
A SADDLE POINT ALGORITHM FOR NETWORKED ONLINE CONVEX OPTIMIZATION

Alec Koppel, Felicia Y. Jakubiec and Alejandro Ribeiro

Department of Electrical and Systems Engineering, University of Pennsylvania

ABSTRACT

This paper considers an online convex optimization problem in a dis-
tributed setting, where a connected network collectively solves a learning
problem while only exchanging information between neighboring nodes.
We formulate two expressions to describe distributed regret and present
a variant of the Arrow-Hurwicz saddle point algorithm to solve the dis-
tributed regret minimization problem. Using Lagrange multipliers to pe-
nalize the discrepancy between them, only neighboring nodes exchange
decision values and Lagrange multipliers. We show that decisions made
with this saddle point algorithm lead to vanishing regret of the order of
O(1/

√
T) where T is the final iteration time, and further depends on the

smoothness of the cost functions and the size and connectivity of the net-
work. Using a recursive least squares example, we find that the numerical
results corroborate our theoretical findings.

1. INTRODUCTION

We consider the problem of distributed online learning within a network,
in particular online convex optimization in which loss functions are con-
vex. The goal is for each node in the network to learn global informa-
tion while making autonomous decisions but only having access to par-
tial information of the network, i.e. there are only information exchanges
between neighbors. To meet this goal, we present a solution using sad-
dle point algorithm relying upon a primal-dual subgradient descent-ascent
concept.

In centralized online learning, gradient-based methods are well un-
derstood. With other similar methods such as proximal methods [1, 2],
dual averaging [3] and the mirror descent algorithm [4, 5], online gra-
dient descent can be understood as a special case of the FTRL (follow
the regularized leader) algorithm, for an overview connecting these al-
gorithms see [6]. As a result, all these algorithm yield O(1/

√
T) re-

gret for convex functions. For some algorithms, including online gradi-
ent descent, additional smoothness assumptions such as strong convexity
achieve O(log T/T) regret.

Distributed online learning for convex problems have been primar-
ily approached based on variations of online gradient descent. Previous
work use the consensus protocol in addition to a gradient descent step,
which adds weighted values of neighboring nodes to generate a decision
accounting for the information from neighbors and over time leads all
nodes to reach a network-wide agreement on the learning result. [7, 8] As
an alternative to such consensus-based methods, we propose a saddle point
algorithm using the gradients of an online Lagrangian which allows devia-
tions from the agreement and uses prices to penalize such deviations, thus
avoiding the fallacies encountered in consensus algorithms. Equivalent
to the Arrow-Hurwicz algorithm originating from [9], we are specifically
interested in applying the saddle point method to Lagrangian relaxation
problems, see [10].

Section 2 starts by introducing the concept of regret minimization for
networked online optimization, for which we present two distributed re-
gret formulations and compare them to the centralized online optimization
problem. Section 3 develops the saddle point algorithm solving the net-
worked online optimization problem by introducing an online Lagrangian
whose gradient will be used to update primal and dual variables. In or-
der to show that the algorithm from Section 3 minimizes regret, we show
vanishing regret bounds in the order O(1/

√
T) in Section 4. Section 5

Thanks to NSF CCF-1017454, NSF CCF-0952867, & ONR N00014-12-1-0997.

formulates the algorithm for a distributed recursive least squares problem
and provides a numerical example which matches our theoretical perfor-
mance results.

2. REGRET MINIMIZATION FOR DISTRIBUTED LEARNING

Consider the general problem of online learning, in which the learner is
faced with a set of “answers” to a given question at each time t and is re-
quired to pick one, which we denote by xt, a vector of size J . Afterwards,
he receives information about the gain or loss of his choice. The game-
theoretic interpretation of this setting is a two-player game in which the
learner plays against Nature which chooses ft at each time step t such that
the loss incurred by the learner is described by a loss function lt(xt, ft). If
the learner follows a specific rule or online algorithm according to which
he makes his choices, then the cumulative loss over time

