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Discounted Integral Priority Routing For Data Networks

Michael Zargham!, Alejandro Ribeirof, Ali Jadbabaie'

Abstract—A Discounted Integral Priority (DIP) packet routing
algorithm is presented. The method is derived for the network flow
model of packet routing used for the derivation of backpressure
type methods. Unlike backpressure type methods, DIP routing
is designed to reduce the queue lengths rather than simply
stabilize them. Our work leverages time discounted integral
control to generate an adaptive packet routing algorithm which
significantly outperforms its optimization motivated counterparts.
Connections are drawn with stochastic heavy ball methods which
allow implementation of a decaying stepsize. Stability proofs are
presented for a stochastic heavy ball variant of the Discounted
Integral Priority routing algorithm with a decaying step size. Our
numerical experiments implement Discounted Integral Priority
Routing with a unit step size and demonstrate fast convergence
and significantly smaller steady state queue backlogs as compared
with Soft Backpressure and Accelerated Backpressure.

I. INTRODUCTION

This paper considers the problem of joint routing and
scheduling in packet networks. Packets are accepted from upper
layers as they are generated and marked for delivery to intended
destinations. To accomplish delivery of information nodes need
to determine routes and schedules capable of accommodating
the generated traffic. From a node-centric point of view, indi-
vidual nodes handle packets that are generated locally as well
as packets received from neighboring nodes. The goal of each
node is to determine suitable next hops for each flow conducive
to successful packet delivery.

The study of the joint scheduling and routing problem,
has been built up from the Backpressure (BP) algorithm, [1].
In BP, nodes keep track of the number of packets in their
local queues for each flow and share this information with
neighboring agents. Nodes compute the differences between
the number of packets in their queues and the number of
packets in neighboring queues for all flows and assign the
transmission capacity of the link to the flow with the largest
queue differential. An alternative interpretation of BP is as
a dual stochastic subgradient descent algorithm [2], [3]. This
leads to a model of the joint scheduling and routing problem
as an feasibility-type optimization of per-flow routing variables
that satisfy link capacity and flow conservation constraints.
Considering the Lagrange dual problem generates distributed
algorithms to find stable operating points of wired [4]-[6] and
wireless communication networks [7]-[9].

The convergence rate for subgradient descent methods is
logarithmic in the number of iterations, [10]. This has lead
to efforts to applying faster converging dual descent type
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algorithms. In [11], Soft Backpressure (SBP) includes an
objective function in the feasibility problem. For appropriate
choice of objective the subgradient becomes a unique gradient,
improving convergence. In, [12]. Accelerated Backpressure
(ABP) extends this idea of SBP further by choosing a strongly
convex objective and implementing Accelerated Dual Descent
(ADD), a distributed approximation to Newton’s Method in
place of gradient descent, [13]. SBP and ABP solve these
stabilization problems much faster than BP but these algorithms
but are unable to effectively clear backlogged queues even if
the capacity to do so is available in the network.

In this paper, we shift into more control oriented thinking
and observe that in order to eliminate large queues in steady
state an integral control term is necessary. In developing
Discounted Integral Priority (DIP) routing, we work within the
Soft Backpressure framework but rather than using the queues
themselves as routing priorities, we use a time discounted sum
of the queue history. These priorities can be computed locally
using a simple linear update combining the existing priorities
and the newly observed queue lengths. Our method can be
connected to a class of heavy ball methods like those introduced
in [14]. By recasting the Discounted Integral Priority routing
as a stochastic heavy ball update for the dual variables, we are
able to implement a decaying step size which is a standard
requirement for convergence in stochastic optimization. Our
stability proofs leverage the decaying step size to prove queue
stability under the stochastic heavy ball variant of the DIP
algorithm. One of the main challenges in reducing the queues
rather than just stabilizing them is the stochastic nature of the
packet arrivals. Some related work includes noise cancelation
in [15] and adaptive gradient methods in [16].

II. PRELIMINARIES

Consider a given network G = {V, €} where V is the set
of nodes and £ C V x V is the set of links between nodes.
Denote as C;; the capacity of link (¢, j) € £ and define the
neighborhood of i as the set n; = {j € V|(i,7) € £} of nodes
7 that can communicate directly with ¢. There is also a set of
information flows K with the destination of flow k& € K being
the node o, € V. Let n = |V| be the number of nodes and
K = |K| be the number of information flows in the network
and F = || be the number of edges in the network. Define
the n x E matrix A to be the incidence matrix of the graph G
and the reduced incidence matrix Ay, as the (n—1) x E matrix
with the row associated with destination node o removed. The
block diagonal matrix A =diag[Ay] is an (n — 1)K x E - K
incidence matrix encoding the interrelation of all information
flows and nodes in the network.

