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Abstract— We consider multiple sensors randomly accessing
a shared wireless medium to transmit measurements of their
respective plants to a controller. To mitigate the packet col-
lisions arising from simultaneously transmitting sensors, we
appropriately design the sensor access rates. This is posed as
an optimization problem, where the total transmit power of the
sensors is minimized, and control performance for all control
loops needs to be guaranteed. Control performance of each
loop is abstracted as a desired expected decrease rate of a
given Lyapunov function. By establishing an equivalent convex
optimization problem, the optimal access rates are shown to
be decoupled among sensors. Moreover, based on the Lagrange
dual problem, we develop an easily implementable distributed
procedure to find the optimal sensor access rates.

I. INTRODUCTION

The abundance of wireless sensing devices in modern
control environments, for example, smart buildings, creates a
need for sharing the available wireless medium in an efficient
manner. The design of efficient mechanisms for sensors to
access the shared medium, in a way that provides control per-
formance guarantees while also being easily implementable,
for example decentralized, arises as an important challenge.

The prevalent approach to the problem sharing a wireless
(or wired) communication medium in networked control
systems is centralized scheduling. Scheduling can be static,
specifying for example that sensors transmit in some pre-
defined periodic sequence, and this periodic sequence is
designed to meet control objectives, see, e.g., [1]–[3]. De-
riving optimal scheduling sequences is recognized as a hard
combinatorial problem [4]. Scheduling can also be dynamic,
where a central authority decides which device accesses the
medium at each time step. This dynamic decision can be
based on plant state information, e.g., [5], [6], or the wireless
channel conditions [7].

In contrast to centralized scheduling, we consider a ran-
dom access mechanism to share the wireless medium be-
tween the sensors. Each sensor independently and randomly
decides whether to transmit plant state measurements over
the channel to a controller. This mechanism is decentralized
and easy to implement as it does not require predesigned
sequences of how sensors access the medium, or a central
authority to take scheduling decisions. The drawback of this
decentralized approach however is that packet collisions can
occur from simultaneously transmitting sensors, resulting in
lost packets and control performance degradation. Sensor
access rates need to be designed to mitigate these effects.
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Control under random access communication mechanisms
has drawn limited attention, to the best of our knowledge.
Comparisons between different medium access mechanisms
for networked control systems and the impact of packet
collisions have been considered in [8], [9], including random
access and related Aloha-like schemes (where after a packet
collision the involved sensors wait for a random time interval
and retransmit). Stability conditions under packet collisions
were examined in [10]. In contrast to these works, our goal
is to design the medium access mechanism so that desired
control performance is guaranteed. Related work appears in
[11], which instead considers the Aloha-like scheme and
characterizes what retransmission policies lead to stability.
Besides closed loop control, sensor transmission over col-
lision channels for optimal remote estimation is considered
recently in [12].

We consider multiple control loops over a shared wireless
channel (Section II), and we are interested in designing the
rate at which the sensor of each loop should be accessing the
medium in order to ensure control performance for all loops.
We propose a Lyapunov-like control performance require-
ment, motivated from our work on centralized scheduling [7].
Each control system is abstracted via a given Lyapunov
function which is desired to decrease at predefined rates and
stochastically due to the random packet losses and collisions
on the shared medium. These control requirements are shown
to be equivalent to a minimum packet success rate on each
link.

We examine the design of sensor access rates that satisfy
the Lyapunov control performance requirements and mini-
mize the average transmit power of the sensors. We show
that this is equivalent to a convex optimization problem,
and a characterization of the optimal sensor access rates
is established based on Lagrange duality (Section III). This
characterization reveals an intuitive decoupled form; each
sensor should access the channel at a rate proportional to
the desired control performance of its corresponding control
loop, and inverse proportional to its transmit power and
the aggregate collision effect it causes on all other control
loops. Similar decoupled structures are known in the context
of random access wireless networks [13]–[15], where the
relevant quantity of interest are data rates on links or general
utility objectives. In our case we focus on packet success
rates for desired control system performance.

In Section IV we derive a decentralized procedure con-
verging to the optimal access rates, which has an interpreta-
tion of optimizing the dual problem. The procedure is easy
to implement as it does not require the sensors to coordinate
among themselves, or to know what the other sensors try to
achieve. We conclude with a numerical example and some
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Fig. 1. Random access architecture over a shared wireless medium for
m = 2 control loops. Each sensor randomly decides whether to transmit to a
common access point computing the plant control inputs. When only sensor
i is transmitting on the shared medium, the message is successfully decoded
with probability qii. When another sensor j transmits at the same slot,
there is a probability qji of causing a collision at sensor i’s transmission,
rendering i’s packet lost. The goal is to design the rate at which every
sensor accesses the medium in order to guarantee control performance for
all control loops.

remarks (Sections V, VI).

