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Abstract—We introduce the diffusion distance as a metric to compare
signals supported in the nodes of a network. The metric considers the given
vectors as initial temperature distributions and diffuses heat through the
edges of the graph. The similarity between the given vectors is determined
by the similarity of the respective diffusion profiles. The diffusion distance
computes the accumulated difference between the diffused signals. We prove
that diffusion distance defines a valid metric and is stable to perturbations
in the underlying network. We utilize numerical experiments to illustrate its
utility in classifying ovarian cancer histologies using gene mutation profiles
of different patients. It is also used in a label propagation method in semi-
supervised learning to classify handwritten digits.

I. INTRODUCTION

Networks, or graphs, are data structures that encode relationships
between elements of a group and which, for this reason, play an important
role in many disparate disciplines such as biology [1] and sociology [2]
where relationships between, say, genes, species or individuals, are central.
Often, networks have intrinsic value and are themselves the object of
study. This is the case, e.g., when we are interested in distributed and
decentralized algorithms in which agents iterate through actions that use
information available either locally or at adjacent nodes to accomplish
some sort of global outcome [3]. Equally often, the network defines an
underlying notion of proximity, but the object of interest is a signal
defined on top of the graph. This is the matter addressed in the field
of graph signal processing, where the notions of frequency and linear
filtering are extended to signals supported on graphs [4]. Examples of
network-supported signals include gene expression patterns defined on top
of gene networks [5] and brain activity signals supported on top of brain
connectivity networks [6]. Indeed, one of the principal uses of networks
of gene interactions is to determine how a change in the expression of a
gene, or a group of genes, cascades through the network and alters the
expression of other genes. Likewise, a brain connectivity network specifies
relationships between areas of the brain, but it is the pattern of activation
of these regions that determines the mental state of the subject.

In this paper we consider signals supported on graphs and address
the challenge of defining a notion of distance between these signals
that incorporates the structure of the underlying network. We want these
distances to be such that two signals are deemed close if they are
themselves close – in the examples in the previous paragraph we have
gene expression or brain activation patterns that are similar –, or if they
have similar values in adjacent or nearby nodes – the expressed genes or
the active areas of the brain are not similar but they effect similar changes
in the gene network or represent activation of closely connected areas of
the brain. We define here the diffusion distance and argue that it inherits
this functionality through their connection to diffusion processes.

Diffusion processes draw their inspiration from the diffusion of heat
through continuous matter [7]. The linear differential equation that models
heat diffusion can be extended to encompass dynamics through discrete
structures such as networks [8]. In the particular case of networks, every
node is interpreted as containing an amount of heat which flows from hot
to cold nodes. The flow of heat is through the edges of the graph and
such that the rate at which heat diffuses is proportional to both the heat
difference between the nodes adjacent to the edge and the edge weight
representing the proximity between these nodes. Diffusion processes are
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often used to exploit their asymptotic configurations in steady state such
as in problems of formation control [9] as well as the propagation of
opinions in social networks [10].

In this paper we do not exploit the asymptotic, but rather the transient
behavior of diffusion processes. We regard the given vectors as initial heat
configurations that generate different diffused heat profiles over time. The
diffusion metric integrates each of the heat profiles over time and evaluates
the norm of the difference between the two integrals. It yields small values
when the diffusion profiles are similar. This happens if the given vectors
themselves are close or if they have similar values at nodes that are linked
by edges with high similarity values.

II. PRELIMINARIES

A. Graphs and networks

We consider networks (or graphs) as triplets G = (V,E,W ), where
V = {1, . . . , n} is a finite set of n nodes or vertices, E ⊆ V ×V is a set
of edges defined as ordered pairs (i, j), and W : E → R++ is a map from
the set of edges to the strictly positive reals, representing weights wij > 0
associated with each edge (i, j). We assume undirectedness where edge
(i, j) ∈ E if and only if (j, i) ∈ E and symmetry with wij = wji for
all (i, j) ∈ E. The edge (i, j) represents the existence of a relationship
between i and j and we say that i and j are adjacent or neighboring. The
weight wij = wji represents the strength of the relationship between i
and j. Larger edge weights are interpreted as higher similarity between
the border nodes. The graphs considered here do not contain self loops,
i.e., (i, i) 6∈ E for any i ∈ V .