At time index ¢ terminal ¢ # o} generates a random number

af(t) = af + v/ (t) (1)
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of units of information to be delivered to o,. The random
variables a¥(t) > 0 are generated by v/} (¢) which are indepen-
dent and identically distributed across time with E Lz/f )] =0
and finite support. Thus the expected value E [af(t)] = af
and a¥(t) has finite support. In time slot [t,t + 1), node i
routes rfj (t) > 0 units of information through neighboring
node j € n; and receives r;-“i(t) > 0 packets from neighbor j.
The difference between the total number of received packets
af(t) + Xjc,, rhi(t) and the sum of transmitted packets
Y ien, rfj (t) is added to the local queue — or subtracted if
this quantity is negative. Therefore, the number ¢¥(t) of k-flow

packets queued at node ¢ evolves according to

n

(t+1) = [qfof) Fab(t)+ S k() - n@(t)] e
JEN;

where the projection [-]* into the nonnegative reals is neces-

sary because the number of packets in queue cannot become

negative. We remark that (2) is stated for all nodes i # oy

because packets routed to their destinations are removed from

the system.

To ensure packet delivery it is sufficient to guarantee that all
queues ¢F (¢ + 1) remain stable. In turn, this can be guaranteed
if the average rate at which packets exit queues does not
exceed the rate at which packets are loaded into them. To state
this formally observe that the time average limit of arrivals
satisfies lim;_,oc af(t) = E[a¥(t)] := af and define the
ergodic limit rfj = limy 00 rfj(t) If the processes rfj(t)
controlling the movement of information through the network
are asymptotically stationary, queue stability follows if

Zr%—rﬁZaf—}—f YV k,i# o 3)

JEN;
for some constant £ > 0 which is introduced because stability
is guaranteed if the inequalities ) jen rfj - rfi > a¥ hold
in a strict sense. For future reference define the vector r :=
{r¥;}x,(i,j) grouping variables r¥; for all information flows and
links. Since at most C;; packets can be transmitted in link
(i,) the routing variables 7%, (t) always satisfy the capacity

ij
constraints on the network,
k
> k() < G )
k

which defines the the set of possible routings
C={reREP rli(t) < CyV(i,j) € £} )

The joint routing and scheduling problem can be now formally
stated as the determination of nonnegative variables r(t) € C
that satisfy (4) for all times ¢ and whose time average limits Tfj
satisfy (3). The BP algorithm solves this problem by assigning
all the capacity of the link (4, ) to the flow with the largest
queue differential ¢f (t) — ¢} (¢). Specifically, for each link we
determine the flow pressure

Ky = avgma [gf (1) — af(1)] ©)

If the maximum pressure maxy, [¢} (t) — qf(t)] T>0is strictly
positive we set rfj (t) = Cij for k = kj;. Otherwise the link
remains idle during the time frame. The backpressure algorithm

works by observing the queue differentials on each link and
then assigning the capacity for each link to the data type
with the largest positive queue differential, thus driving the
time average of the queue differentials to zero— stabilizing the
queues. To generalize, we reinterpret BP as a dual stochastic
subgradient descent.

A. Dual stochastic subgradient descent

Since the parameters that are important for queue stability are
the time averages of the routing variables rfj (t) an alternative
view of the joint routing and scheduling problem is the deter-
mination of variables rJ; satisfying (3) and Y, r}; < Cy;. This
can be formulated as the solution of an optimization problem.
Let i’; (rf}) be any concave function on R and consider the
optimization problem

r* ;= argmax Z Z(rfj) 7
k,iF#0i,j
s.t. er’j—TfiZaf—i—f, YV ki # o,
JEN;
erjgcijv \V’(Z,])Eg
kek

where the domain is a the convex polyhedron defined in
(5). Since only feasibility is important for queue stability,
solutions to (7) ensure stable queues irrespectively of the
objective functions i’} (rfj) For notational compactness, define
f(r) = Zk,(i,j) 7]}(7“53)