II. PROBLEM FORMULATION

We consider a wireless control architecture where m
independent plants are controlled over a shared wireless
medium. Each sensor i (i = 1, 2, ...,m) measures and
transmits the output of plant i to an access point responsible
for computing the plant control inputs. Packet collisions
might arise on the shared medium between simultaneously
transmitting sensors. The case for m = 2 control loops is
shown in Fig. 1. We are interested in designing a mechanism
for each sensor to independently decide whether to access the
medium (random access) in a way that guarantees desirable
control performance for all control systems.

Our goal is to design communication aspects of the
problem, hence we assume the dynamics for all m control
systems are fixed, meaning that controllers have been already
designed. Let us indicate with γi,k ∈ {0, 1} the success of
the transmission at time k for link/system i, which as we
make clear next is a random event. We suppose the system
evolution is described by a switched linear time invariant
model,

xi,k+1 =

{
Ac,i xi,k + wi,k, if γi,k = 1
Ao,i xi,k + wi,k, if γi,k = 0

. (1)

Here xi,k ∈ Rni denotes the state of control system i at each
time k, which can in general include both plant and controller
states. At a successful transmission the system dynamics are
described by the matrix Ac,i ∈ Rni×ni , where ’c’ stands
for closed-loop, and otherwise by Ao,i ∈ Rni×ni , where ’o’
stands for open-loop. We assume that Ac,i is asymptotically
stable, implying that if system i successfully transmits at
each slot the state evolution of xi,k is stable. The open loop

matrix Ao,i may be unstable. The additive terms wi,k model
an independent (both across time k for each system i, and
across systems) identically distributed (i.i.d.) noise process
with mean zero and covariance Wi � 0. An example of the
above networked control system model (1) is presented next.

Example 1. Suppose each closed loop i consists of a linear
plant and a linear output of the form

xi,k+1 = Aixi,k +Biui,k + wi,k,

yi,k = Cixi,k + vi,k,
(2)

where wi,k and vi,k are i.i.d. Gaussian disturbance and mea-
surement noise respectively. Each wireless sensor i transmits
the output measurement yi,k to the controller. A dynamic
control law adapted to the packet drops keeps a local
controller state zi,k, which may represent a local estimate
of the plant state [16], and applies plant input ui,k as

zi,k+1 = Fi zi,k + γi,k (Fc,i zi,k +Gi yi,k),

ui,k = Ki zi,k + γi,k (Kc,i zi,k + Li yi,k),
(3)

i.e., it corrects appropriately the local state and input when-
ever a measurement is received. The overall closed loop
system is obtained by joining plant and controller states into[

xi,k+1

zi,k+1

]
=

[
Ai + γi,kBiLiCi BiKi + γi,kBiKc,i

γi,kGiCi Fi + γi,kFc,i

]
·
[
xi,k
zi,k

]
+

[
I γi,kBiLiCi
0 γi,kGi

] [
wi,k
vi,k

]
(4)

which is of the form (1).
We assume communication takes place in time slots, and

at every time k each sensor i randomly and independently
decides to access the channel with some constant probability
αi ∈ [0, 1]. The vector of sensor access rates α ∈ [0, 1]m

is the variable that needs to be designed in our problem.
Packet drops in the shared wireless medium occur due to
two reasons. First, if only sensor i transmits at a time
slot, the message is not always successfully decoded at
the access point/controller because of noise added to the
transmitted signal on the wireless channel [17]. We assume
that successful decoding occurs with some known constant
positive probability qii ∈ (0, 1]. Given that sensor i randomly
decides to transmit at a rate αi, we conclude that in isolation
the ith loop in (1) successfully closes with probability αi qii
at each time step.

The second reason for packet drops in our setup is interfer-
ence due to other sensors transmitting at the same time slot as
sensor i does. In particular when another sensor j transmits
at the same slot, a collision on sensor i’s packet occurs
with some probability qji, leading to packet i being lost.
The values qji are known constants and for simplicity are
assumed positive qji ∈ (0, 1] – the case where some sensors
do not interfere with each other is similarly handled as
discussed later in Remark 3. This collision model subsumes:
i) the conservative case where simultaneous transmissions
certainly lead to collisions (qji = 1) usually considered
in control literature, e.g., [10], [11], ii) the case where
simultaneously transmitted packets are not always lost (qji <



1), e.g., due to the capture phenomenon [18], and iii) the
case where different sensors j, ` interfere differently on link
i, e.g., 0 < qji < q`i ≤ 1 if sensor ` is closer than sensor j.

