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Abstract— Based on the fictitious play algorithm, we intro-
duce the distributed fictitious play algorithm as a decentral-
ized decision-making model in unknown environments with
networked interactions. The setup includes a network of agents,
each receiving a payoff that depends on own action, actions of
others and an unknown state of the world. In this setup, each
agent needs to reason about the behavior of others and the
unknown state of the world. In the distributed fictitious play
algorithm, agents reason about others’ behavior by keeping
an empirical distribution of the others’ actions based on the
information received from their neighbors. We consider an
information exchange model where agents observe past actions
of their neighbors and keep an empirical distribution on the
centroid population action. In addition, agents form beliefs on
the state of the world through a parallel state learning process.
At each stage of the algorithm, agents maximize their expected
payoff assuming that others are going to play with respect to
their estimated centroid empirical distribution given their belief
on the state of the world. We show that the behaviors of agents
converge to a consensus Nash equilibrium (NE) strategy of a
symmetric potential game – a game with permutation invariant
identical payoffs – as long as the state learning process achieves
consensus in beliefs fast enough. We exemplify fast enough state
learning processes and analyze the convergence behavior of the
algorithm in a coordination game.

I. INTRODUCTION

Based on the fictitious play algorithm, we introduce an
individual decision-making model for multi-agent systems
in uncertain environments which we call the distributed
fictitious play algorithm. In fictitious play algorithms, each
agent builds a model of future behavior of other agents by
forming a histogram on observed actions of the past and
best responds to its expected payoff [1], [2]. In setup of
this paper, each agent in a network receives a payoff that
depends on own action, actions of others and an unknown
state of the world. In a networked setting, agents have access
to information via their neighbors, that is, all of the past
actions are not available. Therefore, in order to act optimally,
agents need to reason about the behavior of non-neighboring
agents based on past observations of their neighbors only. In
addition, agents have uncertainty on the state of the world
and update their beliefs on the state using private or local
information. Our analysis shows that the agents can do the
two processes, namely, reasoning about others’ behavior and
learning about the state, independently and converge to a
Nash equilibrium of a potential game [3].

Belief formation on other agents’ behaviors depends on
the type of local information exchanged. We consider agents
that only observe actions of their neighbors. Agents assume

all the other agents follow a ‘centroid’ empirical distribution
which they estimate by keeping account of frequency of
observed neighboring actions [4]. Agents take actions that
maximize the expected utility at each stage. Expected utility
is computed assuming all the other agents independently
follow the estimated ‘centroid’ empirical distribution. We
analyze the convergence rate of the estimated empirical
distribution in Section II-B and show that agents approach
to the true empirical distribution that they estimate at a rate
of O(log t/t) irrespective of the state learning and agent
response rules.

The equilibrium convergence result for the model assumes
that agents use a local state learning process in which agents
agree asymptotically on a distribution on the state of the
world at a rate faster than or equal to O(log t/t). Various de-
centralized learning models exist in the literature that achieve
the desired convergence rate under different assumptions [5]–
[8]. We exemplify two such state learning processes, namely
averaging and Bayesian learning in Section II-C. The main
convergence result states that agents asymptotically reach a
consensus Nash equilibrium of any symmetric potential game
in which agents have identical beliefs on the state (Theorem
1). At a consensus Nash equilibrium strategy, all agents use
the same strategy and play optimal with respect to others’
equilibrium strategy. We numerically analyze the transient
and asymptotic equilibrium properties of the decentralized
fictitious play in the beauty contest game (Section IV). In
the beauty contest game, a team of robots tradeoff between
moving toward a target direction on which they receive noisy
information about and moving in coordination with each
other. The communication constraints among robots limit
their information sources to their local neighborhood. In
addition, robots’ beliefs on the target direction are different.

The setup of this work falls under the literature of learning
in games that considers dynamic processes that lead to
equilibrium in games [9], [10]. Fictitious play in which it is
assumed that past history of the game is public, is one such
simple update mechanism that has been shown to converge
to a Nash equilibrium strategy in zero sum [9], certain 2 ×
2 [11] and identical interest (potential) games [2]. Recently,
the convergence results of the fictitious play algorithm has
been shown to hold for potential games in a setting where
agents only make local observations [4]. Our results leverage
on their results and incorporate incomplete and asymmetri-
cal information to the considered environment which is of
importance for technological settings. Our motivation stems



from the fact that computational burden of Bayesian Nash
equilibrium strategies for each agent – optimal decision for
each selfish agent given uncertainty about others and state –
is not realistic even when the computation is possible [12].
Furthermore, the impossibility of learning ‘Bayesian Nash
equilibria’ strategies in games of incomplete information
has been demonstrated in [13]. We circumvent this issue by
forcing asymptotic agreement among agents’ beliefs on the
state of the world via local state learning processes. We then
use the fact that an identical interest game with common
belief on the state of the world is an identical interest game
with complete information with agents’ payoffs equal to the
expectation over the potential function of the original game
with respect to the common belief over the state.

