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Abstract: We consider a wireless control architecture where multiple sensors independently and
randomly access a shared wireless medium to communicate with corresponding actuators, and we
develop a decentralized channel access mechanism. Each sensor iteratively adapts the rate at which it
accesses the medium in order to mitigate the effect of packet collisions from simultaneously transmitting
sensors on its communication link. Control performance is abstracted as desired decrease rates of given
Lyapunov functions for each loop, which translates to necessary packet success rates on each link. We
provide theoretical conditions under which the decentralized mechanism converges to an operating point
where performance of all control loops is met, and illustrate the approach in numerical simulations.
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1. INTRODUCTION

The emergence of numerous wireless sensing devices in smart
homes or modern industrial environments poses new design
challenges in the interface of control and communication. To
guarantee desirable closed loop control performance, it is im-
portant to efficiently share the available wireless medium be-
tween such devices.

When networked control systems (Hespanha et al. (2007);
Schenato et al. (2007)) share a wireless (or wired) communica-
tion medium, the prevalent approach is centralized scheduling.
Scheduling can be static, for example sensors transmitting in a
predefined periodic sequence designed to meet control objec-
tives, see, e.g., Zhang et al. (2001); Hristu-Varsakelis (2001);
Le Ny et al. (2011). Deriving optimal scheduling sequences
is recognized as a hard combinatorial problem (Rehbinder and
Sanfridson (2004)). Scheduling can also be dynamic, where a
central authority decides which device accesses the medium at
each time step. This dynamic decision can be stochastic (Gupta
et al. (2006)), based on plant state information (Walsh et al.
(2002); Donkers et al. (2011); Ramesh et al. (2013)), or on the
wireless channel conditions (Gatsis et al. (2014a)).

Unlike centralized scheduling, decentralized channel access
mechanisms are attractive as they decrease the need for coor-
dination. In such a mechanism each sensor independently and
randomly decides whether to access the channel to communi-
cate to its controller. The drawback is that packet collisions
can occur from simultaneously transmitting sensors, resulting
in lost packets and control performance degradation. To the best
of our knowledge, control under random access communication
mechanisms has drawn limited attention. Comparisons between
different medium access mechanisms for networked control
systems and the impact of packet collisions have been consid-
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ered in Liu and Goldsmith (2004); Blind and Allgöwer (2011);
Rabi et al. (2010), including random access and related Aloha-
like schemes (where after a packet collision the involved sen-
sors wait for a random time interval and retransmit). Stability
conditions under packet collisions were examined in Tabbara
and Nesic (2008).

In contrast to previous work our goal is to design the medium
access mechanism, i.e., the rate at which sensors access the
shared wireless medium, so that desired control performance
for all control systems is guaranteed. Related work by Zhang
(2003) considers instead the Aloha-like scheme and charac-
terizes what retransmission policies lead to stability. We have
recently shown (see Gatsis et al. (2015)) that the optimal (mini-
mum power) access rates follow a decoupled structure, whereby
each sensor accesses the channel at a rate proportional to the
desired control performance of its corresponding control loop,
and inverse proportional to the aggregate collision effect it
causes on all other control loops. Computation of these optimal
access rates was made possible by a common access point. Sim-
ilar decoupled structures are known in the context of random
access wireless networks (Lee et al. (2007); Hu and Ribeiro
(2011)), where the relevant quantity of interest are data rates on
links or general utility objectives. Besides closed loop control,
sensor transmission over collision channels for optimal remote
estimation is considered recently by Vasconcelos and Martins
(2014).

In this paper we consider the random access architecture with
multiple control loops (Fig. 1). We develop an iterative decen-
tralized mechanism by which the sensors can adapt their chan-
nel access rates without the need of centralized coordination, as
is the case with the common access point of Gatsis et al. (2015).
We employ a Lyapunov-like control performance requirement,
motivated by our previous work (Gatsis et al. (2014a, 2015)).
Each control system is abstracted via a given Lyapunov func-
tion which is desired to decrease at predefined rates, stochas-
tically due to the random packet losses and collisions on the
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Fig. 1. Random access architecture over a shared wireless
medium for m = 2 control loops. Each i sensor randomly
decides with probability αi whether to transmit to a cor-
responding controller computing the plant inputs. Packet
collisions occur when both sensors transmit at the same
slot. The goal of a decentralized channel access mecha-
nism is to guarantee performance for all control loops.

shared medium (Section 2). These control requirements are
shown to be equivalent to a minimum packet success rate on
each link.