∑T
t=1 lt(xt, ft)

assesses the quality of the algorithm.
Regret is a quantity describing the performance of an algorithm com-

pared to some hypothesis. In other words, a regret of 0 or “no regret” sig-
nifies that, when learning over a large enough period of time, the average
loss incurred by using the algorithm is just as large as if we had followed
a certain hypothesis starting the beginning of the learning period. More
specifically, the cumulative regret up to time T is defined as the difference
between the losses incurred by the choices x1:T = x1, . . . ,xT up to time
T and the loss which would have been incurred if an optimal x out of
some set X had been chosen at all times t up to time T ,

1

T
RegT =

1

T

(T∑
t=1

lt(xt, ft)− inf
x∈X

T∑
t=1

lt(x, ft)

)
. (1)

Let X be a pre-determined compact set. In other words, x1:T is being
compared to the competing hypothesis x∗ = argminx

∑T
t=1 lt(x, ft) out

of the compact setX if all information on Nature’s pick f1:T = f1, . . . , fT
had been given. An algorithm then minimizes regret with respect to the
hypothesis, if the regret formulation in (1) which compares the average
loss incurred by algorithm to the average loss incurred if we had chosen
x∗ all along, goes to 0 as T increases. Specifically, in an online convex
optimization problem the loss can be described as a convex function ft
solely depending on x, i.e. lt(x, ft) = ft(x). Then the measurement of
regret from equation (1) simplifies to

RegT =

T∑
t=1

ft(xt)−
T∑

t=1

ft(x
∗), (2)

where we are using the same competing hypothesis as before, x∗ =
argminx

∑T
t=1 ft(x).

2.1. Networked Online Convex Optimization

Consider a symmetric and connected network G = (V, E) with N nodes
forming the vertex set V = {1, . . . , N} and |E| edges in the edge set E .
Define the neighborhood of i as the set of nodes ni := {j : (i, j) ∈ E}
that share an edge with i. Each node in the network is associated with
a sequence of cost functions fi,t : RJ → R for all times t ≥ 0. If a
common variable x is played for all these functions the global network
cost at time t is then given by

ft(x) =

N∑
i=1

fi,t(x). (3)

Combining the definitions in (2) and (3) we can consider a coordinated
game where all agents play a common variable xt at time t. The accumu-
lated regret associated with playing the sequence {xt}Tt=1, as opposed to
playing the optimal x∗ = argminx

∑T
t=1 ft(x) for all times t, can then

be expressed as

RegC
T =

T∑
t=1

ft(xt)−
T∑

t=1

ft(x
∗)

=

T∑
t=1

N∑
i=1

fi,t(xt)−
T∑

t=1

N∑
i=1

fi,t(x
∗). (4)

In this paper we are interested in distributed games in which each agent in
the network plays his own variables xi,t which are not necessarily identi-
cal to the variables xj,t played by other agents j 6= i in the same time slot.
However, we are still focused in situations where each agent is interested
in learning a play that is optimal with respect to the global cost in (3).
Thus, we formulate a problem in which the regret of agent i is defined as

Regi
T =

T∑
t=1

1

N

N∑
j=1

fj,t(xi,t)−
T∑

t=1

1

N

N∑
j=1

fj,t(x
∗). (5)

Except for the normalizing factor 1/N the regret formulations in (4) and
(5) are identical. In particular, this means that the optimal play x∗ is
the same in both problems and that (5) corresponds to a problem in which
agent i aspires to learn a play that is as good as the play that can be learned
by a centralized agent that has access to the cost functions fi,t of all agents
i. However, the assumption here is that only the local functions fi,t are
known to agent i.

By further considering the sum of all local regrets in (5) we can define
a global version of networked regret as

RegT :=

N∑
i=1

Regi
T =

1

N

T∑
t=1

N∑
i,j=1

fj,t(xi,t)−
T∑

t=1

N∑
i=1

fi,t(x
∗),

(6)

where we used (5) and simplified terms to write the second equality.
In this paper we develop a variation of the saddle point algorithm of

Arrow and Hurwicz [11] to find a strategy whose regrets are of order not
larger than O(

√
T). We also show that the proposed algorithm can be

implemented by agents that have access to their local cost functions only
and perform causal variable exchanges with peers in their network neigh-
borhood. The saddle point algorithm is presented in the following section
after the discussion of an example and a pertinent remark.