Other variants of the fictitious play algorithm [14], [15]
and payoff based learning algorithms, e.g., reinforcement
learning, [16] and their combinations [17] are also pertinent
to the work here. The focus in these works is to either
extend the scope of types of games that admit convergence
to its Nash equilibrium through the dynamics proposed [15],
or generate dynamics that lead to certain types of Nash
equilibrium, e.g., pure (deterministic) Nash equilibrium [17],
or optimal equilibrium [18]. Unlike these methods, we do not
assume that agents observe their payoffs after each play.

Notation: For any finite set X , we use 4(X) to denote
the space of probability distributions over X . For a generic
vector x ∈ XN , xi denotes the ith element and x−i denotes
the vector of elements of x except the ith element, that is,
x−i = (x1, . . . , xi−1, xi+1, . . . , xN ). We use || · || to denote
the Euclidean norm of a space.

II. LEARNING IN POTENTIAL GAMES WITH INCOMPLETE
INFORMATION

We consider a simultaneous move incomplete information
stage game with N players. Player i ∈ N := {1, . . . , N}
chooses action ai from a finite set A := {1, . . . ,m}. The
payoff relevant state of the world θ is drawn by nature at
the beginning of the game from the space Θ. We define F
as the σ-algebra on the set Θ. We let P denote the set of
probability distributions over the space (Θ,F) and define the
total variation distance TV between P1 ∈ P and P2 ∈ P as
TV (P1, P2) = supB∈F |P1(B)− P2(B)|.

The payoff to player i ui(·) depends on the action profile
a = {a1, . . . , aN} and the state θ, that is, ui(a, θ) : AN ×
Θ→ R. We assume that the utility of each agent is finite for
all action profiles and state realization. We consider potential
games where there exists a potential function u : AN × θ 7→
R such that for all i ∈ N the following relation holds

ui(ai, a−i, θ)−ui(a′i, a−i, θ) = u(ai, a−i, θ)−u(a′i, a−i, θ)
(1)

for all ai, a′i ∈ A and for all a−i ∈ AN−1 and θ ∈ Θ.
The users have common prior belief over the state θ. Given

the common belief µ, the expected utility of agent i for the
action profile a = (a1, . . . , aN ) is as follows

ui(a;µ) :=

∫
θ∈Θ

ui(a, θ)dµ(θ). (2)

If there is no additional information provided to the agents,
that is, agents do not receive private signals, then the game
of incomplete information is equivalent to a complete in-
formation game Γ(µ) with players N , action spaces A and
payoffs ui(a;µ), that is, Γ(µ) = (N ,A, ui(a;µ)).

The mixed strategy of player i σi is a probability dis-
tribution on the action space A, that is, σi ∈ 4(A).
Expected utility with respect to the strategy profile σ :=
(σ1, . . . , σN ) ∈ 4N (A) := ×Ni=1 4 (A) is as follows

ui(σ;µ) =
∑

a∈AN

ui(a;µ)σ(a). (3)

A Nash equilibrium (NE) strategy profile σ∗ for the game
Γ(µ) is such that for all i ∈ N and any σi ∈ 4(A),

ui(σ
∗
i , σ
∗
−i;µ) ≥ ui(σi, σ∗−i;µ). (4)

A NE strategy is such that assuming all the other agents
are playing with respect to their equilibrium strategies it is
optimal for each agent to follow its own equilibrium strategy.
The left hand side of the NE condition in (4) is equivalently
interpreted as the best response of agent i to the equilibrium
strategy profile of others σ∗−i. We define the expected utility
of agent i when it best responds to a strategy profile of others
σ−i given common prior µ on θ as follows

vi(σ−i, µ) := max
ai∈A

ui(ai, σ−i;µ). (5)

Then the expected utility of agent i at NE (4) is given by the
expected utility when it best responds to the NE strategies
of others, vi(σ∗−i, µ) = ui(σ

∗
i , σ
∗
−i;µ).

