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Abstract—This paper applies dithering to design a node centrality measure

for weighted graphs. The construction is an improvement on the stable

betweenness centrality measure which, in turn, was introduced as a robust

alternative to the well-known betweenness centrality. We interpret any given

graph as the mean representation of a distribution of graphs and define the

dithered centrality value as the expected centrality value across all graphs

in the distribution. We show that the dithered stable betweenness centrality

measure preserves robustness in the presence of noise while improving the

behavior of stable betweenness. Numerical experiments demonstrate the

advantages of dithering by comparing the performance of betweenness,

stable betweenness and dithered stable betweenness centralities in terms

of robustness to noise, dependence on the number and quality of alternative

paths, and distribution of centrality values across the graph.

Index Terms—Networks, graphs, centrality, betweenness, dithering.

I. INTRODUCTION

The topology of a graph or network imposes an influence structure
over its nodes. Central nodes have major impact in the flow of commu-
nication and the evolution of network dynamics, e.g. the distribution of
power in exchange networks [1], whereas peripheral nodes have limited
effect. Node centrality measures are tools designed to identify such
influential agents. Although several centrality measures can be found
in the literature, the most common being degree [2], [3], closeness [4],
[5], stress [6], eigenvector [7], and betweenness [8] centrality, the latter
has been extensively used in the study of both technological [9] and
social [10] networks. However, betweenness centrality was shown to be
unstable, i.e. sensitive to noisy data, and a stable alternative measure
was proposed [11], [12]. In this paper we apply dithering to improve
the stable betweenness centrality measure.

Dithering is a common technique used to reduce quantization error in
digital signal processing by adding random noise to the signal [13],
e.g. in digital image [14] and digital audio processing [15]. In our
case, we consider the input graph to be a signal and, by adding zero-
mean random noise to its weights, we obtain a random graph picked
from a distribution of which the original signal graph is the mean.
Instead of computing centrality directly on the mean graph, our dithering
method consists in obtaining numerous random perturbations of the
graph, computing centrality in each of them independently and then
averaging the centrality results. Our first contribution is the formalization
of dithering in the context of graphs (Section IV). We then define
the dithered stable betweenness centrality and show that dithering
preserves the stability property while solving undesirable behaviors of
the betweenness centrality and its stable alternative (Section IV-A).
Finally, through numerical experiments we illustrate the advantages of
dithering in terms of robustness to noise (Section V-A), dependence
on the number and quality of paths (Section V-B), and distribution of
centrality values across the graph (Section V-C).

II. PRELIMINARIES

We define a directed graph or network G = (V,E,W ) as a triplet
formed by a finite set of n nodes or vertices V , a set of directed edges
E ⇢ V ⇥V where (x, y) 2 E represents an edge from x 2 V to y 2 V ,
and a set of positive weights W : E ! R++ defined on each edge. The
weights are associated to dissimilarities between nodes, i.e. the higher
the weight the more dissimilar the nodes are. The graphs considered
here do not contain self-loops, i.e., (x, x) 62 E for all x 2 V . For any
given sets V and E, denote by G(V,E) the space of all graphs with V as
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node set and E as edge set. This implies that two graphs G,H 2 G(V,E)

can only differ in their weights.
Given a graph (V,E,W ) and x, x0 2 V , a path P (x, x0

) which starts
at x and finishes at x0 is an ordered sequence of nodes, P (x, x0

) = [x =

x0, x1, . . . , xl = x0
], such that ei = (xi, xi+1) 2 E for i = 0, . . . , l�1.

The length of a given path is the sum of the weights encountered when
traversing its links in order. We define the shortest path function sG :

V ⇥ V ! R+ where the shortest path length sG(x, x
0
) between nodes

x, x0 2 V is

sG(x, x
0
) := min

P (x,x0)

l�1X

i=0

W (xi, xi+1). (1)

Given three arbitrary nodes x, x0, x00 2 V , denote by �x0x00 the number
of shortest paths from x0 to x00, i.e. the number of paths P (x0, x00

) of
length sG(x

0, x00
), and by �x0x00

(x) the number of these shortest paths
that go through node x. The betweenness centrality CB(x) for any given
node x 2 V is defined as [8]

CB(x) :=
X

x0,x002V
x0 6=x 6=x00

�x0x00
(x)

�x0x00
. (2)

In (2), we calculate the betweenness centrality value of a node x 2 X by
sequentially looking at the shortest paths between any two nodes distinct
from x and summing the proportion of shortest paths that contain node
x. The higher the centrality value CB(x), the more central node x is.