In Section 3 we develop our decentralized mechanism whereby
each sensor measures the discrepancy between desired and
observed packet success rate locally on its link, and responds by
appropriately adjusting its channel access rate. Our mechanism
is motivated by game-theoretic formulations of random access
protocols – see, e.g., Jin and Kesidis (2002); Chen et al. (2010).
In Section 3 we provide technical conditions under which
this mechanism converges locally to an operating point where
control performance of all systems is met. These conditions are
shown to hold for almost all cases with two control loops, as
long as the problem is feasible. We conclude with numerical
simulations and some remarks (Sections 4, 5).

2. PROBLEM FORMULATION

We consider a wireless control architecture where m inde-
pendent plants are controlled over a shared wireless medium.
Each sensor i (i = 1, 2, ...,m) measures and transmits the
output of plant i to a corresponding controller i computing the
plant control inputs. Packet collisions might arise on the shared
medium between simultaneously transmitting sensors. The case
for m = 2 control loops is shown in Fig. 1. We are interested in
designing a decentralized mechanism for each sensor to decide
whether to access the medium (random access) in a way that
desirable control performance can be guaranteed for all control
systems.

Communication takes place in time slots, and at every time k
each sensor i randomly and independently decides to access
the channel with some constant probability αi ∈ [0, 1], which
is our design variable. If only sensor i transmits at a time slot,
the message is not always successfully decoded at the access
point/controller because of noise added to the transmitted signal
on the wireless channel – see Gatsis et al. (2014b). We assume
that successful decoding occurs with some constant positive
probability qi ∈ (0, 1].

To model the interference in the shared wireless medium, we
suppose that if another sensor transmits at the same slot as
sensor i, a collision occurs on sensor i’s packet. This is a model
usually considered in control literature (Zhang (2003); Tabbara

and Nesic (2008)) and in wireless communication systems (Lee
et al. (2007); Hu and Ribeiro (2011); Jin and Kesidis (2002);
Chen et al. (2010)). Let us indicate with γi,k ∈ {0, 1} the
success of the transmission at time slot k for link/system i. This
is a Bernoulli random variable with

P(γi,k = 1) = αi qi
∏
j 6=i

(
1− αj

)
. (1)

This expression states that the probability of system i closing
the loop at time k equals the probability that transmission
i is successfully decoded at the receiver, multiplied by the
probability that no other sensor j 6= i is causing collisions on
ith transmission.

Our goal is to design the communication aspects of the prob-
lem, hence we assume the dynamics for all m control systems
are fixed, meaning that controllers have been already designed.
We suppose the system evolution is described by a switched
linear time invariant model,

xi,k+1 =

{
Ac,i xi,k + wi,k, if γi,k = 1
Ao,i xi,k + wi,k, if γi,k = 0

. (2)

Here xi,k ∈ Rni denotes the state of control system i at each
time k, which can in general include both plant and controller
states. At a successful transmission the system dynamics are
described by the matrix Ac,i ∈ Rni×ni , where ’c’ stands for
closed-loop, and otherwise by Ao,i ∈ Rni×ni , where ’o’ stands
for open-loop. We assume that Ac,i is asymptotically stable,
implying that if system i successfully transmits at each slot
the state evolution of xi,k is stable. The open loop matrix Ao,i

may be unstable. The additive termswi,k model an independent
(both across time k for each system i, and across systems)
identically distributed (i.i.d.) noise process with mean zero and
covariance Wi � 0. An example of such a networked control
system model (2) is presented next.

Example. Suppose each closed loop i consists of a scalar
linear plant and an output of the form

xi,k+1 = λo,ixi,k + ui,k + wi,k,

yi,k = xi,k + vi,k,
(3)

where wi,k and vi,k are i.i.d. Gaussian disturbance and mea-
surement noise respectively. Each wireless sensor i transmits
the output measurement yi,k to the controller. Consider a simple
control law which applies a zero input ui,k = 0 when no
information is received, and upon receiving a measurement it
applies an output feedback ui,k = fiyi,k leading to a stable
closed loop mode λc,i = λo,i + fi. The overall networked
system dynamics are expressed as

xi,k+1 =

{
λc,i xi,k + wi,k + fivi,k, if γi,k = 1
λo,i xi,k + wi,k, if γi,k = 0

. (4)

which is of the form (2). Dynamic control laws with local
estimates of the plant state at the controller (e.g. Hespanha et al.
(2007)) can be expressed similarly.