We define the set of NE strategies of the stage game Γ(µ)
as

K(µ) = {σ∗ ∈ 4N (A) : ui(σ
∗;µ) ≥ ui(σi, σ∗−i;µ),

∀σi ∈ 4(A),∀i}. (6)

The set of consensus NE strategies for the game Γ(µ) contain
the equilibrium strategies in which all agents use the identical
strategy,

C(µ) = {σ ∈ K(µ) : σ1 = σ2 = · · · = σN} (7)

Observe that for a game Γ(µ) the set of Nash equilibria
contains the set of consensus NE by definition, C(µ) ⊆
K(µ).

The set of consensus strategies that is ε away from the
consensus NE set above is the ε-Consensus NE strategy set,
that is,

Cε(µ) = {σ ∈ 4N (A) : ui(σ
∗;µ) ≥ ui(σi, σ∗−i;µ)− ε,

∀σi ∈ 4(A),∀i, σ1 = σ2 = · · · = σN} (8)

for ε > 0. The distance of a strategy σ ∈ 4N (A) from
the set of consensus NE C(µ) is given by d(σ,C(µ)) =
ming∈C(µ) ||σ − g||. Using the definition of distance, we
define the δ consensus neighborhood of C(µ) as

Bδ(C(µ)) =
{
σ ∈ 4N (A) : d(σ,C(µ)) < δ,

σ1 = σ2 = · · · = σN
}
. (9)



Note that the δ consensus neighborhood is defined as the set
of consensus strategies that are close to the set C(µ).

A. Fictitious play

In fictitious play processes, each agent iteratively takes an
action ait ∈ A and observes actions of other agents over
time t = 1, 2, . . . . Agents use their observations of actions
of others to keep an empirical distribution of others’ plays
and best respond to this empirical distribution. We use fit ∈
Rm×1 to denote the histogram, i.e. the empirical distribution,
of agent i’s actions until time t. Let Ψit : A → {0, 1}m
where its kth element is one if ait = k where k ∈ A, that
is, Ψit(ait)(k) = 1 if ait = k and Ψit(ait)(l) = 0 for
l 6= k. Given this definition we formally define the empirical
distribution of i fit as follows

fit =
1

t

t∑
s=1

Ψis(ais) (10)

The empirical distribution can be represented in a recursive
manner by reorganizing the above equation

fit+1 = fit +
1

t+ 1

(
Ψit+1(ait+1)− fit

)
(11)

When actions are publicly observed, agent i computes fjt
for all j ∈ N and best responds to the empirical distribution
f−it ∈ Rm×N−1 and its belief µ on θ

ait+1 = argmax
ai∈A

ui(ai, f−it;µ) (12)

to receive an expected utility of vi(f−it;µ) as per (5). We
let ft ∈ Rm×N denote the empirical distribution of the
population, that is, ft := {f1t, . . . , fNt}.

B. Distributed fictitious play

When actions are not public information, agent i ∈ N
cannot keep track of all agents’ empirical distributions. Dis-
tributed fictitious play considers the case when interactions
are local over a network G with node set N and edge set E .
Agent i’s neighborhood defined as Ni := {j : (j, i) ∈ E} is
its source of information. We make the following assumption
on connectivity of agents unless otherwise stated.

Assumption 1 G is a strongly connected network.

When agent i only observes actions of his neighbors aNit :=
{ajt : j ∈ Ni}, one particular quantity it can keep an
estimate of is the average empirical play of the population
f̄t,

f̄t =
1

N

N∑
i=1

fit. (13)

We can equivalently write the above quantity recursively by
the recursion for the histogram of i in (11)

f̄t+1 = f̄t +
1

t+ 1

(
Ψ̄t+1(at+1)− f̄t

)
. (14)

where Ψ̄t(at) := 1
N

∑N
i=1 Ψit(ait) is the centroid best

response strategy at time t. We stack N − 1 of the centroid

empirical distributions to define f̄−it := [f̄t, . . . , f̄t] ∈
Rm×N−1 and N centroid distributions to define f̄Nt :=
[f̄t, . . . , f̄t] ∈ Rm×N .