III. CENTRALITY AND STABILITY

Node centrality is a measure of the importance of a node within a
graph. This importance is based on the location of the node within
the graph and not on the intrinsic nature of this node. More precisely,
given a graph (V,E,W ), a centrality measure C : V ! R+ assigns a
nonnegative centrality value to every node such that the higher the value
the more central the node is. Ideally, this detection should be invariant
to small perturbations in the edge weights.

To formalize this notion of robustness against perturbations, we define
the metric d(V,E) : G(V,E) ⇥ G(V,E) ! R+ on the space G(V,E)

d(V,E)(G,H) :=

X

e2E

|W (e)�W 0
(e)|, (3)

where G = (V,E,W ) and H = (V,E,W 0
). The metric d(V,E) enables

the formal definition of stability presented next.

Definition 1 ([12]) A centrality measure C is stable if, for every vertex

set V , edge set E and any two graphs G,H 2 G(V,E),

���CG
(x)� CH

(x)
���  KG d(V,E)(G,H), (4)

for every x 2 V , where KG is a constant for every graph G, CG
(x) is

the centrality value of node x in graph G and similarly for H .

The above definition states that a centrality measure is stable if the
difference in centrality values for a given node in two different graphs
is bounded by a constant KG times the distance between these graphs.
In particular, if graph H is a perturbed version of G, a stable centrality
measure ensures that the change in centrality due to this perturbation is
bounded; see Section V-A. Despite its extensive use, the betweenness
centrality measure is not stable.
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Proposition 1 ([11], [12]) The betweenness centrality measure CB in

(2) is not stable in the sense of Definition 1.

The instability of the betweenness centrality measure motivated the
definition of the alternative stable betweenness centrality CSB . Given an
arbitrary graph G = (V,E,W ) and a node x 2 V , define a new graph
Gx

= (V x, Ex,W x
) with V x

= V \{x}, Ex
= E \{(x0, x00

) |x0
=

x or x00
= x}, and W x

= W |Ex . I.e., the graph Gx is constructed by
deleting from G the node x and every edge directed to or from it. The
stable betweenness centrality CSB(x) of any node x 2 V is given by
[11], [12]

CSB(x) :=
X

x0,x002V
x0 6=x 6=x00

sGx

(x0, x00
)� sG(x

0, x00
). (5)

Measure CSB quantifies the centrality of a given node x by the change
in the length of shortest paths once this node is removed. This means that
the centrality of a node depends on the quality of the best alternative.
In contrast to the traditional centrality measure, CSB is stable.

Proposition 2 ([11]) The stable betweenness centrality measure CSB

in (5) is stable as defined in Definition 1 with KG = 2n2
.

Stability is the main advantage of CSB over CB since it ensures
robustness to noise of the former measure in contrast with the latter.
However, the measure CSB still inherits other undesirable properties
from the traditional centrality measure CB . In the following section
we explain this in detail and propose another centrality measure that
overcomes these limitations.

IV. DITHERING

Given an arbitrary graph G = (V,E,W ), define the corresponding
dithered graph G = (V,E,W ) where the function W maps every
edge e 2 E to an independent, real-valued, continuous random variable
W (e) = e. In order for W to be valid, we must have that, for any two
edges a, e 2 E and any real number ⌘,

E(e) = W (e), (6)
P (e > 0) = 1, (7)

W (e) � W (a) ) P (e � ⌘) � P (a � ⌘). (8)

The intuition is that any realization of G is a random perturbation
of the original graph G. Requirement (6) ensures that the random
variables representing the edge weights in G are unbiased with respect
to the corresponding weights in the original graph G. Requirement (7)
guarantees that with probability 1 every realization of G is a valid graph
as defined in Section II. Finally, if we compare the probabilities that
the weights of any two random edges in G are larger than a constant,
requirement (8) assures that the random edge associated to the larger
weight in the original network has a higher probability.

Example 1 (uniform �-dithering) A valid example of W satisfying

requirements (6)-(8) is such that, for all e 2 E,

e = W (e)(1 +�) , (9)

where � is uniformly distributed in [��,+�] for some 0 < � < 1.