The random packet success on link i modeled by (1) causes
each control system i in (2) to switch in a random fashion
between the two modes of operation (open and closed loop).
As a result the access rate vector α to be designed affects
the performance of all control systems. The following result
characterizes, via a Lyapunov-like abstraction, a connection
between control performance and the packet success rate.
Theorem 1. Consider a switched linear system i described by
(2) with γi,k being an i.i.d. sequence of Bernoulli random



variables, and a quadratic function Vi(xi) = xTi Pixi, xi ∈ Rni

with a positive definite matrix Pi ∈ Sni
++. Then the function

decreases with an expected rate ρi < 1 at each step, i.e., we
have

E
[
Vi(xi,k+1)

∣∣xi,k] ≤ ρi Vi(xi,k) + Tr(PiWi) (5)
for all xi,k ∈ Rni , if and only if

P(γi,k = 1) ≥ ci, (6)
where ci ≥ 0 is computed by the semidefinite program
ci = min{θ ≥ 0 : θAT

c,iPiAc,i + (1− θ)AT
o,iPiAo,i � ρiPi}

(7)

Proof. The expectation over the next system state xi,k+1 on
the left hand side of (5) accounts via (2) for the randomness
introduced by the process noise wi,k as well as the random
success γi,k. In particular we have that

E
[
Vi(xi,k+1)

∣∣xi,k] = P(γi,k = 1) xTi,kA
T
c,iPiAc,ixi,k

+ P(γi,k = 0) xTi,kA
T
o,iPiAo,ixi,k + Tr(PiWi), (8)

Here we used the fact that the random variable γi,k is indepen-
dent of the system state xi,k. Plugging (8) at the left hand side
of (5) we get for xi,k 6= 0

P(γi,k = 1) ≥
xTi,k(AT

o,iPiAo,i − ρiPi)xi,k

xTi,k(AT
o,iPiAo,i −AT

c,iPiAc,i)xi,k
. (9)

Since conditions (5) needs to hold at any value of xi,k ∈ Rni ,
we can rewrite (9) as P(γi,k = 1) ≥ ci where

ci = sup
y∈Rni ,y 6=0

yT (AT
o,iPiAo,i − ρiPi)y

yT (AT
o,iPiAo,i −AT

c,iPiAc,i)y
. (10)

This is equivalent to the semidefinite program (7).

The interpretation of the quadratic function Vi(xi) in this
proposition is that it acts as a Lyapunov function for the control
system. When the loop closes the Lyapunov function of the
system state decreases, while in open loop it increases, and
(5) describes an overall decrease in expectation over the packet
success. Condition (5) guarantees control performance, in the
sense that the variance of the plant state decreases exponentially
at a rate ρi. In this paper we assume that quadratic Lyapunov
functions Vi(xi) and desired expected decrease rates ρi are
given for each control system. They present a control interface
for communication design over a shared wireless medium. The
equivalent desired packet success rates ci for each system i
abstract the system dynamics, the Lyapunov function, and the
desired control performance, as can be seen from (7). An ex-
ample is shown next.

Example (continued). Consider the wireless control system
given in (4). For this scalar system we can without loss of
generality consider the quadratic function Vi(xi) = x2i . Then
for any desired decrease rate ρi we can compute an equivalent
packet success rate using (7) as

ci =
λ2i,o − ρi
λ2o,i − λ2i,c

. (11)

This illustrates the relationship of the necessary packet success
rate to the system dynamics (open and closed loop eigenvalues)
and the control performance requirement.

We design a decentralized mechanism for the sensors to select
their access rates α so that the Lyapunov functions for all
control loops i decrease in expectation at the desired rates
ρi < 1 at any time k. By the above theorem, these control

Fig. 2. An example of the feasible set of access rates for
m = 2 sensors. This is the set or rates α1, α2 satisfying
inequalities of the form (12), and equivalently meeting
the desired closed loop control performance of the two
systems. The sensors cannot select neither very low rates,
otherwise performance is not met, nor very high rates,
otherwise too many collisions occur.

performance requirements can be transformed to necessary and
sufficient packet success rates (6) for each link i, computed by
(7). Hence we need to ensure that (6) holds for all links i.