We consider the usual definitions of the adjacency, Laplacian, and
degree matrices for the weighted graph G = (V,E,W ); see e.g. [11,
Chapter 1]. The adjacency matrix A ∈ Rn×n+ is such that Aij = wij
whenever (i, j) ∈ E and Aij = 0 otherwise. The degree matrix
D ∈ Rn×n+ is a diagonal matrix with diagonal elements Dii =

∑
j wij

containing the sum of all the weights out of node i. The Laplacian matrix
is defined as the difference L := D − A ∈ Rn×n. Since D is diagonal
and the diagonal of A is null, the components of the Laplacian matrix are
explicitly given by

Lij :=

{
−Aij if i 6= j,∑n
k=1Aik if i = j.

(1)

B. Metrics and norms

Our goal in this paper is to define a metric to compare vectors defined on
top of a graph. For reference, recall that for a given space X , a metric d :
X×X → R+ is a function from pairs of elements in X to the nonnegative
reals satisfying the following three properties for every x, y, z ∈ X:

Symmetry: d(x, y) = d(y, x).
Identity: d(x, y) = 0 if and only if x = y.
Triangle inequality: d(x, y) ≤ d(x, z) + d(z, y).

A closely related definition is that of a norm. In this case we need to
have a given vector space Y and consider elements v ∈ Y . A norm ‖ · ‖
is a function ‖ · ‖ : Y → R+ from Y to the nonnegative reals such that,
for all vectors v, w ∈ Y and scalar constant β, it satisfies:

Positiveness: ‖v‖ ≥ 0 with equality if and only if v = ~0.
Positive homogeneity: ‖β w‖ = |β| ‖w‖.
Subadditivity: ‖v + w‖ ≤ ‖v‖+ ‖w‖.



Norms are more stringent than metrics because they require the exis-
tence of a null element with null norm. However, whenever a norm is
defined on a vector space Y it induces a distance in the same space as
we formally state next [12, Chapter 1].

Lemma 1 Given any norm ‖ · ‖ on some vector space Y , the function
d : Y × Y → R+ defined as d(r, s) := ‖r − s‖ for all pairs r, s ∈ Y is
a metric.

C. Diffusion dynamics

Consider an arbitrary graph G = (V,E,W ) with Laplacian matrix
L and a vector r = [r1, . . . , rn]

T ∈ Rn where the component ri of r
corresponds to the node i of G. For a given constant α > 0, define the
time-varying vector r(t) ∈ Rn as the solution of the linear differential
equation

d r(t)
d t

= −αLr(t), r(0) = r. (2)

The differential equation in (2) represents heat diffusion on the graph
G because −L can be shown to be the discrete approximation of the
continuous Laplacian operator used to describe the diffusion of heat
in physical space [8]. The given vector r = r(0) specifies the initial
temperature distribution and r(t) represents the temperature distribution
at time t. The constant α is the thermal conductivity and controls the heat
diffusion rate. Larger α results in faster changing r(t). The solution of
(2) is given by

r(t) = e−αL t r, (3)

where, for an arbitrary matrix A ∈ Rn×n, the matrix exponential eA is
defined as

eA :=

∞∑
k=0

1

k!
Ak. (4)

The expression in (3) allows us to compute the temperature distribution
at any point in time given the initial heat configuration r and the structure
of the underlying network through its Laplacian L. Notice that as time
grows, r(t) settles to an isothermal equilibrium if the graph is connected.

It is instructive to rewrite (2) componentwise. If we focus on the i-th
component of r(t) and use the definition of L in (1) to replace Lik =
−Aik and Lii =

∑n
k=1Aik, it follows that (2) implies

d ri(t)
d t

=

n∑
j=1

αAij (rj(t)− ri(t)) . (5)