Given that sensor j randomly decides to transmit with
probability αj , the probability that transmission i is affected
by sensor j equals the product αj qji. To sum up, the
combined effect from all sensors on packet success at link i
is expressed as

P(γi,k = 1) = αi qii
∏
j 6=i

[
1− αjqji

]
. (5)

This expression states that the probability of system i in
(1) closing the loop at time k equals the probability that
transmission i is successfully decoded at the receiver, multi-
plied by the probability that no other sensor j 6= i is causing
collisions on ith transmission. The product in this expression
is a consequence of the fact that all sensors independently
decide to access the channel 1. In (5) the communication
parameters qji, i, j ∈ {1, . . . ,m} are given, and the variables
to be designed are the sensor access rates α.

The random packet success on link i modeled by (5)
causes each control system i in (1) to switch in a random
fashion between the two modes of operation (open and closed
loop). As a result the access rate vector α to be designed
affects the performance of all control systems. The following
proposition characterizes, via a Lyapunov-like abstraction,
a connection between control performance and the packet
success rate.

Proposition 1 (Control performance abstraction). Consider
a switched linear system i described by (1) with γi,k being
an i.i.d. sequence of Bernoulli random variables, and a
quadratic function Vi(xi) = xTi Pixi, xi ∈ Rni with
a positive definite matrix Pi ∈ Sni

++. Then the function
decreases with an expected rate ρi < 1 at each step, i.e.,
we have

E
[
Vi(xi,k+1)

∣∣xi,k] ≤ ρi Vi(xi,k) + Tr(PiWi) (6)

for all xi,k ∈ Rni , if and only if

P(γi,k = 1) ≥ ci, (7)

where ci ≥ 0 is computed by the semidefinite program

ci = min{θ ≥ 0 : θATc,iPiAc,i+(1− θ)ATo,iPiAo,i � ρiPi}
(8)

Proof. The expectation over the next system state xi,k+1 on
the left hand side of (6) accounts via (1) for the randomness
introduced by the process noise wi,k as well as the random
success γi,k. In particular we have that

E
[
Vi(xi,k+1)

∣∣xi,k] = P(γi,k = 1) xTi,kA
T
c,iPiAc,ixi,k

+ P(γi,k = 0) xTi,kA
T
o,iPiAo,ixi,k + Tr(PiWi), (9)

1Precisely, if the vector δ ∈ {0, 1}m indicates which of the m sensors
transmit at time k, we have P(γi,k = 1

∣∣ δ) = δiqii
∏
j 6=i[1 − qji]

δj .
Taking expectation over the independent Bernoulli variables δi ∼ Bern(αi)
yields (5).

Here we used the fact that the random variable γi,k is
independent of the system state xi,k. Plugging (9) at the left
hand side of (6) we get for xi,k 6= 0

P(γi,k = 1) ≥
xTi,k(A

T
o,iPiAo,i − ρiPi)xi,k

xTi,k(A
T
o,iPiAo,i −ATc,iPiAc,i)xi,k

. (10)

Since conditions (6) needs to hold at any value of xi,k ∈ Rni ,
we can rewrite (10) as P(γi,k = 1) ≥ ci where

ci = sup
y∈Rni ,y 6=0

yT (ATo,iPiAo,i − ρiPi)y
yT (ATo,iPiAo,i −ATc,iPiAc,i)y

. (11)

This is equivalent to the semidefinite program (8).

The interpretation of the quadratic function Vi(xi) in
this proposition is that it acts as a Lyapunov function for
the control system, guaranteeing not only stability but also
performance – see also Remark 1 for more details. When
the loop closes the Lyapunov function of the system state
decreases, while in open loop it increases, and (6) describes
an overall decrease in expectation over the packet success.
The required packet success rate computed in (8) satisfies
ci ≤ 1 as long as ATc,iPiAc,i � ρiPi, i.e., Vi(xi) is chosen
as a Lyapunov function for the stable mode Ac,i in (1).

In this paper we assume that quadratic Lyapunov functions
Vi(xi) and desired expected decrease rates ρi are given for
each control system. They present a control interface for
communication design over a shared wireless medium. We
aim to design the sensor access rates α so that the Lyapunov
functions for all systems i decrease in expectation at the
desired rates ρi < 1 at any time k. By the above proposition,
these control performance requirements can be transformed
to necessary and sufficient packet success rates (7) for each
link i, computes by (8). Hence we need to ensure that (7)
holds for all links i.

