk+1 =

m
∑

i=0

γi,k Aixk + wk. (1)

with wk modeling an independent identically distributed

(i.i.d.) noise process with mean zero and covariance W � 0.

We note that the state xk may contain in general not only

the plant state, but also the controller state if the controller

is dynamic – see [1], [2] for examples of model (1).

Given the overall system dynamics, we focus on design-

ing the wireless communication (scheduling and associated

transmit power) which affects the transmission indicators

γi,k. We describe the wireless channel conditions for link i,
between sensor i and the controller, at time k by the channel

fading coefficient hi,k that sensor i experiences if it transmits

at time k. Due to propagation effects, the channel fading

states hi,k change unpredictably [11, Ch. 3] and take values

in a subset H ⊆ R+ of the positive reals. Channel states

hi,k change not only over time k but also between sensors

i. We group hi,k for 1 ≤ i ≤ m at time k in a vector

hk ∈ Hm, and we adopt a block fading model whereby hk

are random variables independent across time slots k and

identically distributed with a multivariate distribution φ on

Hm. Channel states are also independent of the plant process

noise wk. We make the following technical assumption to

avoid a degenerate channel distribution, but otherwise no

other prior information about the channel distribution will

be needed for the communication design in this paper.
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Fig. 2. Probability of successful decoding q(hp) for practical forward
error-correcting codes. The probability of successful decoding is a sigmoid
function of the received SNR ∼ h p.

Assumption 1. The joint distribution φ of channel states hk

has a probability density function on Hm.

If sensor i is scheduled to transmit at time k it selects a

transmit power level pi,k ∈ [0, pmax]. Channel fading and

transmit power affect the probability of successful decoding

of the message at the receiver. In particular, given the forward

error-correcting code in use, the probability q that a packet is

successfully decoded is a function of the received signal-to-

noise ratio (SNR). The SNR is proportional to the received

power level expressed by the product h p of the channel

fading state and the allocated transmit power. Overall we

express the probability of success by some given relationship

of the form q(hi,k, pi,k) – see [14] for more details on this

model. An illustration of this relationship is shown in Fig. 2.

The assumptions on the function q(hp) are the following.

Assumption 2. The function q(.) as a function of the product

r = h p for r ≥ 0 satisfies:

(a) q(0) = 0,

(b) q(r) is continuous, and strictly increasing when q(r) >
0, i.e., for any r′ > r it holds that q(r′) > q(r),

(c) for any µ ≥ 0 and for almost all values h ∈ H the set

argmin0≤p≤pmax
p− µq(h p) is a singleton.

Parts (a),(b) of this assumption state that the probability

of successful decoding q(h p) will be zero when the received

power level h p is small, and it becomes positive q(h p) > 0
and strictly increasing for larger values of h p. Part (c) is a

more stringent assumption introduced for technical reasons

as we explain in the sequel. As shown in Fig. 2 for cases of

practical interest q(h p) has a sigmoid form and satisfies all

the above requirements.

Before transmission, a scheduler selects which sensor will

access the channel. We allow for randomized scheduling

and we denote with αi,k the probability that sensor i is

selected at time k. For simplicity we require that exactly one

sensor is scheduled, meaning that
∑m

i=1
αi,k = 1. Hence the

scheduling decision αi,k for i = 1, . . . ,m can be grouped as

a vector αk selected from the probability simplex

αk ∈ ∆m =
{

α ∈ R
m : α ≥ 0,

m
∑

i=1

αi = 1
}

, (2)

Given scheduling αk ∈ ∆m, power allocation pk ∈
[0, pmax]

m, and channel state hk ∈ Hm, we model the
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transmission events γi,k as Bernoulli random variables with

P[γi,k = 1
∣

∣hk, αk, pk] = αi,k q(hi,k, pi,k) (3)

This states that the probability that sensor i successfully

transmits equals the probability that i is scheduled to transmit

and the message is correctly decoded at the receiver.

Our goal is to design scheduling and power allocation

protocols that adapt to the channel conditions on the shared

wireless medium in order to make an efficient use of the

sensors’ power resources and lead to a stable control system.

The exact problem specification is presented next, after a

remark on the practical implementation of the protocol.

Remark 1. The proposed scheduler of the architecture in

Fig. 1 is assumed to have information about the current chan-

nel conditions on the shared medium. Channel conditions

on each wireless link can be measured by pilot signals sent

from the sensors to the receiver/controller at each time step

before the scheduling decision. Depending on the measured

conditions, the scheduler at the receiver selects and notifies

via the reverse channel a sensor to transmit. Channel state

information can also be passed this way back to the selected

sensor, which accordingly adapts its transmit power.