A. Dithered stable betweenness centrality

Given an arbitrary dithered graph G = (V,E,W ), we may define the
random variable sG as the shortest path defined as in (1) but for random
weights W (xi, xj) instead of deterministic ones W (xi, xj). Using sG,

x1

x2

x3 x4x5 x6

1 1

1.1 1.1

1 1
CB CSB CDSB

x1 8.0 1.6 2.1
x2 0.0 0.0 0.6
x5 0.0 0.0 0.0

Fig. 1: Through dithering, CDSB distinguishes the centralities of x2 and
x5. This is not the case for CB and CSB .

we define the dithered stable betweenness centrality value of any node
x 2 V as

CDSB(x) :=E(CSB(x)) :=E
 

X

x0,x002X
x0 6=x 6=x00

sGx

(x0, x00
)� sG(x0, x00

)

!
.

(10)
Notice that CDSB is defined as the expected value of the random variable
CSB which represents the stable betweenness centrality as in (5) of the
dithered graph G. Since the shortest path sG is not a linear function
of the weights, in general E(CSB(x)) 6= CSB(x). Dithering preserves
stability since CDSB is stable as we show next.

Proposition 3 The dithered stable betweenness centrality measure

CDSB in (10) is stable as defined in Definition 1 with KG = 2n2
.

Proof: See Appendix A in [16].

The measure CDSB , apart from being stable, solves other undesirable
properties of CB and CSB ; see Fig. 1. In the corresponding table, we
compare the centrality values of three nodes computed using different
centrality measures. For CDSB we apply uniform 0.3-dithering as
introduced in Example 1 and perform 1,000 Monte Carlo (MC) iterations
to estimate the expected value in (10).

The three measures coincide in giving x5 a null centrality value.
This is reasonable since x5 is not an intermediate node in any path
between two nodes, let alone any shortest path. They also coincide in
giving x1 the highest value among these three, which again is reasonable
since x1 belongs to the shortest path between any pair of nodes in
opposite sides of the network. Regarding x2, the behavior of CDSB

is fundamentally different from the other two measures. We have that
CB(x2) = CSB(x2) = 0 since x2 does not belong to the shortest
path between any pair of other nodes in the network. In this way, x2 is
indistinguishable from x5. Nevertheless, the roles of x2 and x5 within
the network’s topology are different. The deletion of x5 has no effect
in the communication among the rest of the network justifying its null
centrality value. In contrast, if x2 is deleted, the network topology does

change. Before the deletion we had two comparable paths to go from
any node in the left to any node in the right and vice versa, whereas
after the deletion there is only one choice, making the network more
sensitive to the failure of node x1. Measures CB and CSB are not
aware of this impact, thus, assigning a null centrality value to node
x2. By introducing dithering, the proposed measure CDSB overcomes
this limitation and assigns a positive centrality value to x2. This occurs
because, although in expectation the paths through x1 are shorter than
those through x2, for some realizations of the dithered graph, x2 is the
preferred intermediate node to traverse from right to left and vice versa.
Thus, in expectation, the centrality value of x2 is strictly positive. The
behavior of CDSB is further illustrated in Section V.

In general, a closed form for the expected value in (10) is not available.
Hence, as in the previous example, we estimate the CDSB centrality
value of a node by computing its corresponding CSB centrality value in
k realizations of the corresponding dithered graph and averaging them.
Since the complexity of CSB is at most O(n2m + n3

log n) [12], the
complexity of CDSB becomes O(kn2m+ kn3

log n).
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Fig. 2: Robustness indicators when noise is introduced in random networks for the three centrality measures: betweenness (orange square), stable
betweenness (cyan circle), and dithered stable betweenness (green diamond). (a) Mean of the maximum change recorded when perturbing a random
network as a function of network size. (b) Probability that the maximum change in the ranking when perturbing a network exceeds 5 positions as
a function of the network size. (c) Histogram of the maximum change recorded when perturbing random networks with 100 nodes.

V. NUMERICAL EXPERIMENTS

We illustrate the advantages of dithering as a tool for computing
centrality by analyzing the application of CB , CSB and CDSB to
different graphs. We show the practical implications of stability (Section
V-A), we demonstrate that CDSB has an intuitive dependence on the
number and quality of alternative paths (Section V-B) and, finally,
we reveal that CDSB provides a smooth centrality distribution across
comparable paths (Section V-C).