Agent i keeps an estimate of the average empirical play of
the population by averaging the observations of its neighbors,
that is, i’s estimate of f̄t is written as follows

ˆ̄f it =
1

|Ni|
∑
j∈Ni

1

t

t∑
s=1

Ψjs(ajs) (15)

We can equivalently write i’s estimate of average empirical
distribution as follows

ˆ̄f it+1 = ˆ̄f it +
1

t+ 1

 1

|Ni|
∑
j∈Ni

Ψjt+1(ajt+1)− ˆ̄f it

 . (16)

Since agent i cannot keep an estimate of individual empirical
distributions in the local observation setting, it, incorrectly,
assumes that others are playing with respect to ˆ̄f it . In
consequence, agent i plays a best response to ˆ̄f i−it :=

[ ˆ̄f it , . . . ,
ˆ̄f it ] ∈ Rm×N−1 in distributed fictitious play.

Next, we present an intermediate result that shows the
convergence rate of the belief of agent i on the population’s
average empirical distribution ˆ̄f it to the true average empir-
ical distribution of the population f̄ it .

Lemma 1 Consider the distributed fictitious play in which
the centroid empirical distribution of the population f̄t
evolves according to (14) and agents update their estimates
on the empirical play of the population ˆ̄f it according to (16).
If the network satisfies Assumption 1 and the initial beliefs
are the same for all agents, i.e., ˆ̄f i0 = f̄0 for all i ∈ N , then
ˆ̄f it converges in norm to f̄t at the rate O(log t/t), that is,
|| ˆ̄f it − f̄t|| = O( log t

t )

Proof: See Appendix A in [4] for a proof.
Observe that the above result is true irrespective of the

game that the agents are playing and uncertainty in the state.
The proof in [4] leverages on the fact that the change in the
centroid empirical distribution is at most 1/t by the recursion
in (14). Then by averaging observed actions of neighbors in
a strongly connected network the beliefs of agent i on the
centroid empirical distribution evolves faster than the change
in the centroid empirical distribution.

C. State Relevant Information
The belief of agent i on the state θ at time t is denoted

by µ̂it ∈ P and is formed by a state learning process SLi.
Denoting the information of agent i at time t by Iit the
state learning process is a mapping from Iit to a belief on
θ ∈ Θ, SLi : Iit 7→ P. Throughout the paper, we make the
following assumption on the state learning process.

Assumption 2 For any agent i ∈ N , the state learning
process SLi and information set Iit are such that the belief
of i converges to a belief µ̂∗ ∈ P, that is,

lim
t→∞

TV (SLi(Iit), µ̂
∗) = O

(
log t

t

)
∀i ∈ N . (17)



The assumption above states that the total variation distance
between the belief of agent i on the state θ at time t formed
by the state learning process SLi and a distribution on θ
µ̂∗ ∈ P shrinks in the order of log t/t. This means that
agents aggregate information fast enough and agree on their
belief on the state θ using the local state learning process.
We remark that µ̂∗ is not necessarily the optimal belief on
the state, it is a belief on the state to which all agents’ beliefs
converge.

Note that the assumption does not restrict the information
received by agents and information exchange among agents.
As a result, we can use various social learning [5], [6], de-
centralized estimation [19]–[24] and averaging models [25],
[26] existing in the literature depending on the information
exchange model, as long as the convergence rate in the above
assumption is satisfied. Here we present two examples of
state learning processes that satisfies the above assumption.

Averaging. The state belongs to a finite space Θ and agent
i starts with initial beliefs µi0 ∈ P. At each step t agent
i shares its previous belief on the state with its neighbors
and updates its belief by weighted averaging the observed
distributions,

µ̂it(θ) =
∑
j∈N

wij µ̂
j
t−1(θ) (18)

for all θ ∈ Θ where wij ≥ 0 if j ∈ Ni and
∑
j∈N wij =

1. In this information of agent i at time t is given by
Iit = {{µ̂jl }j∈Ni,l=0,1,...,t−1, µi0}. The convergence rate of
averaging models have been analyzed in various generalized
scenarios such as quantization or time varying connectivity
[26], [27].
Bayesian Learning. Agent i starts with prior on θ µ̂i0 and
at each step t update their belief on the state µ̂it using
the Bayes’ law upon observing noisy signals sit ∈ S
generated according to a signal generating distribution πi :
Θ 7→ S. The information of agent i at time t is given by
Iit = {µ̂i0, {sil}l=1,...,t}. If the signals are informative and
Gaussian then the uncertainty over θ decreases with O(1/tr)
for r > 0 [28]. Furthermore, agents can also exchange beliefs
on θ among each other and use the additional information to
update their beliefs according to Bayes’ law [8], [29], [30].