Besides control performance, it is desired that the sensors’
channel access mechanism makes an efficient use of their
power resources. Suppose that when system i decides to
access the channel it transmits with a constant power pi > 0.
We pose then the design of the sensor access rates α that
minimize the total expected power expenditure

∑m
i=1 αi pi

subject to the desired control performance (cf. (5), (6)) for
all plants as

minimize
α∈A

m∑
i=1

αipi (12)

subject to ci ≤ αi qii
∏
j 6=i

[
1− αjqji

]
, i ∈ {1, . . . ,m}.

(13)

Here we restrict attention to access rates α in a closed set

A =

m∏
i=1

Ai, Ai = [αi,min, αi,max], (14)

subset of the unit cube [0, 1]m. This choice is purely for tech-
nical reasons, without restricting the feasible set. Intuitively
each sensor i can neither choose αi too close to 0 otherwise
it cannot meet its packet success requirement in (13), nor too



close to 1 otherwise it causes significant packet collisions on
other sensors. We assume that for all α ∈ A the right hand
sides of the constraints (13) are strictly positive.2

In the following section we proceed to characterize the
optimal access rates α∗, by transforming the original non-
convex problem (12)-(13) into an equivalent convex one.
This way we reveal and exploit a simple decoupled structure.
Each sensor i independently accesses the channel at a rate
that trades off the goal of closed loop i with the effect of
collisions on all other closed loops j 6= i collectively. Later
in Section IV we develop a decentralized procedure to find
these optimal access rates.

Remark 1. In this paper we are concerned with com-
munication design for control performance, in contrast to
the problem of determining what communication designs
guarantee stability, commonly examined in the literature,
e.g. [1], [2], [11], [16]. The Lyapunov-like abstraction (6)
of Proposition 1 provides such a characterization of control
performance, which also implies stability. If (6) holds for
each time step k = 0, . . . , N , then by taking the expectation
at both sides and by iterating backwards in time we find that

EVi(xi,N ) ≤ ρi EVi(xi,N−1) + Tr(PiWi)

≤ . . . ≤ ρNi EVi(xi,0) +
N−1∑
k=0

ρki Tr(PiWi). (15)

Hence, system states have second moments that decay ex-
ponentially with rate ρi with respect to initial states, and in
the limit remain bounded by Tr(PiWi)/(1 − ρi), since the
sum in (15) converges due to ρi < 1.

As a technical sidenote, an advantage of the Lyapunov
performance approach is that it defines a convex region
(a lower bound) for the packet success rate in (7), which
is easy to employ in our random access design in (13),
and thus presents a suitable interface between control and
communication design. On the contrary, it is known that a
jump linear system of the form (1) is (mean square) stable if
and only if the spectral radius of P(γi = 1)Ac,i ⊗ Ac,i +
P(γi = 0)Ao,i ⊗ Ao,i is less than 1 [19]. However the
spectral radius of a non-symmetric matrix is not convex in
general, hence it is unclear how to best examine stability in
our random access framework.

III. CONTROL-AWARE RANDOM ACCESS DESIGN

In this section we consider the optimal random access
design problem and characterize the form of the optimal
solution. This optimal design problem in (12)-(13) is not
convex because the functions appearing in the right hand
side of the constraints (13) are not concave. However, we
can express the problem in an equivalent convex form.

Taking the logarithm at each side of the constraint (13),
by monotonicity, preserves the feasible set of variables. Then
the logarithm of the product on the right hand side of (13)

2As an example of how to choose each interval Ai in (14), it can be
seen from (13) that each sensor i needs to ensure αi ≥ ci/qii, which is
positive, as well as αi ≤ minj(1− cj)/qij and αi ≤ 1.

becomes a sum of logarithms, so that we can rewrite the
optimal random access design problem equivalently as

minimize
α∈A

m∑
i=1

αipi (16)

subject to log(ci) ≤ log(αi qii) +
∑
j 6=i

log
(
1− αjqji

)
,

for all i ∈ {1, . . . ,m}. (17)

This equivalent problem is convex in the access rate vari-
ables α, because the logarithm functions appearing in the
constraints are concave.

Of course, once we have rewritten the random access
design problem (12)-(13) in its equivalent convex form (16)-
(17), we can solve efficiently for the optimal rate α∗ using
off-the-shelf convex optimization algorithms [20]. Then each
sensor i in Fig. 1 can store the respective access rate α∗i and
operate according to it. However, apart from tractability, the
convex reformulation permits a characterization of the form
of the optimal access rates, as we show next.

Proposition 2 (Optimal sensor access rates). Consider the
design of optimal sensor access rates in (12)-(13), and
suppose that a strictly feasible solution exists. Then there
exists a matrix of non-negative elements ν∗ ∈ Rm×m+ such
that the optimal sensor access rate α∗i for each sensor
i ∈ {1, . . . ,m} can be expressed as

α∗i =

[
ν∗ii

pi +
∑
j 6=i ν

∗
ji

]
Ai

, (18)

where [.]Ai
denotes the projection on the set Ai in (14).