Without loss of generality in the rest of the paper we consider
the decoding probabilities on each link i are qi = 1. So the
control requirement that each sensor needs to satisfy is

ci ≤ αi

∏
j 6=i

(
1− αj

)
. (12)

If qi < 1 it is immediate that that the requirement (6) can be
expressed as in (12) with the left hand side modified to ci/qi.
An example of the set of feasible sensor access rates is shown
in Fig. 2.

In the following section we present our decentralized mech-
anism. It is based on the fact that each sensor can measure
in a decentralized manner the effect that other transmitting
sensors have on the control performance of its system. That is,
by packet acknowledgments sent from each controller to the
corresponding sensor, the latter can infer the rate at which the
other sensors cause collisions on its corresponding link/loop.
Given these decentralized observations the sensors can respond
by adapting the rate at which they access the channel without a
need for coordination.

3. DECENTRALIZED CHANNEL ACCESS MECHANISM

The proposed mechanism is iterative. Suppose at iteration t
each sensor selects an access rate αi(t). Sensor i then observes
in a decentralized manner on link i a discrepancy between the
current packet success rate and the minimum desired one for
control performance as

di(t) = ci − αi(t)
∏
j 6=i

(
1− αj(t)

)
. (13)

If this discrepancy is positive sensor i intuitively needs to
increase its access rate to meet the control performance, and
decrease it otherwise. Consider then a simple decentralized
update rule that imitates this intuition according to



αi(t+ 1) =
[
αi(t) +

ε(t)

αi(t)
di(t)

]
A
. (14)

Here ε(t) > 0 is a suitably small positive step size, and the
term αi(t) at the denominator is chosen to simplify the analysis.
Since the access rate always needs to be in the unit interval, here
[ ]A denotes the projection on a subsetA = [αmin, 1] of the unit
interval, where αmin > 0 is a small positive value to guarantee
the denominator in (14) is well-behaved.

In the following theorem we analyze the convergence of this
decentralized mechanism. It follows the arguments of Jin and
Kesidis (2002); Chen et al. (2010) where a similar random
access mechanism is developed – see also the remark at the
end of this section.
Theorem 2. Consider the random access architecture with m
sensors, where communication is modeled by (1), and a given
desired packet success rate ci for each link i = 1, . . . ,m. Then:

(1) An access rate vector α∗ ∈ [0, 1]m that satisfies all control
performance constraints with equality is an equilibrium of
the decentralized access mechanism (14).

(2) Additionally if M(α∗) ≺ 0, where M(α∗) is the square
matrix defined for 1 ≤ i 6= j ≤ m as

Mii = − ci
(α∗i )2

, Mij =
∏
` 6=i,j

(1− α∗` ), (15)

then the access rate vector α∗ is locally stable for mecha-
nism (14) for a sufficiently small step ε(t) > 0.

Proof. Proof of the first part is straightforward. Define the
functions fi(α) = αi

∏
j 6=i(1 − αj), so that the feasible set

of access rates is defined as {α ∈ [0, 1]m : f(α) ≥ c}. A point
α∗ such that f(α∗) = c also satisfies that if αt = α∗, then
di(t) = 0 in (13), so that αt+1 = αt = α∗.

To prove the second part, we begin by defining the function

H(α) =

m∑
i=1

ci log(αi) +

m∏
j=1

(1− αj). (16)

Note that the partial derivatives equal
∂H

∂αi
=
ci
αi
−
∏
j 6=i

(1− αj), (17)

from which we conclude that mechanism (13)-(14) is equiva-
lently written as

αt+1 =
[
αt + εt∇H(αt)

]
A (18)

where the projection [ ]A is element-wise. So the update
mechanism moves along the gradients of the function H(α).

Then we argue that for a sufficiently small value εt the function
H(α) increases along the trajectory. In particular consider the
Taylor expansion at the point αt+1

H(αt+1) =H(αt) +∇H(αt)
T (αt+1 − αt)

+ 1/2(αt+1 − αt)
T∇2H(α̃)(αt+1 − αt) (19)

for some α̃ that is a convex combination of αt, αt+1. We
can bound the term involving the gradient in this expression
as follows. By the projection theorem (see Prop. 2.2.1 by
Bertsekas et al. (2003)) we have that for any point w ∈ Am

and any point z it holds that (z− [z])T (w− [z]) ≤ 0. Applying
this inequality for z = αt + εt∇H(αt) and w = αt we get that

‖αt+1 − αt‖2 − εt∇H(αt)(αt+1 − αt) ≤ 0 (20)
Substituting (20) in (19) we have

H(αt+1) ≥ H(αt)+

+ 1/2(αt+1 − αt)
T
[
1/εtI +∇2H(α̃)

]
(αt+1 − αt). (21)

For a sufficiently small εt the matrix 1/εtI dominates the Hes-
sian ∇2H(α̃), and the matrix in the brackets above becomes
positive definite. So we have H(αt+1) > H(αt).