Since the problem in (7) is concave it can be solved by
descending on the dual domain. Start by associating multipliers
A; with the constraint Y. v — 5, > af and keep the
constraint » € C implicit. The corresponding Lagrangian
associated with the optimization problem in (7) is

L(r,\) = Z Z@(Tfj)—i- Z Af(erj—rfi—a?—&-E)

k,i#ok,7 k,i#oy, JEN; (8)

where we introduced the vector A := {A\¥}; ;.. grouping
variables \¥ for all flows and nodes. The corresponding dual
function is defined as
h(\) := max L(r, A). )
reC
To compute a descent direction for ~()), compute the primal
Lagrangian maximizers for given A according to the vector
function R : RS:HDK — C defined

R(\) := argmax L(r, A).
recC

(10)

The individual elements Rfj()\) are ordered by stacking the I
dimensional subvectors for each information flow k. A descent
direction for the dual function is available in the form of the
dual subgradient! are obtained by evaluating the constraint
slack associated with the Lagrangian maximizers

[VhN]F = Y~ R (N = R —af — €.

JEN;

(1)

"For an appropriately chosen cost function f(r), the subgradient is unique
which motives the use of gradient notation Vh(X), (see Proposition 1).
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Since the Lagrangian L£(r,A) in (8) is linear in the dual
variables A} the determination of the maximizers Rf;(\) :=
argmax,.cc £(r, \) can be decomposed into the maximization
of separate summands. Considering the coupling constraints
>k < Cyj imposed by the domain C it suffices to con-
sider variables {r};}x for all flows across a given link. After
reordering terms it follows that we can compute routes link
wise

RE,(\) = argmax Z k) +rE (W = 2F) (12)

{rk >0} %

ij =

S.t. Z Tfj < Cij
ke

for each link (4, j) € £. Introducing a time index ¢, subgradi-
ents VA¥(\;) could be computed using (11) with Lagrangian
maximizers Rfj(At) given by (12). For notational convenience,
the dual subgradient may also be specified in vector form

Vh(\) = AR(\) —a — €1 (13)

where 1 is the vector of all ones. A subgradient descent iteration
could then be defined to find the variables r* that solve (7) via
a dual method which generates a sequence A;; see e.g., [17].
The problem in computing VA% () is that we don’t know the
average arrival rates af. We do observe, however, the instan-

taneous rates af(¢) that are known to satisfy E [a?(t)] = aF.
Therefore,
[0V = Y0 RGN = RO) —af(t) =& (14)

JEN;

is a stochastic subgradient of the dual function in the sense
that its expected value E [gF(\)] = VR¥()) is the subgradient
defined in (11). Stated in vector form

gt(\) = AR(\) —a — vy — €1, (15)

where a; = a + v, and E[1y] = 0 for all ¢. We can then
minimize the dual function using a stochastic subgradient de-
scent algorithm. At time ¢ we have multipliers \; and determine
Lagrangian maximizers r%(t) = Rfj()\t) as per (12). We then
proceed to update multipliers along the stochastic subgradient
direction according to

e+ 0 = [0 o T oo - i -k —£>r,

JEN;

(16)
where € is a constant stepsize chosen small enough so as to
ensure convergence; see e.g., [11].

Properties of the descent algorithm in (16) vary with the

selection of the functions fF(r¥;). Two cases of interest
k (k) — k (k .
are when f(r;;) = 0 and when f7(r7;) are continuously

differentiable, strongly convex, and monotone decreasing on
R, but otherwise arbitrary. The former allows recovers the
Backpressure Algorithm while the latter leads to the Soft
Backpressure algorithm.

B. Soft backpressure

Assume now that the functions fikj (rfj) are continuously dif-
ferentiable, strongly convex, and monotone decreasing on R
but otherwise arbitrary. In this case the derivatives 0 1"3(3:) /0z

of the functions fl-’?(x) are monotonically increasing and thus
have inverse functions that we denote as

Fk(x) = [0fk(2)/02] " (x).

The Lagrangian maximizers in (12) can be explicitly written
in terms of the derivative inverses Fjj(x) Furthermore, the
maximizers are unique for all \ implying that the dual function
is differentiable. The details are outlined in Proposition 1
originally published in [12].