This proposition is perhaps surprising because it states
that each sensor can select its access rate optimally in a
simple decoupled way, as long as the matrix ν∗ is available.
That is because α∗i in (18) only depends on parameters
pertinent to system i, i.e., its transmit power pi, and is
independent of what other sensors are trying to achieve. It is
also independent of any other parameters of system i, such
as the required minimum success ci.

All the information about the optimal rate in (18) is
encoded in the matrix v∗, which as we will explain is
the optimal Lagrange multiplier of an appropriately defined
problem. Intuitively ν∗ii can be thought of as the requirement
for control performance of closed loop i, and similarly ν∗ji
as the collision effect that sensor i has on the closed loop j.
The optimal access rate for sensor i in (18) tries to tradeoff
the requirement on loop i and the collective negative effect
(
∑
j 6=i ν

∗
ji) on all other control loops j 6= i. A high transmit

power pi also implies that sensor i should access the channel
at a low rate α∗i to limit expenditures.

Proof of Proposition 2. We argued that the original problem
(12)-(13) is equivalent to the convex optimization in (16)-
(17). We further introduce an auxiliary problem that is equiv-
alent to (16)-(17). For notational convenience we change
notation from variables αi to variables αii belonging in the
diagonal of an m ×m matrix. Moreover, at the right hand



side of (17) we replace the variables αj , j 6= i with auxiliary
variables αji to write (17) as

log(ci) ≤ log(αii qii) +
∑
j 6=i

log
(
1− αjiqji

)
. (19)

Intuitively we would like the new variables αji to behave like
αj in the original problem, hence we also introduce an addi-
tional coupling constraint αji ≥ αjj to the problem. Overall
we formulate the auxiliary convex optimization problem

minimize
α∈A′

m∑
i=1

αiipi (20)

subject to log(ci) ≤ log(αii qii) +
∑
j 6=i

log
(
1− αjiqji

)
,

for all i ∈ {1, . . . ,m}, (21)
αjj ≤ αji, for all i 6= j ∈ {1, . . . ,m} (22)

where the set A′ ⊂ [0, 1]m×m is appropriately constructed
so that αji ∈ Aj for all i, j ∈ {1, . . . ,m}.

Problem (20)-(22) is equivalent to (16)-(17). Every feasi-
ble solution of (17) can be converted to a feasible solution
for (21)-(22) via αji = αj for all i, j ∈ {1, . . . ,m} with the
same objective. Reversely, let α ∈ A′ be a feasible solution
for (21)-(22). We can assume without loss of generality that
all constraints (22) are satisfied with equality, because if
say αjj < αji for some j, i then we can reduce the value
of αji to αjj without changing the objective value and
without violating the constraint (21) since log(1 − αjiqji)
is increasing. The diagonal elements αii of this solution
immediately become a feasible solution to problem (17) with
equal objective.

Let us then define the Lagrange dual problem of (20).
Consider non-negative dual variables νii ≥ 0 associated with
each one of the constraints (21), and νij ≥ 0 associated with
the constraints (22) – note the order of indices. Then the
Lagrangian function is defined as

L(α, ν) =

m∑
i=1

αiipi

+
m∑
i=1

νii

[
log(ci)− log(αii qii) −

∑
j 6=i

log(1− αjiqji)
]

+

m∑
i=1

∑
j 6=i

νij

[
αjj − αji

]
. (23)

Moreover by a rearrangement of the terms in the La-
grangian in (23), in particular by a careful interchange of
the indices in the sums, we get

L(α, ν) =

m∑
i=1

[
(pi +

∑
j 6=i

νji)αii − νii log(αii qii)
]

+

m∑
i=1

∑
j 6=i

[
− νii log(1− αjiqji)− νij αji

]
+

m∑
i=1

νii log(ci). (24)

This rearrangement decouples the primal variables αij for
all i, j ∈ {1, . . . ,m} and gives rise to the decoupled form
of the optimal access rates in (18) as we argue next.