Example 1 (Distributed recursive least squares) An example problem
that admits the formulation in (6) is a distributed recursive least squares
(RLS) problem. Suppose we want to estimate a signal x ∈ RJ when
agents collect observations yit ∈ RK that relate to x according to the
model yit = Hi,tx+wi,t, where the noise wi,t is Gaussian independent
and identically distributed across nodes and time. The optimal estimator
x∗ given the observations yi,t for all i and t is the least mean squared error
estimator x∗ = argminx

∑T
t=1

∑N
i=1 ‖Hi,tx − yi,t‖2. If the signals

yi,t are known for all nodes i and times t the optimal estimator x∗ can be
easily computed. In this paper we are interested in cases where the signal
yi,t−1 is revealed at time t−1 to sensor i which then proceeds to causally
estimate the signal x as xi,t as a function of past observations yi,u for
u = 1, . . . , t − 1 and information received from neighboring nodes in
previous time slots. This is a distributed RLS problem because signals are
revealed sequentially to agents of a network. Setting aside the issue of
how to select xi,t, the regret in (6) is a measure of goodness for xi,t with
respect to a clairvoyant centralized estimator, and is formulated as

RegT =
1

N

T∑
t=1

N∑
i,j=1

‖Hj,txi,t − yj,t‖2−
T∑

t=1

N∑
i=1

‖Hi,tx
∗− yi,t‖2.

(7)

The regret RegT in (7) is measuring the mean squared error penalty that
agent i is incurring by selecting xi,t instead of the optimal estimator x∗.
In that sense it can be interpreted as the penalty for distributed causal
operation with respect to centralized clairvoyant operation – the estimate
x∗ is centralized because it has access to the observations of all nodes
and clairvoyant because it has access to the current observation yi,t. The
algorithms developed in this paper are such that the regret RegT grows
at a sub-linear rate – see Sections 3 and 4.

Remark 1 An alternative distributed regret formulation is to consider the
aggregate cost

∑N
i=1 fi,t(xi,t) incurred by each agent playing on its own

local function. In such case we could define the regret by time T as

Reg′T =

T∑
t=1

N∑
i=1

fi,t(xi,t)−
T∑

t=1

N∑
i=1

fi,t(x
∗). (8)

This formulation is of little interest because agents are independent of
each other. Indeed, to reduce the regret in (8) it suffices to let agents learn
strategies that are good with respect to their local costs

∑T
t=1 fi,t(xi,t). A

simple local gradient descent policy can achieve small regret with respect
to the optimal local action x̃∗i = argminx

∑T
t=1 fi,t(x) [12] . This unco-

ordinated strategy is likely to result in negative regret in (8) since the vari-
able x∗ is chosen as common across all agents. The formulation in (5) and
(6) is more appropriate as it is providing an incentive for agents to learn
the cost functions of their peers. Lack of practical interest notwithstand-
ing, the formulation in (8) plays an instrumental role in the determination
of the regret bounds in Section 4

3. ARROW-HURWICZ SADDLE POINT ALGORITHM

For the presentation of a saddle point algorithm solving the optimization
problem in (6), we will introduce a change in notation for simplicity. For
the remainder of this paper, let xt = {xi,t}i denote a vector in which
the actions of the nodes i = 1, . . . , N are stacked. Noting that the loss
functions as defined in (5) are the same for every node, in the end the
goal is to make decisions xi,t which are the same for every node as well.
Since the network G is assumed to be connected, this relationship can be
described using the edge incidence matrix C̃. Define a replicated version
of the edge incidence matrix of the directed network as C, where each 1, -
1 and 0 from the edge incidence matrix C̃ is replaced by the identity matrix
I, −I and the zero matrix 0 of size J respectively. Then equivalence
between xi,t and xj,t for any nodes i and j can be rewritten using C as