A7)

Proposition 1. If the functions 2’3(7"5‘]) in (7) are continuously
differentiable, strongly concave, and monotone decreasing on
R, the dual function h(X\) := max,cc L(r, \) is differentiable
for all \. Furthermore, the gradient component along the )\f

direction is [Vh(\)|¥ as defined in (11) with
; : +
RE () = Fl (= D=0 = ()] 7).

where [1;;(\) is either 0 if ), FZ;( —[AF - )\ﬂ+) < Cyj or
chosen as the solution to the equation

SOEE (= A= A =] = G
k

While (19) does not have a closed for solution it can be
computed quickly numerically using a binary search because it
is a simple single variable root finding problem. Computation
time cost remains small compared to communication time cost.

The Soft backpressure can be implemented using node level
protocols. At each time instance nodes send their multipliers
Ak () to their neighbors. After receiving multiplier information
from its neighbors, each node can compute the multiplier
differentials \¥(¢) — )\f (t) for each edge. The nodes then solve
for u;; on each of its outgoing edges by using a rootfinder to
solve the local constraint in (19), The capacity of each edge
is then allocated to the unique information flows via reverse
waterfilling as defined in (18). Once the transmission rates
are set each node can observe its net packet gain which is
equivalent to the stochastic gradient as defined in (14). Finally,
each node updates its multipliers by subtracting e times the
stochastic subgradient from its current multipliers. As with BP,
choosing the stepsize € = 1 causes the multipliers to coincide
with the queue lengths for all time.

(18)

19)

C. A General Priority-Based Routing Strategy

The Backpressure and and Soft Backpressure algorithms, as
detailed in the preceding sections, are fundamentally priority
based routing strategies. When viewed in the optimization
framework these priorities are dual variables but the priority-
based routing strategy R(\) defined in (10) can be implemented
for any priority vector \. We define a general priority-based

routing strategy
ry = R()\:) for any sequence M\, V¢. (20)

A priority based routing strategy based on (20) generates a
sequence of queue lengths

Qi+1 = q — 9e( M) — €1 21

where the stochastic gradient function, g;(\) is defined in (14).
The £1 offset guarantees that priorities A satisfying g;(A¢) > 0

1995



Globecom 2014 - Next Generation Networking Symposium

result in a strict reduction. Substituting the definition of the
stochastic gradient

qi+1 = qt — AR()\t) +a + vy. (22)
We define the queue update
Aqi(\) = AR(N\;) — a — vy (23)

The routing strategy R(\;) for any sequence {\;}72, gener-
alizes the notion of Soft Backpressure, [11] to a case where the
priorities can be generated by any desirable scheme. Another
example of a priority based routing algorithm is Accelerated
Backpressure, [12]. Priority sequences {A:;}$2, are not all
equally effective. Determination of sufficient conditions for a
priority sequence {A;}72, to yield stable queue lengths is an
open problem.

III. DISCOUNTED INTEGRAL PRIORITY BASED ROUTING

Observing that existing protocols for packet forwarding
which use optimization motivated priorities tend to stabilize but
not reduce the queues, we propose a set of priorities motivated
by integral control. In particular, since the queues are state
variables which we would like to make small at steady state,
we set the priorities to a discounted integral of the queues.
Consider the set of routing priorities

t
At = Z Ty
7=0

where o € [0,1) is a discounting factor. Observe that for if
o = 0, the soft backpressure algorithm )\; = ¢ is trivially
recovered. Backpressure type algorithms are implemented by
observing the stochastic gradients g;(\;) in order to update
the routing variables. In our method, ¢; is observed and the
priorities are updated

(24)

At = ad—1 + qq, (25)

which can be computed without information from neighboring
nodes: A\F(t) = a\f(t — 1) + ¢¥(¢) for all nodes 4, information
flows k and times ¢. Under this scheme we do not force any
information exchange, rather we allow information to spread
through the effect of the changes in the realized routing.
See Algorithm 1 for the distributed implementation of the
priority based routing r; = R();) using the discounted integral
priorities {\:}72, chosen according to equation (24).

A. Connection to Heavy Ball Methods

The discounted integral priority update can be expressed
as a variant on the heavy ball method. A variety of closely
related momentum based algorithms are considered heavy Ball
Methods, the primary examples are Nesterov’s accelerated
method, [14] and Polyak’s Method, [18].

Lemma 1. The discounted Integral Priority update in (25) can
be rewritten as

Ait1 = A + Aqe(Ne) + a(Ay — M—1)

where Aqi(\:) is the change in queues induced by routing
according to the priorities Ay and the discounting parameter o
is weighting coefficient on the momentum term.