III. CONVERGENCE IN SYMMETRIC POTENTIAL GAMES
WITH INCOMPLETE INFORMATION

In this section, we restrict our attention to games in
which agents interests are symmetric, that is, we assume
ui(ai, aj , a−i\j , θ) = uj(aj , ai, aj\i, θ) for all i and j. These
games can be shown to admit NE with symmetric strategies,
that is, for any belief on the state µ ∈ P, the set of consensus
NE strategies C(µ) is not empty [4]. Note that in the
distributed fictitious play, agents observe local actions, keep
track of the centroid empirical distribution f̄t and assume that
this is the mixed strategy that all agents play with respect
to. Therefore, the process can only converge to an empirical
distribution over the action profile space 4N (A) such that
each agent is playing with respect to the same distribution,

i.e., it can only converge to a consensus strategy. That is, if
the game does not admit a consensus NE then the distributed
fictitious play will not converge to a NE of the game.

Below, we present our main result for the symmetric
games that shows that distributed fictitious play with local
action observations converges to a consensus NE of the
potential game Γ(µ̂∗). The proof presented follows the same
outline of the proof of Theorem 1 in [4] which follows a
similar outline to the proof in [31].

Theorem 1 Consider the distributed fictitious play updates
where agents at each stage best respond to their local beliefs
on the population’s empirical distribution in (15). Then the
centroid empirical distribution f̄Nt converges to a consensus
NE of the identical interest game with common state of the
world belief µ̂∗ if assumptions of Lemma 1 and Assumption
2 are satisfied.

Proof: Given the recursion for the centroid empirical
distribution in (14), we can write the expected utility when
all agents follow the centroid empirical distribution f̄t and
have identical beliefs µ̂∗ as follows

u(f̄Nt+1; µ̂∗) = u

(
f̄Nt +

1

t+ 1
(Ψ̄N

t+1(at+1)− f̄Nt ); µ̂∗
)
(19)

By the multi-linearity of the expected utility, we expand the
above expected utility as follows [31]

u(f̄Nt+1; µ̂∗) = u(f̄Nt ; µ̂∗)+

1

1 + t

N∑
i=1

u(Ψ̄t+1(at+1), f̄−it; µ̂
∗)− u(f̄it, f̄−it; µ̂

∗)

+
δ

(1 + t)2
(20)

where the first order terms of the expansion are explicitly
written and the remaining higher order terms are collected
to the term δ/(1 + t)2.

Consider the total utility term in (20) where agent i is
playing with respect to the centroid best response strategy
at time t + 1 Ψ̄t+1(at+1) and other agents use the cen-
troid empirical distribution,

∑N
i=1 u(Ψ̄t+1(at+1), f̄−it; µ̂

∗).
By the definition of the centroid best response strategy given
in Section II-B, we write the term in consideration as

N∑
i=1

u(Ψ̄t+1(at+1), f̄−it; µ̂
∗)

=

N∑
i=1

u(
1

N

N∑
i=1

Ψit(ait+1), f̄−it; µ̂
∗). (21)

The following equality can be shown by using the multi-
linearity of expectation and permutation invariance of the
utility [4],

N∑
i=1

u(Ψ̄t+1(at+1), f̄−it; µ̂
∗) =

N∑
i=1

u(Ψit+1, f̄−it; µ̂
∗).

(22)



The above equality means that the total expected utility when
agents play with the centroid best response at time t + 1
against the centroid empirical distribution at time t is equal
to the total expected utility when agents best respond to the
centroid empirical distribution at time t.