The Lagrange dual function of (20)-(22) is defined as

g(ν) = inf
α∈A′

L(α, ν), (25)

and the Lagrange dual problem is defined as

maximize
ν∈Rm×m

+

g(ν). (26)

The strict feasibility of (12)-(13), by assumption of the
proposition, implies that a strictly feasible solution exists for
the equivalent problem (20)-(22). Since the problem (20)-
(22) is convex and has a strictly feasible solution (Slater’s
condition), strong duality holds [20, Sec. 5.2], i.e., the
optimal values of the primal problem (20) and its dual (26)
are equal. Moreover the optimal access rate vector α∗ is a
minimizer of the Lagrangian function at the optimal dual
point ν∗, i.e.,

α∗ ∈ argmin
α∈A′

L(α, ν∗). (27)

We then observe by (24) that the Lagrangian function is
a strictly convex function in the variables α. Hence, the
minimizers of the Lagrangian in (27) are unique and satisfy
the first order condition

∂L

∂αji
(α, ν∗) = 0, (28)

subject to the box constraints αji ∈ Aj for all i, j ∈
{1, . . . ,m}. Since the Lagrangian in (24) decouples among
each primal variable αji, we see that

∂L

∂αji
(α, ν) =

{
(pi +

∑
j 6=i νji)− νii/αii if i = j

νiiqji/(1− αjiqji)− νij if i 6= j.
(29)

The optimal value of the diagonal elements α∗ii, which are
equivalently the optimal values α∗i of the original problem
(16), are found by finding the value αii making the expres-
sion in the first branch in (29) equal to zero, projected to the
set Ai. This directly verifies (18) and completes the proof
of the proposition.

We note here for future reference that the unique off-
diagonal minimizers αji, j 6= i of the Lagrangian are

argmin
αji∈Aj

L(α, ν) =

[
1

qji
− νii
νij

]
Aj

, (30)

according to the first order condition (28) and the second
branch in (29).

The decoupled structure of the optimal sensor access rates
according to Proposition 2 relies on knowing the (optimal
dual) values ν∗. In the following section we develop a
distributed iterative procedure to obtain the desired ν∗,
which is easily implementable in the architecture of Fig. 1.
In particular the access point/controller maintains variables
ν and communicates them to the sensors via the reverse
channel, and the sensors adapt their access rates according
to the decoupled form of Proposition 2.



Remark 2. The fact that the sensor access rates can be
designed in a decoupled way is known in random access
protocols [13]–[15]. Mathematically the problem studied in
these works is similar to the one in (12)-(13), and the same
logarithm transformation is employed to express it as a con-
vex optimization as we do in (16)-(17). The context differs
however, since in general wireless data networks the quantity
of interest is the achieved data rates or fairness and other
general utility functions, in contrast to the packet success
rates used for control systems here. Moreover, the references
typically assume that collisions happen with certainty in
simultaneous transmissions. Here we employ a more general
model (qji ∈ (0, 1]) where packets can still be recovered
after simultaneous transmissions, and this differentiates the
mathematical formulation in (16). It is also worth noting that
our approach to the problem via the dual domain, and the
dual optimization to be presented in the next section, are
similarly followed in [14], [15].

IV. IMPLEMENTATION OF CONTROL-AWARE RANDOM
ACCESS

We develop a distributed iterative algorithm to determine
the values ν∗ which, according to Proposition 2, are sufficient
in order to select optimal sensor access rates α∗. Under
the interpretation of ν∗ as the optimal dual variables of an
appropriately defined primal problem, the iterates ν(t) of the
algorithm follow a dual subgradient optimization method.

The steps of the iterative procedure are shown in Algo-
rithm 1. At each iteration t, the access point/controller of
Fig. 1 keeps a matrix of dual variables ν(t) and sends to the
sensors via the reverse channel the information required for
them to select their access rates independently. In particular,
each sensor i gets to know the values νii(t) and

∑
j 6=i νji(t),

and selects its access rate αi(t) in (31) as if these were the
optimal dual values (cf. (18)).

At the end of each iteration t the access point updates
the dual values to ν(t+ 1) to prepare for the next iteration.
The dual variable update in (35) is a step towards the matrix
direction s(t) ∈ Rm×m, computed as follows. The access
point gets to know the access rates αi(t) selected by each
sensor at this iteration, and computes the auxiliary variables
αji(t) by (32). The elements of the direction matrix s(t) are
computed via (33)-(34). Then the procedure repeats.

This algorithm is guaranteed to converge to the optimal
access rates, as we state next.

Proposition 3 (Sensor access rates optimization). Consider
the design of optimal sensor access rates in (12)-(13), and
suppose that a strictly feasible solution exists. The iterations
of Algorithm 1 with stepsize in (35) satisfying∑

t≥1

ε(t)2 <∞,
∑
t≥1

ε(t) =∞, (36)

converge to the optimal access rates, i.e., α(t)→ α∗.

Proof. Consider the reformulation of problem (12)-(13) in
(20)-(22), the Lagrangian function L(α, ν) defined in (23),
the dual function g(ν) defined in (25), and the dual problem
in (26).

Algorithm 1 Distributed random access implementation

1: Initialize ν(0) ∈ Rm×m+ at the access point/controller,
t← 0

2: loop At period t
3: The access point/controller sends to each sensor i the

values νii(t),
∑
j 6=i νji(t).