Further recalling that Aij = 0 if i and j are not adjacent and that Aij =
wij otherwise, we see that the sum in (5) entails multiplying each of the
differences rj(t) − ri(t) between adjacent nodes by the corresponding
proximities wij on top of the constant thermal conductivity α. Thus, (5) is
describing the flow of heat through edges of the graph. The flow of heat on
an edge grows proportionally with the temperature differential rj(t)−ri(t)
as well as with the proximity wij . Nodes with larger proximity tend to
equalize their temperatures faster, other things being equal. In particular,
two initial vectors r(0) = r and s(0) = s result in similar temperature
distributions across time if they are themselves similar – all ri and si
components are close –, or if they have similar initial levels at nodes
with larger proximity – each component ri need not be similar to si
itself but might be similar to the component sj of a neighboring node
for which the edge weight wij is large. This latter fact suggests that
the diffused vectors r(t) and s(t) define a notion of proximity between
r and s associated with the underlying graph structure. We exploit this
observation to define distances between signals supported on graphs in
the following two sections.

III. DIFFUSION DISTANCE

Given an arbitrary graph G = (V,E,W ) with Laplacian L, an input
vector norm ‖ · ‖ and two signals r, s ∈ Rn defined in the node space V ,
the diffusion distance dLdiff(r, s) between r and s is given by

dLdiff(r, s) :=

∥∥∥∥∫ +∞

0

e−t e−αL t(r − s) dt
∥∥∥∥ , (6)

with α > 0 corresponding to the diffusion constant in (2). As we
mentioned in the discussion following (5), the distance dLdiff(r, s) defines a
similarity between r and s that incorporates the underlying network struc-
ture. Indeed, we are looking at the difference between the temperatures
r(t) and s(t) at time t, which we then multiply by the dampening factor
e−t, integrate over all times, and finally take the norm. An interpretation
in terms of heat diffusion is that the diffusion distance compares the
difference in the total (discounted) energies that pass trough each node.
The total energies are similar if initial temperature distributions r and s are
similar, or, if r and s have similar values at similar nodes. The dampening
factor gives more relative importance to the differences between r(t) and
s(t) for early times. This is necessary because after prolonged diffusion
times the network settles into an isothermal equilibrium and the structural
differences between r and s are lost.

Notice the integral in (6) can be resolved to obtain a closed solution. To
do so, observe that the primitive of the matrix exponential e−te−αLt =
e−(I+αL)t is given by −(I + αL)−1e−(I+αL)t to conclude that (6) is
equivalent to

dLdiff(r, s) =
∥∥(I + αL)−1(r − s)

∥∥ . (7)

Exploiting the same interpretation, we can define the diffusion norm of
a vector v ∈ Rn for a given graph with Laplacian matrix L and a given
input norm ‖ · ‖ as

‖v‖Ldiff :=

∥∥∥∥∫ +∞

0

e−t e−αL tv dt
∥∥∥∥ =

∥∥(I + αL)−1v
∥∥ , (8)

The diffusion distance is a proper metric and the diffusion norm is a
proper norm. We show first that ‖ · ‖Ldiff is a valid norm as we formally
state next.

Proposition 1 The function ‖·‖Ldiff in (8) is a valid norm on Rn for every
Laplacian L and every input norm ‖ · ‖.

Proof: See [13]. �

From Proposition 1 and Lemma 1 it follows directly that that the
diffusion distance defined in (6) is a valid metric as we state next.

Corollary 1 The function dLdiff in (6) is a valid metric on Rn for every
Laplacian L and every input norm ‖ · ‖.

The distance dLdiff incorporates the network structure to compare two
signals r and s supported in a graph with Laplacian L. As in the
particular case where the edge set E of the underlying graph G is empty,
the Laplacian L = 0 is identically null and we obtain from (6) that
d0sps(r, s) = ‖r−s‖. This is consistent with the fact that when no edges are
present, the network structure adds no information to aid in the comparison
of r and s and the diffusion distance reduces to the standard distance
induced by the input norm. The same effect is obtained when the thermal
conductivity α is set to zero.