(26)

Algorithm 1: Discounted Integral Priority Based Routing

1 fort=0,1,2,--- do

2 Observe {qiC ()} &,
3 Compute A (t) = adf(t — 1) + ¢ (1)
4 for all neighbors j € n; do
5 Send priorities {\F(¢)}x — Receive priorities {\¥(¢)}x
6 Compute f;; such that
SO (-DE) - M) - pilt) = Oy
k
Transmit packets at rate

ris (1) = F(=IX () = A7 () — pas] )
7 end
s end

Proof : Stating equation (25) at time ¢ + 1 yields

At41 = QX + qiq1- 27
Subtracting (25) from (27) yields
At41 = At + (g1 — q1) + a(Ae — Ade—1). (28)

From the definitions in (22) and (23), the change in the queues
Agi(N) = gr4+1 — g+ completing the proof. |

From Lemma 1, we see that the discounted integral priority
method is equivalent to applying the heavy ball method to a
basic soft backpressure algorithm. Soft back pressure in our
notation is qy+1 = q¢ — /_XR(qt) + a + vy, because the priorities
and the queues are equivalent for all ¢, [11]. Unlike the basic
soft backpressure algorithm the queues and the priorities do
not remain equivalent. Heavy ball type methods are known to
significantly improve convergence rates.

B. Stochastic Heavy Ball Routing

The heavy ball method is analyzed for stochastic optimiza-
tion in [19]. In order to guarantee convergence in stochastic
optimization, it is necessary to introduce a decaying step size
€ satisfying > ;o € = oo and .o, €7 < oo. Motivated by
Lemma 1, we introduce Stochastic Heavy Ball routing

>\t+1 = )\t — 6tgt(/\t) =+ Oé()\t — >\t—1) (29)

which is a variant of the Discounted Integral Priority routing
algorithm, which allows implementation of a decaying step size
€;. This minor variation allows the direct application of The-
orem 2 from [19] from which we conclude that \; converges
with probability one, to a solution of the dual problem in (9).
In the following section, it is shown that convergence of the
priorities is sufficient to stabilize the queues.

IV. STABILITY ANALYSIS

The heavy ball variant of the discounted integral priority
method with update as defined in (29) allows in the inclusion
of a decaying step size which is standard in the analysis of
stochastic optimization algorithms. Another key property is the
boundedness of the stochastic gradient.
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Lemma 2. The stochastic gradient is bounded

lg:(M <7, VE, VA

(30)

The analysis that follows is related to the stochastic con-
vergence analysis for the Accelerated Backpressure (ABP)
algorithm as detailed in [20]. As in ABP, the results are built on
a specialized version of the supermartingale convergence the-
orem found in [21, Theorem E.7.4]. The proofs are noticeably
simpler than there ABP counterparts because there is no need
to characterize the second derivatives of the dual objective.

Proposition 2. Consider the Stochastic Heavy Ball Routing
implemented with the dual step (29), decaying step size €;
satisfying Y, €, = o0, >, €; < 0o and the stochastic gradient
9t(A\t) as defined in (14), then

Jim [[Vh(A)] =0 G31)

almost surely.

Proposition 2 is the first step in our theoretic convergence
guarantee. By implementing a decaying step size when updat-
ing the dual variables, convergence to the optimal dual variables
is achieved. From Theorem 2 of [19], priority vectors ),
converge with probability one and our routing Rfj (A\¢) becomes
a feasible routing in the primal problem, (7). We proceed to
leverage this fact to ensure the queues remain stable.

Proposition 3. Consider a dual variables process A\ such that
the dual gradient Vh(\;) satisfies

Jim [[VA(\)[ =0, as. (32)

Then, all queues empty infinitely often with probability one, i.e.,

lim inf @) =0, as, foralk,i#ox (33)
—00

Corollary 1. Consider the Stochastic Heavy Ball Routing
Algorithm, defined by (29) with g.(\) as defined in (14) and
primal Lagrangian maximizers defined in (12). With step size
sequence is chosen to satisfy Y., €, = 0o and Y, €7, all queues

become empty infinitely often with probability one,

lim inf ¢¥ (¢) = 0,

as.,
t—o0

Sor all ki # o. 34)

Corollary 1 is a sufficient condition for queue stability. In
fact it is a much stronger result because the queues are always
eventually cleared. This occurs because our dual variables
converge to the optimal priorities which yield a routing Rfj (Mg)
which forces the queue lengths to decrease in expectation
whenever they are non-zero.