4: Each sensor i computes

αi(t)←

[
νii(t)

pi +
∑
j 6=i νji(t)

]
Ai

(31)

and for the rest of the period t it accesses the channel
with rate αi(t).

5: The access point/controller measures the access rates
αi(t) selected by all sensors i = 1, . . . ,m during the
period and computes the auxiliary variables

αji(t)←
[
1

qji
− νii(t)

νij(t)

]
Aj

for all j 6= i, (32)

and the matrix s(t) ∈ Rm×m with diagonal elements

sii(t)← log(ci)−log(αi(t) qii)−
∑
j 6=i

log
(
1−αji(t)qji

)
(33)

for all i ∈ {1, . . . ,m}, and offdiagonal elements

sij(t)← αj(t)− αji(t) (34)

for all i, j ∈ {1, . . . ,m}, i 6= j.
6: The access point/controller computes the new matrix

ν(t+ 1)←
[
ν(t) + ε(t) s(t)

]
+

(35)

where [ ]+ denotes the elementwise projection to the
non-negatives Rm×m+ .

7: end loop

We argue that the matrix s(t) computed by the algorithm
in (33)-(34) is a subgradient direction of the dual function
g(.) at the point ν(t), i.e., it satisfies

g(ν′)− g(ν(t)) ≤ Tr((ν′ − ν(t)) s(t)) (37)

for all ν′ ∈ Rm×m+ . This can be shown as follows.
The values αi(t) selected during the algorithm in (31) are

minimizers of the Lagrangian at ν(t) because they satisfy the
first order condition ∂L/∂α(α, ν(t)) = 0 where the gradient
is derived in (29). Similarly αji(t) in (32) are Lagrangian
minimizers at ν(t) (cf.(30)). Hence the dual function at ν(t),
which is the minimum of the Lagrangian, equals g(ν(t)) =
L(α(t), ν(t)).

Moreover the values s(t) computed in (31)-(32) using
the Lagrangian minimizers α(t) are directly interpreted as
the slacks of α(t) in the primal constraints (21)-(22). As
a result, the dual function g(ν(t)) = L(α(t), ν(t)) can be
equivalently written as

g(ν(t)) =

m∑
i=1

αi(t)pi + Tr(ν(t)s(t)), (38)



where we substituted the constraint slack s(t) in the right
hand side of the Lagrangian L(α(t), ν(t)) by (23).

Then at any point ν′ we have by definition of the dual
function in (25) that g(ν′) ≤ L(α(t), ν′), and using again
the constraint slack interpretation of s(t) we have

g(ν′) ≤
m∑
i=1

αi(t)pi + Tr(ν′s(t)). (39)

Subtracting (38) from (39) by sides yields (37).
To sum up, at each iteration of the algorithm, the dual

variable ν(t) according to (35) moves towards a subgradient
direction of the dual function g(ν(t)). Additionally the
subgradient s(t) is bounded due to the restriction α(t) ∈ A′.
More precisely, by the implicit assumption that the access
rates sets in (14) are such that the right hand sides of (13)
are strictly positive, the logarithms in (33) are finite. Under
the bounded subgradient condition, convergence of ν(t) to
the optimal dual variable ν∗ for stepsizes in (36) relies on
standard subgradient method arguments – see, e.g., [21, Prop.
8.2.6] for a proof.

We close by showing that ν(t) → ν∗ implies α(t) →
α∗. This follows by continuity, because by Proposition 2 the
optimal values α∗ are provided as a continuous function of
the optimal dual variables ν∗ in (18).

Apart from converging to the optimal operating point,
Algorithm 1 is easily implementable in the wireless control
architecture of Fig. 1. The sensors decide upon their access
rates independently without coordination among themselves.
Moreover the sensors do not need to know the whole problem
information, for example, what the other sensors are trying
to achieve or what control loops they are operating on. In
fact each sensor does not even need to know how many
other sensors are sharing the same wireless medium. That
is because sensor i only needs to know how much collision
effect it causes on all other sensors collectively (captured by
the value of the sum

∑
j 6=i νji(t)).

The access point/controller, on the other hand, needs to
know the packet success rates required for control perfor-
mance of each control loop, as well as the channel collision
pattern described by the values qji. It is worth noting that
according to the algorithm the access point also needs to
know all the sensor access rates α(t) at each iteration, which
can be: 1) computed since the access point also knows all
dual variables, 2) estimated online using the empirical packet
receptions, 3) sent from each sensor to the access point
within the transmitted packets.