We have thus shown that for a sufficiently small εt the mecha-
nism is essentially a gradient ascent. This will converge to some
local maximum. A sufficient condition for the point α∗ to be a
local maximum is ∇2H(α∗) ≺ 0. By differentiating (17) we
have that

∂2H

∂α2
i

= − ci
(α∗i )2

,
∂2H

∂αi∂αj
=
∏
` 6=i,j

(1− α∗` ), (22)

which shows that ∇2H(α∗) equals the matrix M(α∗) defined
in the statement of the theorem and completes the proof. �

The theorem states that the iterative decentralized channel
access mechanism will converge to an operating point where
all control specifications are exactly met, as long as the starting
point is close enough. It is possible however that the sensors do
not converge to a feasible access rate. An example will be given
in the simulations (Section 4). Hence global convergence is
not guaranteed unless some other mechanism is employed. On
the other hand, the theorem provides some explicit conditions
under which the mechanism converges locally to a desirable
operating point meeting all control performance requirements.
These conditions indeed hold true for cases of practical interest,
as we explicitly show next for m = 2 systems.

By the iterative decentralized mechanism each sensor can adapt
to respond to the other sensors’ access rates, however this adap-
tation may also be employed in other scenarios, for example
when the control performance specifications of the systems are
varying over time. Following the abstraction of Theorem 1, a
sensor i can adapt to a varying control performance by adapting
to an equivalently varying packet success rate ci(t) in (13)-(14).
Moreover we show next in simulations how the mechanism
adapts when new control systems are introduced in the shared
wireless medium.

Remark. The decentralized mechanism has a game theoretic
interpretation according to Jin and Kesidis (2002); Chen et al.
(2010). At each round t of the game, each sensor/agent i selects
an action αi(t) and all agents observe corresponding outcomes,
which here can be thought as the observed packet success rates.
At the next round each agent i adjusts its action to a new value
αi(t + 1) by responding to the actions of the other agents
according to (14). Agent i selects an action to improve her
utility assuming that all other agents will retain their previous
actions. Such a policy is called better response, or gradient
play (Chen et al. (2010)). Utilities are not explicitly formulated
in our paper, but intuitively each sensor is satisfied with the
smallest access rate that meets its control performance. The
proof of Theorem 2 is based on a common potential function,
as in the game-theoretic framework.

3.1 Special case: Convergence of decentralized channel access
mechanism for two systems

Consider the setup withm = 2 sensors trying to achieve control
performance captured by two packet success rates c1, c2. A pair
of sensor access rates α1, α2 that meet exactly the requirements
satisfy
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Fig. 3. Evolution of the decentralized channel access evolution
for different starting points. Both convergence to a desired
operating point, and divergence to the non-feasible region
can occur.

α1 (1− α2) = c1, α2 (1− α1) = c2. (23)
A solution α∗ of these equations will be a locally stable oper-
ating point of the decentralized channel access mechanism (14)
if it satisfies the condition of Theorem 2. That is the negative
definiteness of the matrix M(α∗) given by−

c1
(α∗1)2

1

1 − c2
(α∗2)2

 =

−
1− α∗2
α∗1

1

1 −1− α∗1
α∗2

 (24)

where the equality follows by substituting (23). Examining the
characteristic polynomial, it follows that M(α∗) ≺ 0 holds if
and only if α∗1 + α∗2 < 1.

We then directly solve (23) to check this condition. From the
first equation we get α1 = c1/(1−α2), which if we plug in the
second equation yields a quadratic equation

(α2)2 − (1 + c2 − c1)α2 + c2 = 0 (25)
This equation has a (real) solution if and only if the discriminant
is non-negative, i.e.,

∆ = (1− c1 − c2)2 − 4c1c2 ≥ 0. (26)
We note in passing that given the relationship between packet
success rate ci and control performance of system i (cf. Theo-
rem 1) condition (26) describes the control performance speci-
fications that can be supported by our random access architec-
ture. In general (25) might have two solutions, as seen e.g., in
Fig. 2. The minimum solution is of the form α∗2 = (1 + c2 −
c1 −

√
∆)/2. A symmetric argument shows that α∗1 = (1 +

c1 − c2 −
√

∆)/2. From these two expressions we verify that
the minimum equilibrium point satisfies α∗1 + α∗2 = 1− 2

√
∆,

which is always less than unity except for the corner case
∆ = 0. To sum up, for m = 2 sensors in almost all cases the
access rates meeting the control performance requirements are
a locally stable equilibrium of the decentralized channel access
mechanism.