In order to illustrate the diffusion distance and its difference with the
standard vector distances, consider the undirected graph in Figure 1 where
the weight of each undirected edge is equal to 1. Define three different
vectors supported in the node space and having exactly one component
equal to 1 and the rest equal to 0. The vector r has its positive component
for node x1, colored in red, the vector g has its positive for node x6,
colored in green, and the vector y has its positive component for node
x7, colored in yellow.
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Fig. 1: Example of an underlying graph used to compute the diffusion
distance. Three signals r, g and y are compared taking a value of 1 in
the red, green, and yellow nodes respectively, and zero everywhere else.
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(c) Diffusion of y

Fig. 2: Heat maps of the diffused signals for r, g, and y as diffusion
evolves for every node in the network in Figure 1. Darker colors represent
stronger signals. The heat maps of g and y are more similar, entailing
smaller diffusion distance.

For the traditional vector metrics, the distances between each of the
vectors r, g and y are the same. In the case when, e.g., the `2 distance is
used as input metric, we have that ‖r−g‖2 = ‖g−y‖2 = ‖y−r‖2 =

√
2.

Results are similar in the cases of the `1 and `∞ distances. However, by
observing the network in Figure 1, it is intuitive that signals g and y
should be more alike than they are to r since they affect nodes that are
closely related. E.g., if we think of the vectors r, g and y as signaling
faulty nodes in a communication network, it is evident that the impact
of nodes x6 and x7 failing would disrupt the communication between
the right and left components of the graph, whereas the failure of x1
would entail a different effect. This intuition is captured by the diffusion
distance. Indeed, if we fix α = 1 and we use the `2 norm as input norm
to the diffusion distance, we have that the distance between the vectors
that signal faults at x6 and x7 are [cf. (7)]

dLdiff(g, y) = ‖(I + L)−1(g − y)‖2 = 0.418, (9)

where L is the Laplacian of the graph in Figure 1. However, the diffusion
distances from these green and yellow vectors to the red vector that signals
a fault at node x1 are

dLdiff(r, g) = ‖(I + L)−1(r − g)‖2 = 0.664,

dLdiff(r, y) = ‖(I + L)−1(r − y)‖2 = 0.698.
(10)

The distances in (10) are larger than the distance in (9) signaling the
relative similarity of the g and y vectors with respect to the r vector.
The differences are substantial – almost 60% increase –, thus allowing
identification of g and y as somehow separate from r. Further observe
that the distance between r and g is slightly smaller than the distance
between r and y. This is as it should be, because node x1 is closer to
node x6 than to node x7 in the underlying graph.

To further illustrate the intuitive idea behind the diffusion distance,
Figure 2 plots the evolution of the diffused signals r(t), g(t) and y(t)
for each of the respective initial conditions r, g, and y. At time t = 0
each of the signals is concentrated at one specific node. The signals are,
as a consequence, equally different to each other. At very long times,
the signals are completely diffused and therefore indistinguishable. For
intermediate times, the signal distributions across nodes for the green and
yellow signals are more similar than between the green and red or yellow
and red signals. This difference between the evolution of the diffused
signals results in different values for the diffusion distance.
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Fig. 3: Histogram of the absolute value of the normalized difference, i.e.
|dL

′
(g, r)−dL(g, r)|/‖E‖2, for the diffusion distance. For this particular

network and perturbations, the difference is considerably lower than the
theoretical upper bound of 2.

Remark 1 Computation of the diffusion distance using the closed form
expression in (7) requires the inversion of the n×n identity plus Laplacian
matrix followed by multiplication with the difference vector r − s. The
cost of this computation is of order n3, but is much smaller when the
matrix L is sparse, as is typically the case. Further observe that most
computations can be reused when computing multiple distances, because
the vectors change, but the matrix inverse (I + αL)−1 stays unchanged.

IV. STABILITY

The diffusion distance depends on the underlying graphs through their
Laplacian L. It is therefore important to analyze how a perturbation of
the underlying network impacts both distances. We prove in this section
that the diffusion distance is well behaved with respect to perturbations
of the underlying graph. I.e., we show that if the network perturbation
is small, the change in the diffusion distance is also small. We think of
a perturbation of a given network as noise added to its edge weights,
thus, we quantify the network perturbation as the matrix p-norm of the
difference between the Laplacians of the original and perturbed networks.
We focus our analysis on the most frequently used norms where p ∈
{1, 2,∞}. The diffusion distance defined in (6) is stable for these input
norms as we formally state next.