A. Robustness to noise

For a given node set V of size n � 10, we define a random network
as one where an edge (x, x0

) belongs to E with probability q = 10/n.
In case an edge exists between two nodes, the weight of this edge is
randomly picked from a uniform distribution in [0.5, 1.5]. We analyze
the robustness of the centrality rankings output by CB , CSB , and CDSB

when these networks are perturbed by random noise. Given a network,
we build a perturbed version of it by multiplying the weight of each
edge by a uniform random number in [0.99, 1.01].

For the following experiment, we generate 100 random networks of
n nodes, where n varies from 10 to 100 in multiples of 10. We then
generate a perturbed version of each of these networks by applying
the aforementioned random noise. For every network, we generate a
centrality ranking of the nodes, i.e. we sort the nodes in decreasing
order of centrality value, and compare it with the centrality ranking of
the perturbed version of that network. For CDSB we apply uniform
0.1-dithering and 100 MC iterations for every network.

The property of stability [cf. Definition 1] makes CSB and CDSB

robust to noise, a characteristic that CB does not posses. We begin by
analyzing the maximum variation in ranking position experienced by a
node when perturbing the network. In Fig. 2a we plot the mean of this
indicator among the networks analyzed as a function of the network size.
For example, for a network with 70 nodes, the perturbation generates a
maximum change of 4.1 positions on average for the CB ranking, 2.2
positions on average for the CSB ranking, and 3.0 positions on average
for the CDSB ranking. Although all measures present an increase of
the maximum change with the size of the network, the rate of increase
is fastest for CB , generating big performance differences between the
measures for larger networks.

In Fig. 2b we plot the probability that the maximum change in the
ranking generated by a perturbation is greater than 5 positions as a
function of the network size. E.g., for networks of 100 nodes, there is
a 0.4 probability that the betweenness centrality ranking undergoes a
variation greater than 5 positions while this probability is less than 0.05
for the other two measures. To facilitate the understanding of Figs. 2a
and 2b, in Fig. 2c we present the histogram of the maximum change
suffered by the rankings when perturbing a network for the particular

x

x1

x2

xn

...

... ...
1 1

1+✏ 1+✏

1+✏ 1+✏

1+✏ 1+✏

Fig. 3: The blue and the red components of the graph are joined by n+1

paths, one of them being optimal. We analyze CB , CSB and CDSB as
a function of the number of alternative paths n and their quality ✏.

case of networks with 100 nodes. In this way, the mean of the orange
histogram corresponds to the orange square for networks of 100 nodes
in Fig. 2a, the mean of the cyan histogram corresponds to the cyan
circle, and so on. To relate the histograms with Fig. 2b, notice that the
orange histogram is the only one with a relevant portion of its weight in
changes of 6 positions or more. This accounts for the big difference in
the probabilities of having changes greater than 5 positions for networks
of 100 nodes between the orange marker and the rest in Fig. 2b. Having
a longer tail, the silhouette of the orange CB histogram is essentially
different from the other two. E.g., for one of the studied networks,
the CB ranking presents a change of 16 positions whereas the largest
variation for the two other measures combined is of 6 positions. This is
an empirical example of the instability of betweenness centrality.

B. Dependence on alternative paths

The betweenness centrality value of a node is completely determined
by the shortest paths between every pair of nodes in the network. The
stable betweenness centrality, in addition, takes into account the best
alternative path once the node being studied is deleted. However, CSB