Cxt = 0 ∀t = 1, . . . , T. (9)

The edge incidence matrix C then has singular values 0 < σmin ≤ · · · ≤
σmax, where the smallest non-zero singular value reflects the connectivity
of the network. While (9) describes the final goal, it makes no sense to en-
force this relation for any time t. Instead consider penalizing the deviation
from (9) using the time-dependent online Lagrangian at time t,

Ot(xt,λt) =

N∑
i=1

fi,t(xi,t) + λT
t Cxt, (10)

by introducing dual variables λt for each time step t. The dual variables
can be interpreted as a penalty term for relaxing the constraint in equa-
tion (9), so the components of the dual vector λt for each time t can be
denoted by λt = {λij,t}i,j∈ni , such that λij,t is a vector of length J
penalizing the disagreement of xi,t and xj,t. Using the online Lagrangian
from equation (10), the resulting Arrow-Hurwicz-algorithm then has the
following form,

xt+1 = PX [xt − εt∇xOt(xt,λt)] (11)
λt+1 = PΛ[λt + εt∇λOt(xt,λt)], (12)

where PS denotes a projection onto set S and εt is the step size at time
t. The primal update in (11) is reminiscent of the classical online gradient
descent formulation, where the gradient of the objective is replaced by the
gradient of the Lagrangian. The dual formulation from equation (12) is
then a dual gradient ascent step which updates the dual variables depend-
ing on the constraint slack Cxt. At the end of this section, Remark 2
provides another intuition to motivate the method described by (11)-(12).
Recent works on saddle point algorithms assume boundedness on the sub-
gradients of the Lagrangian which require the primal and dual domains to
be bounded. We have therefore introduced an additional projection to the
Saddle Point Algorithm, and project the primal and dual variables onto
compact sets X and Λ at each time step t, leading to the formulation in
(11)-(12). In order to implement the Arrow-Hurwicz algorithm from (11)-
(12) in a separable way, note that xt = {xi,t}i and λt = {λij,t}(i,j)

are stacked versions of xi,t and λij,t. Therefore, we are interested in the
separability of the gradients of the online Lagrangian with respect to x as
in (11) and to λ as in (12). The gradient of the online Lagrangian with
respect to the primal variable xi of node i can be written as

∇xiOt(xt,λt) = ∇xifi,t(xi,t) +
∑
j∈ni

λij,tCij,t (13)

The computation of this gradient only depends on the local gradient of
the loss function fi,t(xi,t) and the dual variables for neighboring nodes
j. Similarly, for each dual variable λij for neighboring nodes i and j, the
gradient of the online Lagrangian can be written as

∇λijOt(xt,λt) = Cij,txt = xi,t − xj,t. (14)

Therefore, to update each dual variable λij,t at time t, it is only neces-
sary to have access to the primal variables of neighboring nodes. Finally,
to achieve separability, the projections onto sets X and Λ must be con-
sidered. When the sets {Xi}i and {Λij}(i,j) are defined such that the
resulting vectors xt+1 and λt+1 are in the respective sets X and Λ, we
can compute the primal and dual updates as follows,

Primal: xi,t+1 = PXi

[
xi,t − εt

(
∇xifi,t(xi,t) +

∑
j∈ni

λij,tCij,t

)]
(15)

Dual: λij,t+1 = PΛij

[
λij,t + εt (xi,t − xj,t)

]
. (16)

More precisely, at each time t, each pair of neighboring nodes (i, j) only
needs to exchange dual variables λij,t before the primal update step and
primal variables xi,t and xj,t before the dual update.