TABLE I
AVERAGE QUEUE BACKLOG STATISTICS

Algorithm BP SBP ABP  DIP
Mean 74.13 1622 1392 438
St. Dev. 1152 092 237  0.02

Fig. 1. Several numerical experiments for the Discount Integral Priority (DIP)
routing algorithm presented in this section are performed on this simple 10
node network with 5 data types. The destinations are unique for each data type
and are chosen randomly.

V. NUMERICAL RESULTS

The main benefit of introducing discounted integral priorities
is the ability to drive large queues out of the system. The
performance of the DIP routing in its simplest form, as defined
in (25) is compared with the performance of the backpressure
based queue stabilization methods defined in [11] and [12].

Our experiments take place on the network in Figure 1,
with edge capacities chosen uniformly randomly in (0, 50|, the
strictness inequality parameter & = 0 and there are ' = 5 data
types with unique destination nodes. Each queue starts with
an expected initial backlog of 10 packets. The arrival process
has an expectation of 5 packets per queue which results in an
expected 5(n — 1)K = 45 packets entering the system at each
time. The resulting problem (7) is feasible but non-trivial. Our
choice of objective function is

1 2
k(.k Kk k_k
ij(rij)——i(m-j) + Dijriz

The quadratic term captures an increasing cost of routing larger
quantities of packets across a link and help to eliminate myopic
routing choices that lead to sending packets in cycles. The
linear term /[ is introduced to reward sending packets to their
destinations. In our simulations, ﬁfj = 10 for all edges routing
to their respective data type destinations 7 = oy and all other
i,7,k, 6% = 0. Figure 2, is a characteristic example of the
relative behaviors of the algorithms being studied. Backpressure
(BP) stabilizes the queues but the total number of backlogged
packets remains large. Accelerated Backpressure (ABP) stabi-
lizes the queues more quickly that Soft Backpressure (SBP)
but neither do any work to remove existing queue build up.
Discounting Integral Priority (DIP) routing however drives the
total packets queues significantly below their starting levels.
In order to more precisely characterize the relative behavior
of these algorithms, we repeat the numerical experiment 100
times and record the average-average backlog. Two averages
are used, we take a time average over 500 iterations to account
for fluctuations and we average over the number of queues.
Thus the data being presented is the average number of packets
in each queue over the whole trial. Figure 3 is the distribution
over all 100 trials. The key observation is that the Discounted
Integral Priority (DIP) routing algorithm results in an average
queue length of well below the initial average queue length
while the other algorithms are at best close to the starting
value. In fact the average backlog is close to the average arrival
rate. Another important observation is highlighted in Table I;
these results are achieved with an extremely tight variance over

(35)
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total queued packets
3500

—BP

3000
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500

A ]

0 100 200 300 400 500
iteration

Fig. 2. ABP and SBP stabilize the queues much more effectively than BP, but
DIP routing drives the queues down and keeps them stable there.

Queued Backlogs by Algorithm
T T

100 T T
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Fig. 3. ABP and SBP stabilize the queues relatively quickly, preventing them
from getting too far above the initial queues. ABP is faster than SBP but
exhibits more variance. DIP routing however drives the queues well below the
initial queue lengths.

many trials. Every realization of the problem has different edge
capacities but the same arrival statistics. The implication is that
the Discounted Integral Priorities successfully learn information
about the arrival statistics and the remaining steady state
backlogs result from the fact that the arrivals are stochastic.

VI. CONCLUSION

The Discounted Integral Priority (DIP) routing algorithm
is a significant improvement over its optimization motivated
backpressure-type counterparts. Most notably, it out performs
Accelerated Backpressure with a significantly simpler update
scheme. This is achieved by introducing the notion of integral
control, which characteristically drives out the steady state
error.

The DIP algorithm is shown to be closely related to stochas-
tic heavy ball methods which allows formal guarantees for
queue clearing when implementing the variant which includes

a decaying step size. The numerical experiments demonstrate
that even without including the decaying step size, the DIP
algorithm drives down the steady state queues.

Future direction for this work includes expanding the anal-
ysis to prove not only queue reduction but also convergence
rates. Also, we plan to explore the DIP routing’s ability to
handle periodic large arrival shocks, something stabilizing
algorithms struggle with. Based on our current results, we can
expect good performance as long as the shocks are not so
frequent that they make the problem infeasible in expectation.
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