is myopic to the number of comparable alternatives for shortest paths
that exist. When adding dithering to obtain CDSB , the centrality values
depend on both the quality and number of alternative paths. To illustrate
this we analyze the centrality value of node x in the graph in Fig. 3. In
this graph we have two components of 10 nodes each – the blue and
the red – which are connected by a series of bridges. We compute the
centrality of x as given by the three measures CB , CSB , and CDSB for
different values of n, i.e. the amount of alternative paths, and varying
✏, i.e. the quality of the alternative paths. For CDSB we apply uniform
0.2-dithering and 100 MC iterations. In Fig. 4 we plot the centrality
values as a function of ✏ for n = 1 in green, n = 10 in purple and
n = 100 in yellow.
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Fig. 4: Centrality values of x in the graph in Fig. 3 as a function of ✏ for n 2 {1, 10, 100}. (a) Betweenness centrality CB . Centrality values do
not depend on ✏ or n as long as ✏ > 0. (b) Stable betweenness centrality CSB . Centrality values depend on ✏ but are independent of the number
of alternative paths n. (c) Dithered stable betweenness centrality CDSB . Centrality values increase with ✏ and decrease with n.
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Fig. 5: Scatter plot of a dumbbell-like graph. The higher the centrality of a point, the larger its area and the redder its color. (a) CB . Centrality
is very susceptible to minor variations in the position. (b) CSB . Most nodes have null centrality values since many comparable alternative paths
exist. (c) CDSB . The whole linear part of the graph is detected as central, with a smooth distribution of centrality values across the nodes.

First consider the behavior of CB ; see Fig. 4a. For strictly positive
values of ✏, the centrality value is constant regardless of the value of
n or ✏. This occurs because the bridge through x is strictly better than
the rest and, thus, CB ignores the number and quality of alternative
bridges. For ✏ = 0 though, every bridge is equally good. Hence, the
greater n, the less portion of shortest paths go through x and the smaller
its centrality value. From Fig. 4a, it is immediate that CB is not a
continuous centrality measure as shown in [12]. For the case of stable
betweenness in Fig. 4b, centrality varies in a continuous way with ✏
since the quality of alternative paths is taken into account. However,
just like traditional betweenness centrality, CSB is impervious to the
number of alternative paths n. By adding dithering, CDSB behaves in
a more intuitive way; see Fig. 4c. For a fixed number of paths n, the
centrality of x grows with ✏, i.e. it grows when the quality of alternative
paths decreases. Moreover, for a fixed ✏, the centrality of x decreases
when n increases. This means that when multiple alternative paths exist,
the centrality of a node lying in one of these paths is reduced.

C. Multiple path detection

Consider the point cloud in R2 depicted in Fig. 5. Notice that this
dumbbell-like finite metric space consists of two circular clusters linked
by scattered points in a linear fashion. We build a weighted graph G
from this point cloud where for every pair of points we draw an edge
between them weighted by their euclidean distance if this distance is less
than 1. Otherwise, there is no edge between them. We then compute the
centrality value of each node as given by the three measures CB , CSB

and CDSB . For CDSB we apply uniform 0.2-dithering and 100 MC
iterations. The area and the color of the points depend on their centrality.
The more central a node is, the larger its area. Similarly, more central
nodes are red in color as opposed to the blue color of less central points.
For every graph, the centrality is normalized to be contained in [0, 1].

Notice that in the centrality pattern given by CB in Fig. 5a, some of
the nodes in the linear portion of the graph are very central while other
nodes close to these have very small centrality values. However, there is
no fundamental difference between the central nodes and the rest, they
were all generated randomly in a rectangular portion of the plane. What
occurs is that belonging or not to a shortest path is extremely sensitive to
small random variations. The measure CSB does not solve this problem;
see Fig. 5b. In fact, most of the nodes in the linear part of the graph have
almost null centrality values. This occurs because if almost any node is
deleted, a comparable path can be found through other nodes, bounding
its centrality. In this way, CSB is incapable of differentiating most of the
nodes in the linear part of the graph from peripheral nodes in the circular
clusters. By adding dithering, CDSB correctly portrays the centrality
profile of the graph; see Fig. 5c. Nodes belonging to most shortest paths
still have the highest centralities but nodes belonging to comparable
alternative paths have comparable centrality values. In this way, there is a
smooth distribution of centrality across the points in the linear part of the
graph since CDSB detects multiple paths as opposed to just the shortest
one. Moreover, points belonging to the linear portion of the graph can
be easily distinguished from peripheral nodes in the circular clusters as
opposed to the CSB case. This is reasonable since nodes belonging to
both categories – linear and peripheral – play fundamentally different
roles in dynamical processes within the network.

VI. CONCLUSION

Dithering as a tool to design more reliable centrality measures was
formally introduced and was used to develop an improvement on the
stable betweenness centrality measure. This new measure preserves
stability while following a more intuitive behavior in terms of quality
and number of alternative paths. Furthermore, different advantages of
dithering were illustrated through three numerical experiments.
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