The caveat of this distributed implementation is that it re-
quires information exchange between sensors and the access
point, hence it introduces some communication overhead.
This overhead however burdens mainly the access point
which is typically a base station with more capabilities
compared to the simpler wireless sensors.

Remark 3. The problem formulation can be modified to
include the case where some sensors are not interfering with
each other. If sensor j never causes collisions to transmission
i we have qji = 0. Define the subset of sensors that affect
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Fig. 2. Evolution of dual variables during the optimization algorithm. The
elements of the matrix ν(t) converge to the optimal values ν∗ required to
obtain the optimal sensor access rates.

Fig. 3. Sensor access rates for the numerical example in Section V.
The feasible set of sensor access rates that meet the control performance
requirements of the two control systems is shown in shaded. After few
iterations the access rates α(t) selected by the optimization algorithm
converge close to the feasible point with the lowest utilization.

link i as Ii = {j 6= i : qji > 0}, and conversely the subset of
links that are affected by sensor i as Oi = {j 6= i : qij > 0}.
Then the packet success probability in (5) is modified so that
the product is over the interfering sensors

∏
j∈Ii . Similarly

the optimal sensor access rates in (18) are modified to include
the sum

∑
j∈Oi

ν∗ji. Algorithm 1 is also modified so that no
’coupling’ variables αji, νij are needed when j /∈ Ii.

V. NUMERICAL SIMULATIONS

We present a numerical example of the random access
design. As in Fig. 1 we consider m = 2 identical scalar
control systems of the form (1), with open (unstable) and
closed (stable) loop dynamics Ao,i = 1.1, Ac,i = 0.4
respectively. The two respective wireless sensors transmit to
the access point/controller over a shared channel with success
and collision parameters[

q11 q12
q21 q22

]
=

[
0.95 0.6
0.6 0.95

]
(40)

i.e., in isolation 5% of the messages are dropped, and
collisions happen with probability 60% in simultaneous
transmissions. The transmit powers are taken equal pi = 1.



The systems and the channel are symmetric, but we model an
asymmetric control performance requirement. A Lyapunov
function Vi(x) = x2 for each plant state is required to
decrease with expected rates ρ1 = 0.75 and ρ2 = 0.95
respectively (cf. (6)). System 1 is more demanding, also
shown by the required packet success rates c1 ≈ 0.44,
c2 ≈ 0.25 of the two sensors, computed via (8).

We solve the random access design problem (12)-(13) by
Algorithm 1, which as explained in Section IV solves the
problem in the dual domain. The dual variables ν(t) of the
algorithm converge as shown in Fig. 2. We also plot the
evolution of the sensor access rates α(t) during the algorithm
in Fig. 3, along with the set of all access rates that are
feasible with respect to the control performance requirements
(13). We observe that the sensor rate iterates α(t) start from
infeasible values, and moves towards the extreme point of the
feasible set with the lowest access rates, so that the power
expenditure in (12) is minimized. In fact after only a few
iterations of the algorithm the sensor access rates are very
close to the optimal point, which is

α∗1 ≈ 0.61, α∗2 ≈ 0.41. (41)

As expected, sensor 1 is accessing the shared channel at
a higher rate than sensor 2 in order to achieve the more
demanding control performance requirement of system 1.
Moreover, both sensors access the channel at a rate higher
than the necessary packet success rates, i.e., α∗i > ci. This
happens because the sensors need to counteract the effect of
packet collisions, as well as packet drops due to decoding
errors. In comparison to an ideal channel without collisions
(but with packet drops) where each sensor would access the
channel at rates ci/qii, the increase in channel access is 47%
for sensor 1, and 75% for sensor 2.

VI. CONCLUDING REMARKS

We design a random access mechanism for sensors trans-
mitting measurements of multiple plants over a shared wire-
less channel to a controller. The goal of the design is to
mitigate the effect of packet collisions from simultaneous
transmissions and to guarantee control performance for all
control systems. Via a Lyapunov function abstraction, control
performance is transformed to required packet success rates
of each closed loop. We show that the optimal random access
design has a form decoupled between the sensors, and we
develop a distributed procedure to obtain the optimal design.

An advantage of the distributed random access design
procedure which we aim to explore in future research is
the ability to track and adapt to changes in the problem
parameters, for example, changes to the channel collision
pattern, control performance requirements, or the admission
of new control loops in the architecture. Future work also
includes opportunistic adaptation to channel fading as in our
centralized scheduling in [7], as well as adaptation to plant
states as in, e.g., the scheduling in [5], the single link case
in [17], or the remote estimation in [12]. Furthermore we
aim to generalize the presented random access mechanism
in other cases where control/estimation objectives can be

abstracted in desired packet success rates, as in, e.g., the
intermittent Kalman filter of [22].
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