Remark 2 Consider an equivalent problem to the regret minimization
from equation (4). When treating the cost functions ft as a random pro-
cess, minimizing regret can be re-interpreted by minimizing the expected
value of that process, minx E [ft(x)]. More explicitly, when using the loss
function lt(x, f) presented in (1), then Nature’s play is the random pro-
cess in question, such that the goal is to minimize the expected loss, i.e.
minx Ef [lt(x, f)]. In order to make this problem separable over nodes,
we look a the equivalent constrained formulation

min
x

E[ft(x)], s.t. Cx = 0. (17)

The Lagrangian of the problem,

Lt(xt,λt) = E [ft(xt)] + λT
t Cxt, (18)

can then be used to solve the optimization problem in (17) with the Arrow-
Hurwicz algorithm of the form

xt+1 = xt − εt∇xLt(xt,λt) (19)
λt+1 = λt + εt∇λLt(xt,λt). (20)

However, the expectation in the Lagrangian in equation (18) cannot be
separated, hence we replace the subgradients of the Lagrangian in equa-
tion (18) with the stochastic subgradients of the online Lagrangian at time
t from equation (10). By adding projections onto X and Λ, the resulting
saddle point algorithm is described by equations (11)-(12).

4. REGRET BOUNDS

To determine whether the saddle point algorithm described in (11)-(12)
minimizes regret, we would like to show that the regret formulation of (6)
goes to 0, which is equivalent to finding an upper bound on the algorithm’s
regret which goes to 0 with increasing time. Specifically, we compare
the choices of the algorithm xt and λt at time t with the optimal primal
variable x∗ and an arbitrary dual variable λ to find expressions for

‖xt − x∗‖2 and ‖λt − λ‖2, (21)

which we can only bound in a time-average sense. Noting that the on-
line Lagrangian evaluated for the primal choices x1:T and for the optimal
choice x∗ is can be summed up to yield an expression which includes the
uncoordinated regret formulation as (8), we use the distances of (21) to
bound the sum of the online Lagrangians. The result for the global regret
from (6) follows from the expression for (8). For the following results, we
make some assumptions on the network, the primal and dual variables xt

and λt, and the loss functions ft(x),

(A1) The network G is connected with diameter D.

(A2) The loss functions fi,t(x) are convex in x for any node i

fi,t(x)− fi,t(y) ≤ ∇fi,t(x)T (x− y). (22)

(A3) The gradients of the loss functions for any x is bounded by a con-
stant L, i.e.

‖∇ft(x)‖2 ≤ L. (23)
(A4) The loss functions fi,t(x) are Lipschitz continuous with modulus

li,t, and ` = maxi,t li,t

‖fi,t(x)− fi,t(y)‖2 ≤ li,t‖x− y‖2 (24)

(A5) The primal variables xi,t for any time t are projected into the set

Xi =
{
x ∈ RJ : ‖x‖2 ≤M/N

}
(25)

(A6) The dual variables λij,t for any time t are projected into the set

Λ =

{
λ ∈ RJ : ‖λ‖1 ≤ max{ L√

|E|σmin
, DN`+ 1}

}
(26)

Assumption (A1) is standard in distributed algorithms. Assumption (A2)
follows from the problem formulation as an online convex optimization
problem. Then the formulation of the online Lagrangian Ot(x,λ) from
equation (10) is convex in the primal variable x, such that

Ot(x,λ)−Ot(y,λ) ≤ ∇xOt(x,λ)T (x− y). (27)

and concave in the dual variable λ, i.e.

Ot(x,λ)−Ot(x,µ) ≥ ∇λOt(x,λ)T (µ− λ). (28)

Assumptions (A3)-(A6) are mild assumptions typical in the analysis
of saddle point algorithms. The projections into the sets {Xi}i and
{Λij}(i,j) in assumptions (A5) and (A6) are constructed such that
the optimal primal x∗ and dual variables λ∗ can be bounded with
the same respective constants. For the stacked primal variable xt,
(A5) implies that it can be bounded by ‖xt‖2 ≤ M at any time
t. Using the identity ‖λt‖1 ≤

√
|E|J ‖λt‖2 relating the 1-norm

of the vector λt to its 2-norm, we can bound the dual variable by
‖λt‖2 ≤ σmax max{L/σmin,