A. Communication design specification

We consider scheduling and power variables αk, pk that

adapt to the current channel states hk, so they can be

expressed as mappings αk = α(hk), pk = p(hk) of the form

A = {α : Hm → ∆m}, P = {p : Hm → [0, pmax]
m}. (4)

Since channel states hk are i.i.d. over time k these mappings

do not need to change over time. Substituting α(.), p(.) in our

communication model (3) and taking the expectation with

respect to the channel state hk ∼ φ, the expected probability

of successful transmission for a sensor i at time k becomes

P(γi,k = 1) = Ehk

{

P[γi,k = 1
∣

∣hk, α(hk), p(hk)]
}

= Ehαi(h) q(hi, pi(h)). (5)

In the last equality we dropped the index of the channel

variable hk since they are i.i.d. with distribution φ over time

k. This implies that the probabilities in (5) become constant

for all k. Similarly the event that no sensor transmits (γ0,k =
1) happens with a constant probability

P(γ0,k = 1) = 1−

m
∑

i=1

P(γi,k = 1), (6)

since the events on the right hand side are disjoint.

The goal of the communication design is to make an

efficient use of the power resources available at the sensors

while ensuring that the resulting control system is stable. In

particular suppose each sensor i has a power budget bi and

we require that the expected power consumption induced by

the communication design at each slot k is limited to

Ehαi(h)pi(h) ≤ bi, for all i = 1, . . . ,m. (7)

The expectation on the left hand side is with respect to the

channel distribution hk ∼ φ and accounts for the consumed

transmit power whenever sensor i is scheduled.

Next we motivate the control system stability specification.

Under the described communication design the transmission

sequence {γi,k, 0 ≤ i ≤ m, k ≥ 0} is independent of the

system state xk. The resulting system (1) becomes a random

jump linear system with i.i.d. jumps since the probabilities

P(γi,k = 1) for i = 0, 1, . . . ,m are constant over time

k. Necessary and sufficient stability conditions for such

systems are known. In particular, [15, Cor. 1] states that the

system is mean square stable, i.e., the limits limk→∞ Exk

and limk→∞ Exkx
T
k exist and are finite, if and only if there

exists a matrix P ∈ Sn
++ satisfying

m
∑

i=0

P(γi,k = 1)AT
i PAi ≺ P. (8)

The intuition behind (8) is that for fixed probabilities

P(γi,k = 1) a Lyapunov-like function V (x) = xTPx, x ∈
R

n decreases in expectation at each step. In particular, (8)

is equivalent to

E
[

V (xk+1)
∣

∣xk

]

=

m
∑

i=0

P(γi,k = 1)xT
kA

T
i PAixk + Tr(PW )

< V (xk) + Tr(PW ) (9)

holding for any xk ∈ R
n, where the first equality follows

from (1). Motivated by this observation about stability,

we pose the problem of designing wireless communication

variables that make the decrease rate in (9) as low as possible.

Suppose a quadratic Lyapunov function V (x) =
xTPx, x ∈ R

n, with P ∈ Sn
++, is fixed. We are interested

in channel-aware scheduling and power allocation variables

(cf. (4)) that minimize the expected decrease rate of V (x)
(cf. (9)) and also meet the power budgets (7). We pose this

as a stochastic optimization problem of the form

Optimal scheduling and power allocation design

minimize
r, α∈A, p∈P

r2 (10)

subject to Ehαi(h)pi(h) ≤ bi, i = 1, . . . ,m (11)

D0 −

m
∑

i=1

Ehαi(h) q(hi, pi(h))Di � rP (12)

where for compactness we defined

D0 = AT
0 PA0, Di = AT

0 PA0 −AT
i PAi, (13)

for i = 1, . . . ,m. The semidefinite constraint (12) follows

from (8) by substituting the probabilities (5), (6) induced

from the communication design and by introducing an aux-

iliary variable r for the Lyapunov decrease rate (or increase

if r > 1). The objective in (10) is an increasing function of

r, so that the optimal rate is as small as possible, and for

convenience is chosen to be strictly convex. For technical

reasons we keep an implicit constraint 0 ≤ r ≤ rmax, which

is not restrictive. The left hand side in (12) will always be

bounded since the terms in expectations are probabilities

(bounded by 1). Finally we note that problem (10)-(12) is

always strictly feasible. Consider for instance the case p ≡ 0,

implying a strict inequality in (11), and r ≥ 0 sufficiently

large so that (12) holds with strict inequality as well.
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We denote the optimal value of the problem by P ∗ and an

optimal solution by r∗, α∗(.), p∗(.). Even though the problem

is infinite-dimensional (the variables α(.), p(.) are functions)

and non-convex in general, in the following section we

present an algorithm based on the Lagrange dual problem

which converges to the optimal solution. Moreover the algo-

rithm does not require any prior knowledge of the channel

distribution, but can be implemented using the channel states

measured online during execution.