We substitute in the above equality (22) for the corre-
sponding term in (20) to get the following

u(f̄Nt+1; µ̂∗) = u(f̄Nt ; µ̂∗)+

1

1 + t

N∑
i=1

u(Ψit+1, f̄−it; µ̂
∗)− u(f̄it, f̄−it; µ̂

∗)

+
δ

(1 + t)2
. (23)

We can upper bound the right hand side by adding |δ|/(1+t)2

to the left hand side.

u(f̄Nt+1; µ̂∗)− u(f̄Nt ; µ̂∗) +
|δ|

(1 + t)2
≥

1

1 + t

N∑
i=1

u(Ψit+1, f̄−it; µ̂
∗)− u(f̄it, f̄−it; µ̂

∗)

(24)

Define Lit+1 := vi(
ˆ̄f i−it; µ̂

i
t+1)−u(Ψi,t+1, f̄−it; µ̂

∗). Note
that since agents have identical interests, we can drop the
subindex of the expected utility of agent i when it best
responds to the strategy profile of others vi(·) defined in
Section II to write it as v(·). Now we add and subtract∑N
i=1 Lit+1/t + 1 to both sides of the above equation to

get the following inequality,

u(f̄Nt+1; µ̂∗)− u(f̄Nt ; µ̂∗) +
|δ|

(1 + t)2

+
1

1 + t

N∑
i=1

v( ˆ̄f i−it; µ̂
i
t+1)− u(Ψit+1, f̄−it; µ̂

∗)

≥ 1

1 + t

N∑
i=1

v( ˆ̄f i−it; µ̂
i
t+1)− u(f̄it, f̄−it; µ̂

∗). (25)

Summing the inequalities above from time t = 1 to time
t = T + 1, we get

u(f̄NT+1; µ̂∗)− u(f̄N1 ; µ̂∗)

+

T+1∑
t=1

|δ|
(1 + t)2

+

T+1∑
t=1

N∑
i=1

Lit+1

1 + t

≥
T+1∑
t=1

1

1 + t

N∑
i=1

v( ˆ̄f i−it; µ̂
i
t+1)− u(f̄it, f̄−it; µ̂

∗).

(26)

Next we define the following term that corresponds to
the inside summation on the right hand side of the above
inequality,

αt+1 :=

N∑
i=1

v( ˆ̄f i−it; µ̂
i
t+1)− u(f̄it, f̄−it; µ̂

∗). (27)

The term αt captures the total difference between expected

utility when agents best respond to their beliefs on the
centroid empirical distribution and their beliefs on θ, and
when they follow the current centroid empirical distribution
with common beliefs on the state µ̂∗. Note that by Lemma 1
and Assumption 2 the conditions of Lemma 2 are satisfied.
By the assumption that utility value is finite and Lemma 2,
the left hand side of (26) is finite. That is, there exists a
B̄ > 0 such that

B̄ ≥
T+1∑
t=1

αt+1

1 + t
. (28)

Next, we define the following term

βt+1 :=

N∑
i=1

v(f̄−it; µ̂
∗)− u(f̄it, f̄−it; µ̂

∗) (29)

that captures the difference in expected payoffs when agents
best respond to the centroid empirical distribution and the
common asymptotic belief µ̂∗, and when they follow the
current centroid empirical distribution with common beliefs
on the state µ̂∗. When we consider the difference between
αt+1 and βt+1, the following equality is true by Lemma 2,

||αt+1 − βt+1|| = ||
N∑
i=1

v( ˆ̄f i−it; µ̂
i
t+1)− v(f̄−it; µ̂

∗)||

= O(
log t

t
). (30)

Further βt+1 ≥ 0. Hence, the conditions of Lemma 3 are
satisfied which implies that the following holds

T∑
t=1

βt+1

t+ 1
<∞. (31)

From the above equation it follows by the Kronecker’s
Lemma that [32, Thm. 2.5.5]

lim
T→∞

1

T

T∑
t=1

βt = 0. (32)

The above convergence result implies that by Lemma 6
in [4], for any ε > 0, the number of centroid empirical
frequencies away from the ε consensus NE is finite for any
time T , that is,

lim
T→∞

#{1 ≤ t ≤ T : f̄Nt /∈ Cε(µ̂∗)}
T

= 0. (33)

The relation above implies that the distance between the em-
pirical frequencies and the set of symmetric NE diminishes
by Lemma 4, that is,

lim
t→∞

d(f̄Nt , C(µ̂∗)) = 0. (34)

The above result implies that when agents share their
actions and based on this information keep an estimate of
the empirical distribution of the population, their responses
converge to a consensus NE of the symmetric potential
game as long as their beliefs on the state reach consensus
fast enough. The result also indicates that the state learning



process and acquiring of information regarding population’s
play can be designed separately. Note that the responses
of agents during the distributed fictitious play depend on
both the state learning process and the process of agents
forming their estimates on the empirical centroid distribution.
The analysis above reveals that these two processes can be
designed independently as long as they converge at a fast
enough rate.