√
|E|(DN`+ 1), such that λt is delim-

ited by the smoothness of the cost function and the connectivity of the

0 5 10 15 20 25 30 35 40 45 50

0

5

10

15

20

25

30

35

40

45

50
R

e
g
re

t

Number of iterations

Global vs. Local Regrets

Global Regret

Node 1 Local

Node 30 Local

Node 110 Local

Node 175

Fig. 1. Normalized aggregate regret RegT /NT and individual regret
Regi

T /T for representative nodes. Observe that RegT /NT vanishes
consistent with the result in Theorem 2. Individual regrets also vanish
although that is not theoretically guaranteed.

network. With these bounds, the gradients of the online Lagrangians can
also be bounded. For the gradient with respect to the primal variable x,
using the Cauchy-Schwarz and triangle inequalities yields

‖∇xOt(xt,λt)‖2 = ‖∇ft(xt) + CTλt‖2
≤ ‖∇ft(xt)‖2 + ‖CT ‖2‖λt‖2

≤ L+ σmax max{ L

σmin
,
√
|E|(DN`+ 1)} := Lx

(29)
where the last inequality above uses the fact that the singular values of C
and CT are the same. Similarly, for the gradient with respect to the dual
variable λ, we can similarly write

‖∇λOt(xt,λt)‖2 = ‖Cxt‖2 ≤ ‖C‖2‖xt‖2
≤ σmaxM := Lλ

(30)

using the same assumptions. Then the main results of this paper concern
the global regret from (6) as well as the uncoordinated regret from (8) of
the algorithm from equations (11)-(12) which we bound with a term that
goes 0 as the final learning time T goes to infinity.

Theorem 1 Let T be the final learning time. Let xt = {xi,t}i be a
vector of the learning network’s choice as a result from the algorithm in
equations (11)-(12), and let x∗ be the optimal choice if the loss functions
f1:T (x) were given for all times and all nodes. Let the dual variables
be initialized at λ0 = 0. Assume the step size is constant with εt =
1/
√
T . If assumptions (A1) to (A6) hold, then the uncoordinated regret

from choosing xt can be bounded by

Reg′T ≤
√
T

2

(
‖x1 − x∗‖22 + L2

x + L2
λ

)
= O(

√
T). (31)

Proof: See [13] �

From Theorem 1, we can use a variation of the triangle inequality to
yield a result for the global regret as formulated in (6). The result can be
stated as follows.

Theorem 2 Let T be the final learning time. Let xt = {xi,t}i be a
vector of the learning network’s choice as a result from the algorithm in
equations (11)-(12), and let x∗ be the optimal choice if the loss functions
f1:T (x) were given for all times and all nodes. Let the dual variables be
initialized at λ0 = 0. Assume the step size is constant with εt = 1/

√
T .

If assumptions (A1) to (A6) hold, then the total regret from choosing xt

can be bounded by

RegT ≤
√
T

2
(
∥∥x1 − x∗‖22 + |E|(DN`+ 1)2 + L2

x + L2
λ

)
= O(

√
T).

(32)

0 10 20 30 40 50 60 70 80 90 100
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

V
a
lu

e

Number of iterations

Primal Variable Consensus

Node 1

Node 30

Node 110

Node 175

Fig. 2. Evolution of the variables xi,t for a set of representative nodes.
All nodes converge to the same value as they all learn the individual infor-
mation available to all peers.

Proof: See [13] �

As is standard for online convex optimization algorithms, we establish
a bound of order O(

√
T) when the step size is chosen to be εt = 1/

√
T .

The rate at which regret vanishes depends on the choice of the final learn-
ing time T . The constants in the bound in (31) and (32) also depend on
the size of x0 which can be bounded by M . Furthermore, a large vari-
ability of the objective ft(xt) leads to a larger bound, and the bounds on
the online Lagrangian in (29) and (30) show that a higher connectivity of
the network, reflected in a small ratio σmax/σmin, leads to a smaller regret
bound. For the global regret bound in (32) specifically, size and the di-
ameter of the network play an additional role where a large network and
a larger amount of hops between nodes, i.e. a large diameter, decrease the
algorithm convergence rate.