III. OPTIMAL SCHEDULING AND POWER ALLOCATION

In this section we present an algorithm that converges to

the optimal channel-aware scheduling and power allocation

policy. The algorithm employs the Lagrange dual problem of

(10)-(12) and exploits the fact that there is no duality gap.

Moreover, the algorithm can be implemented online based

on a random channel sequence and converges almost surely

to the optimal operating point with respect to (10)-(12).

To define the Lagrange dual problem of (10)-(12) consider

dual variables νi ≥ 0 corresponding to each of the i =
1, . . . ,m power constraints in (11), grouped in a vector

ν ∈ R
m
+ , and a symmetric positive semidefinite matrix

Λ ∈ S
n
+ corresponding to the semidefinite constraint (12).

The Lagrangian is written as

L(r, α, p, ν,Λ) = r2 +

m
∑

i=1

νi[Ehαi(h)pi(h)− bi]

+ Tr(Λ[D0 −

m
∑

i=1

Ehαi(h) q(hi, pi(h))Di − rP ]), (14)

while the dual function is defined as

g(ν,Λ) = min
r, α∈A, p∈P

L(r, α, p, ν,Λ). (15)

We will refer to any solution triplet r, α, p that minimizes the

Lagrangian at a dual point ν,Λ by r(ν,Λ), α(ν,Λ), p(ν,Λ).
We will also denote by α(ν,Λ;h), p(ν,Λ;h) the value of

these functions at a point h ∈ Hm. We define then the

Lagrange dual problem as

D∗ = maximize
ν∈Rm

+
,Λ∈Sn

+

g(ν,Λ). (16)

By standard Lagrange duality theory the dual function

g(ν,Λ) at any point ν,Λ is a lower bound on the optimal

cost P ∗ of problem (10)-(12), hence also D∗ ≤ P ∗ (weak

duality). The following proposition however establishes a

strong duality result (D∗ = P ∗). This is based on the results

about similar stochastic optimization problems [12] and is a

consequence of the assumption that channel distributions are

absolutely continuous. A relationship between the optimal

primal and dual variables is also provided.1

Proposition 1. Let Assumption 1 hold, let P ∗ be the optimal

value of the optimization problem (10)-(12) and (r∗, α∗, p∗)
be an optimal solution, and let D∗ be the optimal value of

the dual problem (16) and ν∗,Λ∗ be an optimal solution.

Then

1The proofs of the results in this paper, omitted due to space limitations,
can be found in [16], and are based on previous work [13].

(a) P ∗ = D∗ (strong duality)

(b) (r∗, α∗, p∗) ∈ argmin
r, α∈A, p∈P

L(r, α, p, ν∗,Λ∗)

This proposition suggests the possibility of developing an

algorithm to find the optimal dual variables ν∗,Λ∗, and then

via (b) recover the optimal primal variables r∗, α∗, p∗. To

follow this path, first note that the Lagrangian in (14) can

be rearranged as

L(r, α, p, ν,Λ) = r2 − r Tr(ΛP ) + Tr(ΛD0)− νT b

+ Eh

m
∑

i=1

αi(h) [νipi(h)− Tr(ΛDi) q(hi, pi(h))] . (17)

By this expression finding the primal Lagrange optimizers

in (15) is easy. By strict convexity and differentiability with

respect to r, the minimizer r(ν,Λ) is unique and equals

r(ν,Λ) = min{ 1/2Tr(ΛP ), rmax} (18)

where we enforced the implicit constraint 0 ≤ r ≤ rmax.

Optimizing over the functions α(.), p(.) in (17) is also

simplified because they are decoupled over channel states

h ∈ Hm, i.e., the integration Eh does not affect the optimal

solution and the values α(h), p(h) can be found for each

value h separately. Power minimizers at each h ∈ Hm are

pi(ν,Λ;h) = argmin
0≤p≤pmax

νi p− Tr(ΛDi) q(hi, p), (19)

which implies a further decoupling among sensors i – see

Remark 2. The optimal scheduling decision for each channel

state h in (17) is obtained as

α(ν,Λ;h) = argmin
α∈∆m

m
∑

i=1

αi ξ(hi, νi,Λ), (20)

where

ξ(hi, νi,Λ) = min
0≤p≤pmax

νip− Tr(ΛDi) q(hi, p). (21)