4. NUMERICAL SIMULATIONS

We first consider the decentralized channel access mechanism
for m = 2 scalar systems. Using the notation of the example
of Section 2, we assume both systems have identical dynamics,
unstable open loop λo,1 = λo,2 = 1.05 and stable closed loop
λc,1 = λc,2 = 0.1. We suppose that the two control systems
have different control performance requirements given by the
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Fig. 4. Evolution of the access rates after an introduction of a
third control system in the wireless medium. The sensors
need to increase their access rates to mitigate the increased
collisions and meet control performance.

desired Lyapunov decrease rates ρ1 = 0.9 and ρ2 = 0.95,
corresponding to different packet success rates on the two links
according to Theorem 1. The set of feasible sensor access rates
α1, α2 that meet both control performances is shown in Fig. 2.

We employ the decentralized update rule (14) for each sensor
to attempt to reach a global operating point. In Fig. 3 we show
the evolution of the two sensor access rates for different initial
points. On one case the feasible point where both control per-
formances are exactly satisfied is reached after some iterations.
Intuitively, sensor 1 access the medium more often because it
has a stricter desired control performance captured by ρ1 < ρ2.
On the other case, both sensors transmit initially at a very
high rate, and no feasible operating point is reached. Intuitively
each sensor tries to respond to the packet collisions inflicted
by the other by increasing its access rate higher and higher.
The iteration reaches a deadlock where both sensors transmit
at full rate α1 = α2 = 1. In practice one would have to enforce
some arbitration rule to overcome such deadlocks, but this is
not explored further in this paper.

Next we turn our attention to how the mechanism can adapt to
other changes in the environment, in particular to an introduc-
tion of a new control system in the shared wireless medium.
After the two systems are in a steady state, a third system with
parameters λo,3 = 1, λc,3 = 0, ρ3 = 0.95 is introduced.
We assume that an iteration of the sensor access update rule
is performed every 50 time slots. Each sensor i measures the
discrepancy di(t) in (13) during this period, for example using
acknowledgments from the corresponding receiver/controller,
and adjusts its access rate. In practice this measurement of the
discrepancy has some error which is however neglected in our
simulations. In Fig. 4 we plot the trajectory of the sensor access
rates. We observe that after the introduction of the new system
there is a period of adaptation till the new operating point is
found. The access rates are increased to mitigate the counteract
the increased collisions on the medium due to the introduction
of the new system.

We are also interested in how the plant states of each control
system evolve. As an indication of the latter we plot the av-
erage square error of the state 1/N

∑N
k=1 x

2
i,k over time for

all systems in Fig. 5. After some transients the mean square
errors reach a steady state corresponding to desired control
performance. Even as the third system is introduced no sig-



0 5000 10000 15000
0

500

Time slots k

S
ys

te
m

 1

0 5000 10000 15000
0

200

Time slots k

S
ys

te
m

 2

0 5000 10000 15000
0

200

Time slots k

S
ys

te
m

 3
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the plant states during the introduction of a third system.
All systems remain stable.

nificant deviations are observed, since convergence to the new
necessary access rates is relatively fast (Fig. 4).

5. CONCLUSION

We consider a random access architecture for multiple control
loops sharing a common wireless channel. Each sensor ran-
domly decides whether to access the channel, at a rate that
needs to be appropriately selected to meet control performance
by mitigating the effect of packet collisions from simultane-
ous transmissions. We develop a decentralized mechanism that
reaches a desired operating point without the need to coordinate
among the sensors.

Our work is a starting point for exploring efficient, easily imple-
mentable, and distributed mechanisms for control systems over
shared wireless channels. Future work includes theoretical anal-
ysis of the decentralized mechanism under varying or asym-
metric channel conditions. Further exploration is also required
for mechanisms adapted to varying plant conditions, similar
to the state-based approaches of e.g., Gatsis et al. (2014b);
Donkers et al. (2011); Ramesh et al. (2013), and random access
protocols for estimation and linear quadratic control (Schenato
et al. (2007)).
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