5. SIMULATION RESULTS

For the distributed RLS regret minimization problem in Example 1, the
primal update of the saddle point algorithm takes the form

xi,t+1 = PXi

[
xi,t− εt

(
2HT

i,tHi,txi,t− 2HT
i,tyi,t +

∑
j∈ni

λij,tCij,t

)]
(33)

while the dual update remains (16). We implement the iteration (33) - (16)
for a network with N = 200 nodes and edges randomly generated so that
nodes are connected with probability 1/5. The matrix Hi,t ∈ R11×6 is
generated from taking a vector u ∈ R11 with uk = 10−k and stacking
column-wise increasing powers of u, with the jth column of Hi,t given by
uj for j = 1, . . . , 6 . We set the coefficients yi,t = Hi,tx + wi,t where
x = 1 and wi,t sampled from a zero-mean, σ2 = 4 normal distribution.
We run (33) - (16) for a total of T = 2× 103 iterations.

Normalized aggregate regret RegT /NT as well as individual regret
Regi

T /T for representative nodes are shown in Fig. 1. RegT /NT van-
ishes consistent with the result in Theorem 2. While we don’t have theo-
retical guarantees on individual regret our numerical experiments indicate
that individual normalized regrets Regi

T /T also vanish. Fig. 2 shows
the evolution of the variables xi,t for a set of representative nodes. These
variables converge towards a common value, which is as expected since
each individual node learns all the information available throughout the
network.

6. REFERENCES

[1] C. B. Do, Q. V. Le, and C. Foo, “Proximal regularization for online
and batch learning.,” in ICML, A.P. Danyluk, L. Bottou, and M.L.
Littman, Eds. 2009, vol. 382 of ACM International Conference Pro-
ceeding Series, p. 33, ACM.

[2] A. Nedic and A. Ozdaglar, “Approximate primal solutions and rate
analysis for dual subgradient methods,,” SIAM Journal on Optimiza-
tion, vol. 19, no. 4, pp. 1757–1780, 2008.

[3] T. Suzuki, “Dual averaging and proximal gradient descent for online
alternating direction multiplier method,” in Proceedings of the 30th
International Conference on Machine Learning (ICML-13), Atlanta,
GA, 2013, vol. 28, pp. 392–400, JMLR Workshop and Conference
Proceedings.

[4] S. Shalev-shwartz and Y. Singer, “Logarithmic regret algorithms for
strongly convex repeated games,” in The Hebrew University, 2007.

[5] S.S. Ram, A. Nedic, and V.V. Veeravalli, “Distributed stochastic
subgradient projection algorithms for convex optimization,” Journal
of Optimization Theory and Applications, vol. 147, no. 3, pp. 516–
545, 2010.

[6] S. Shalev-Shwartz, “Online learning and online convex optimiza-
tion,” Found. Trends Mach. Learn., vol. 4, no. 2, pp. 107–194, Feb.
2012.

[7] K. I. Tsianos and M. G. Rabbat, “Distributed strongly convex opti-
mization,” CoRR, vol. abs/1207.3031, 2012.

[8] F. Yan, S. V. N. Vishwanathan, and Y. Qi, “Cooperative autonomous
online learning,” CoRR, vol. abs/1006.4039, 2010.

[9] A. Nedic and A. Ozdaglar, “Subgradient methods for saddle-point
problems,” Journal of Optimization Theory and Applications, pp.
205–228, 2009.

[10] S. Boyd and L. Vanderberghe, Convex Programming, Wiley, New
York, NY, 2004.

[11] K.J. Arrow, L. Hurwicz, and H. Uzawa, Studies in linear and non-
linear programming, With contributions by H. B. Chenery, S. M.
Johnson, S. Karlin, T. Marschak, R. M. Solow. Stanford Mathemati-
cal Studies in the Social Sciences, vol. II. Stanford University Press,
Stanford, 1958.

[12] I. Lobel and A. Ozdaglar, “Distributed subgradient methods for con-
vex optimization,” LIDS Report, vol. 2800, 2009.

[13] A. Koppel, F. Y. Jakubiec, and A. Ribeiro, “A saddle point algorithm
for networked online convex optimization,” in preparation, 2013.