By the form of the probability simplex ∆m in (2) the mini-

mizing scheduling is deterministic. The scheduler picks with

certainty the sensor with the lowest value ξ(hi, νi,Λ) (or one

of them if non-unique). This reveals the opportunistic nature

of the channel-aware scheduler which, based on the current

channel conditions, dynamically assigns channel access to

the sensor with lowest relative value ξ(hi, νi,Λ).
We now present an iterative algorithm to solve the dual

problem. As noted earlier this is an online algorithm, hence

the variables are indexed by real time steps k ≥ 0. The

iterative steps of the algorithm are as follows:

i) At time step k observe current channel conditions hk,

and given current dual variables νk,Λk, compute primal

optimizers of the Lagrangian at hk using (18)-(20) as

rk = r(νk,Λk) (22)

pi,k = pi(νk,Λk;hk), i = 1, . . . ,m, (23)

αk = α(νk,Λk;hk) (24)

ii) Update the dual variables as

νi,k+1 = [νi,k + ǫk(αi,kpi,k − bi)]+ (25)
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Λk+1 = [Λk+ǫk(D0−

m
∑

i=0

αi,k q(hi,k, pi,k)Di−rkP )]+

(26)

where [ ]+ denotes the projection on the non-negative

orthant and on the positive semidefinite cone in (25) and

(26) respectively, and ǫk ≥ 0 is a step size.

The intuition behind the algorithm is that dual variables

are updated in (25), (26) in a random direction which in

expectation is a subgradient of the dual function g. In other

words, the algorithm implements an online dual subgradient

method. The following proposition establishes that the algo-

rithm converges to the optimal solution for the dual of the

optimal scheduling and power allocation problem.

Proposition 2. Consider the optimization problem (10)-(12)

and its dual derived in (16). Based on a sequence {hk, k ≥
0} of i.i.d. random variables with distribution φ on Hm, let

the algorithm described in steps (i)-(ii) be employed with

step sizes satisfying

∞
∑

k=0

ǫ2k < ∞,

∞
∑

k=0

ǫk = ∞. (27)

Then almost surely with respect to {hk, k ≥ 0} it holds

lim
k→∞

(νk,Λk) = (ν∗,Λ∗), and lim
k→∞

g(νk,Λk) = D∗

(28)

where ν∗,Λ∗ is an optimal solution of the dual problem and

D∗ is the optimal value of the dual problem.

Besides optimizing over dual variables, the algorithm

can be interpreted as a communication protocol of how to

schedule sensors and allocate transmit power, adapting online

to the observed channel conditions. The following theorem

establishes the control performance guarantees provided by

the communication protocol for the wireless control architec-

ture of Section II. On the technical side, this is the only place

where we enforce Assumption 2, which guarantees that the

Lagrange minimizers in (19)-(20) are almost surely unique,

and consequently that the optimal primal variables can be

recovered from the online protocol in the limit.

Theorem 1. Consider the wireless control architecture of

Fig. 1 with plant dynamics described by (1), and a given

function V (x) = xTPx, P ∈ S
n
++. Consider transmission

variables γi,k described by (3), depending on channel states

hk ∈ Hm which are i.i.d. with distribution φ, scheduling

αk ∈ ∆m, and power allocation pk ∈ [0, pmax]
m. Let

Assumptions 1, 2 hold. If αk, pk adapt to the channel se-

quence h0:k according to algorithm (22)-(26), with stepsizes

ǫk satisfying (27), then almost surely the power consumption

for each sensor i satisfies

lim sup
k→∞

E [αi,kpi,k |h0:k−1] ≤ bi, (29)

and the decrease rate of V (x) satisfies for any x ∈ R
n

lim sup
k→∞

E
[

V (xk+1)
∣

∣xk = x, h0:k−1

]

≤ r∗V (x)+Tr(PW )

(30)

where r∗ is the optimal solution of problem (10)-(12).

According to the theorem, the protocol converges almost

surely to a configuration that respects the sensors’ power

constraints and minimizes the decrease rate of the given

Lyapunov function. This however does not a priori imply

system stability. If the algorithm converges to some r∗ > 1
then the resulting communication protocol may lead to either

an unstable or a stable system. This does not contradict the

necessary and sufficient stability condition of (8) which states

that some appropriate quadratic Lyapunov function exists.

The online algorithm is based on a fixed function, under

which stability may not be provable. If however r∗ < 1
then indeed stability is guaranteed (cf. (8)). A necessary and

sufficient condition for r∗ < 1 is that the feasible set of

problem (10)-(12) contains a point r < 1. We restate this

observation in the following corollary.