IV. SIMULATIONS

We numerically analyze the performance of the algorithm
in the beauty contest game and explore the effects of the
network connectivity structure.

A. Beauty contest game

A network of N = 50 autonomous robots want to move in
coordination and at the same time follow a target direction
θ = [0◦, 180◦] in a two dimensional topology. Each robot
receives an initial noisy signal related to the target direction
θ,

πi(θ) = θ + εi (35)

where εi is drawn from a zero mean normal distribution
with standard deviation equal to 20◦. Actions of robots
determine their direction of movement and belong to the
same space as θ but are discretized in increments of 5◦,
i.e., A = (0◦, 5◦, 10◦, . . . , 180◦). The estimation and coor-
dination payoff of robot i is given by the following utility
function

ui(a, θ) = −λ(ai−θ)2−(1−λ)(ai−
1

N − 1

∑
j 6=i

aj)
2 (36)

where λ ∈ (0, 1) gauges the relative importance of estimation
and coordination. The game is a symmetric potential game
and hence admits a consensus equilibrium for any common
belief on θ [12].

In the following numerical setup, we choose θ to be equal
to 90◦. We assume that all robots start with a common prior
on each others’ empirical frequency of actions such that they
all believe others are going to play each action with equal
probability. Then they update their beliefs according to the
recursion in (16) upon observing actions of their neighbors.
Robot i moves with a displacement of 0.01 meters in the
chosen direction ait.

In Figs. 1 and 2, we plot robot positions and chosen
actions, respectively, when robots use averaging to update
their beliefs on the state θ based on receiving a single initial
private signal with signal generating function in (35). That is,
robots share their mean beliefs on the state and average their
observations to obtain their beliefs on θ for the next time step.
Figs. 1(a) and 2(a) correspond to the behavior in a geometric
network when robots are placed on a 1 meter × 1 meter
square randomly and connecting pairs with distance less than
0.3 meter between them. Figs. 1(b) and 2(b) correspond to
the behavior in a small-world network when the edges in
the geometric network are rewired with random nodes with
probability 0.2. The geometric network illustrated in Fig. 1(a)
has a diameter of ∆g = 5 with an average length among

users equal to 2.51. The small world network illustrated in
Fig. 1(b) has a diameter of ∆r = 4 with an average length
among users equal to 2. In figs. 2 (a)-(b), solid lines denote
agents’ actions over time, the dashed line marks the optimal
estimate of the state θ given all of the signals which is equal
to 96.1◦, the dotted dashed line is the actual value of the state
θ = 90◦. We observe that the agents reach consensus at the
action 95◦ in both networks but the convergence is faster
in the small-world network (39 steps) than the geometric
network (78 steps).

We further investigate the effect of the network structure
in convergence time by considering 50 realizations of the
geometric network and 50 small-world networks generated
from the realized geometric networks with rewire probability
of 0.2. The average diameter of the realized geometric net-
works was 5.1 and the average diameter of the realized small-
world networks was 4.1. The mean of the average length of
the realized geometric networks was 2.27 while the same
value was 1.96 for the realized small-world networks. We
considered a maximum of 500 iterations for each network.
Among 50 realizations of the geometric network failed to
reach consensus in action within 500 steps in 18 realizations
while for small-world networks the number of failures was
5. The average time to convergence among the 50 realiza-
tions was 228 steps for the geometric network whereas the
convergence took 100 steps for the small-world network on
average. In addition, convergence time for the small-world
network is observed to be shorter than the corresponding
geometric network in all of the runs except one.

V. CONCLUDING REMARKS

This paper introduced the distributed fictitious play al-
gorithm as a bounded rational behavior model in potential
games of incomplete information. Before presenting the
algorithm, we established that a potential game of incomplete
information with identical beliefs is equal to a potential game
of complete information where the payoff is obtained by
taking expectation of the payoff with respect to the state
parameter. In the distributed fictitious play algorithm, each
agent keeps an empirical distribution of the others based on
the information received from their neighbors and incorrectly
assumes that other agents are going to play with respect to
this empirical distribution in the next time. Agents observe
past actions of their neighbors and infer about their future
behavior by keeping an empirical distribution. In addition,
each agent makes observations about the unknown state
or share information with each other regarding the state
that allows it to learn about the state parameter through
a learning process. Given the assumption that the learning
process is fast enough to reach a belief agreement among
agents, we showed that the empirical distributions converge
to a consensus NE strategy of a symmetric potential game.
In other words, empirical distribution of everyone converges
to the same distribution and each agent knows that this