Corollary 1. Consider the setup of Theorem 1 and ad-

ditionally suppose the optimization problem (10)-(12) con-

tains a feasible solution with r < 1. Then almost surely

P [γi,k|h0:k−1] for i = 1, . . . ,m converge to values such that

system (1) is mean square stable.

After some remarks on the structure of the communication

protocol, we present numerical simulations of the online

algorithm in the following section.

Remark 2. The online communication protocol implies a

decentralized power allocation. In step (23), as noted in (19),

the transmit power pi,k for sensor i, if scheduled, does not

depend on the whole channel vector hk but only on the

respective channel state hi,k, as well as on the variables

νi,k,Λk. Similar separability results are common in wire-

less communication networks [12]. From an implementation

perspective, as noted in Remark 1, channel states hi,k can

be estimated at each sensor i. The variables νi,k,Λk can be

sent from the scheduler to the scheduled sensor i at each

time step. As νi,k,Λk → ν∗i ,Λ
∗ according to Prop.2, at the

limit operating point each sensor can locally store ν∗i ,Λ
∗ and

select power according to the stored values and the current

channel conditions. Note however that scheduling in (24) is

centralized since, by (20), it depends on all dual variables

and the channel states observed by all sensors.

IV. NUMERICAL SIMULATIONS

We consider the frequently used benchmark example of

a batch reactor [2], [8]. The continuous time plant and

controller dynamics can be found in the referred works, and

involve a plant with 4 states, 2 inputs and m = 2 outputs, and

a PI controller with 2 states. Under a transmission period of

0.02s, and assuming that outputs are kept constant at the

controller between transmissions (see [2]), we obtain the

discrete time switched dynamics of the form (1). Then a

quadratic Lyapunov function needs to be chosen. Consider

a function that would guarantee stability if each sensors

transmits successfully 40% of the time, e.g., satisfying

2
∑

i=1

0.4AT
i PAi + 0.2AT

0 PA0 = 0.98P − 0.001 I. (31)
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Fig. 3. Rate variable rk during online algorithm. The variable converges
to a Lyapunov decrease rate less than 1, implying mean square stability.
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Fig. 4. Norm of system state ‖x(t)‖ during online algorithm. The norm
remains bounded, after an initial transient phase where the online algorithm
has not converged to a stabilizing communication protocol.
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Fig. 5. Sensors’ average power consumption during the online algorithm.
In the limit both satisfy the power constraint bi = 20mW .

The value 0.98 is selected after some trials and relates to the

fact that the system has an eigenvalue very close to 1 (also

documented in [2]), while the term −0.001 I guarantees the

left and right hand sides are almost equal.

We model the channel gains h1,k, h2,k as independent over

time k and also among the two sensors, both exponentially

distributed with a normalized mean 1. The maximum trans-

mit power and the power budgets are modeled as pmax =
100mW and bi = 20mW respectively for both sensors. The

function q(h p) is shown in Fig. 2.

We run the online algorithm of (22)-(26) in Section III,

which converges to a communication protocol where sensors

1 and 2 successfully transmit approximately 54% and 41%
of the time respectively, slightly deviating from the values

assumed in the Lyapunov construction (31). The transmitted

packet is lost 2% of the time, and the remaining 3% accounts

for times when the scheduled sensor used zero power. As

shown in Fig. 3 the algorithm converges to a protocol that

stabilizes the system according to (30), since the rate variable

rk tends to r∗ ≈ 0.98. Stability is also verified at the system

state plot in Fig. 4. The resulting protocol meets the sensor’s

power constraints, as we see in Fig. 5 where we plot the

mean power 1/N
∑N

k=1
αi,kpi,k for each sensor i during the

algorithm. Before convergence, sensor 2 does not transmit

often enough or with enough power, explaining the large

initial states in Fig. 4.

V. CONCLUDING REMARKS

In this paper we considered the problem of schedul-

ing power-constrained sensors in wireless control systems.

We developed a protocol where scheduling decisions and

transmit power allocation are selected online based on the

observed random wireless channel conditions and the ob-

jective is to obtain a configuration such that the control

system is stable. The protocol is based on a given Lyapunov

function, under which however the system might not be

stabilizable. While a heuristic method was employed to

construct a Lyapunov function in Section IV, determining

Lyapunov functions suitable for the scheduling algorithm

requires further examination. This relates to the controller

design problem which could potentially be studied together

with the communication design. Future work includes the

design of schedulers adapting not only to channel but also

to plant states, as in, e.g., [2], [8], as well as decentralized

channel access approaches.
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