1Diameter is the longest shortest path among all pairs of nodes in the
network. The average length is the average number of steps along the
shortest path for all pairs of nodes in the network.
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Fig. 1. Position of robots over time for the geometric (a) and small world networks (b). Initial positions and network is illustrated with gray lines. Robots’
actions are best responses to their estimates of the state and of the centroid empirical distribution for the payoff in (36). Robots recursively compute their
estimates of the state by sharing their estimates of θ with each other and averaging their observations. Their estimates on the centroid empirical distribution
is recursively computed using (16). Agents align their movement at the direction 95◦ while the target direction is θ = 90◦.
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Fig. 2. Actions of robots over time for the geometric (a) and small world networks (b). Solid lines correspond to each robots’ actions over time. The
dotted dashed line is equal to value of the state of the world θ and the dashed line is the optimal estimate of the state given all of the signals. Agents
reach consensus in the movement direction 95◦ faster in the small-world network than the geometric network.

is the distribution that others are playing with respect to.
We exemplified the algorithm in a coordination game and
observed that the diameter of the network is influential in
convergence rate where the shorter the diameter is, the faster
is the convergence.

APPENDIX I
INTERMEDIATE CONVERGENCE RESULTS

The following intermediate results are equivalent to deriva-
tions of the results stated in Appendix B in [4]. They are
stated here for completeness.

Lemma 2 If the processes gt ∈ 4N and ht ∈ 4N are such
that for all i ∈ N ||g−it − h−it|| = O(log t/t) and the
state learning processes SLi for all i ∈ N that generates

estimate beliefs {{µ̂i}∞t=0}i∈N satisfy Assumption 2, then for
the potential utility function defined in Section II and the
expected utility for best response behavior defined in (5),
the following holds

||v(g−it; µ̂
i
t)− v(h−it; µ̂

∗)|| = O(
log t

t
). (37)

Proof: The proof is detailed in Lemma 4 in [4].
The proof follows by first making the observation that the
expected utility defined in (3) for the potential function is
Lipschitz continuous, and second using the definition of the
Lipschitz continuity to bound the difference between the best
response expected utilities in (5) for g−it, µ̂it and h−it, µ̂∗ by
the distance between g−it, µ̂it and h−it, µ̂∗ multiplied by the
Lipschitz constant.



Lemma 3 If
∑T
t=1

αt

t < ∞ for all T > 0, ||αt − βt|| =

O( log t
t ) and βt+1 ≥ 0 then

∑T
t=1

βt

t <∞ as T →∞.

Proof: Refer to the proof of Lemma 5 in [4].

Lemma 4 If for any ε > 0 the following holds

lim
T→∞

#{1 ≤ t ≤ T : f̄Nt /∈ Cε(µ̂∗)}
T

= 0 (38)

then limt→∞ d(f̄Nt , C(µ̂∗)) = 0.

Proof: By Lemma 7 in [4], (38) implies that for a given
δ > 0 there exists an ε > 0 such that

lim
T→∞

#{1 ≤ t ≤ T : f̄Nt /∈ Bδ(C(µ̂∗))}
T

= 0 (39)

Using above equation, the result follows by Lemma 1 in [31].

Lemma 5 For the potential game with function u(·) in (1)
and expected best response utility (5), consider a sequence
of distributions ft ∈ 4N for t = 1, 2, . . . and a common
belief on the state µ̂∗ ∈ P. Define the process βt :=∑N
i=1 v(f−it; µ̂

∗)− u(fit, f−it; µ̂
∗) for t = 1, 2, . . . . If

lim
T→∞

1

T

T∑
t=1

βt
t

= 0 (40)

then limt→∞ d(ft,K(µ̂∗)) = 0.

Proof: By Lemma 6 in [4], the condition (40) implies
that for all ε > 0

lim
T→∞

#{1 ≤ t ≤ T : ft /∈ Kε(µ̂
∗)}

T
= 0. (41)

By Lemma 7 in [4], (41) implies that for all δ > 0 the
following is true

lim
T→∞

#{1 ≤ t ≤ T : ft /∈ Bδ(K(µ̂∗))}
T

= 0 (42)

The above convergence result yields desired convergence
result by Lemma 1 in [31].
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