Proposition 2 Given any graph with Laplacian L, an input `p norm ‖·‖p
with p ∈ {1, 2,∞}, and bounded signals s and r on the network with
‖s‖p ≤ γ and ‖r‖p ≤ γ, if we perturb the network such that the resulting
Laplacian L′ = L + E where the perturbation E is such that ‖E‖p ≤
ε‖L‖p < 1, then∣∣∣dL′

diff(s, r)− dLdiff(s, r)
∣∣∣ ≤ 2γ‖L‖pε+ o(ε). (11)

Proof: See [13]. �

The bound in (11) contains higher order terms that depend on the
magnitude of the perturbation. Hence, since the other terms of the bound
in (11) tend to zero super linearly, we may divide (11) by ε‖L‖p and
compute the limit as the perturbation vanishes

lim
ε→0

∣∣∣dL′
diff(s, r)− dLdiff(s, r)

∣∣∣
ε‖L‖p

≤ 2γ, (12)

which implies that vanishing perturbations on the underlying network
have vanishing effects on the distance between two signals defined on
the network.

When constructing the underlying graph to compare signals in a real-
world application, noisy information can be introduced. This means
that the similarity weight between two nodes in the underlying graph
contains inherent error. Proposition 2 shows that the diffusion distance is
impervious to these minor perturbations.
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Fig. 4: Histology classification of ovarian cancer patients based on k
nearest neighbors with respect to the `2 and diffusion distances of their
genetic profile. (a) Light bars denote the error when patients are classified
using the `2 distance while the dark bars denote the error when diffusion
distance is used for different k-NN classifiers. The diffusion distance
reduces the classification error consistently across classifiers. (b) Accuracy
of serous subtype vs. endometrioid subtype. Classifiers using diffusion
(green) are closer to the top right corner, i.e. perfect classification, than
those using the `2 distance (blue).

In order to illustrate the stability results presented, consider again
the underlying network in Figure 1. We perturb this network by mul-
tiplying every edge weight by a random number uniformly picked from
[0.95, 1.05] and then compute the diffusion distance between vectors r and
g with the perturbed graph as underlying network. For these illustrations
we pick the input norm to be `2. In Figure 3 we plot histograms of the
absolute value of the difference in the distances when using the original
and the perturbed graphs as underlying networks normalized by the norm
of the perturbation for 1000 repetitions of the experiment. From (12)
we know that this value should be less than 2 for the diffusion distance
for vanishing perturbations. Indeed, as can be seen from Figure 3, all
perturbations are below the threshold of 2 by a considerable margin. This
stability property is essential for the practical utility of the diffusion and
superposition distances as seen in the next section.

Remark 2 In Proposition 2 we focus our analysis on the input norms
‖ · ‖p for p ∈ {1, 2,∞} because these norms lead to the simple bound
in (11). The simplicity of this bound is derived from the fact that ‖(I +
L)−1‖p ≤ 1 for the values of p previously mentioned. For other matrix
norms satisfying minor conditions, the equivalence of norms guarantees
that bounds analogous to those in (11) must exist, however with potentially
more involved constant terms.

V. APPLICATIONS

We illustrate the advantages of the diffusion distance developed in
Section III through numerical experiments in real-world data (Sections
V-A and V-B).

A. Ovarian cancer histology classification

We demonstrate that the diffusion distance can provide a better classifi-
cation of histology subtypes for ovarian cancer patients than the traditional
`2 metric. To do this, we consider 240 patients diagnosed with ovarian
cancer corresponding to two different histology subtypes [14]: serous and
endometrioid. Our objective is to recover the histology subtypes from
patients’ genetic profiles.

For each patient i, her genetic profile consists of a binary vector vi ∈
{0, 1}2458 where, for each of the 2458 genes studied, vi contains a 1 in
position k if patient i presents a mutation in gene k and a 0 otherwise. One
way of building a metric in the space of 240 patients is by quantifying the
distance between patients i and j as the `2 distance between their genetic
profiles,

d`2(i, j) = ‖vi − vj‖2 . (13)

In this approach, every gene is considered orthogonal to each other and
compared separately across patients. An alternative approach is to take into
account the relational information across genes when comparing patients.
In order to do so, we apply the diffusion distance on an underlying gene-
to-gene network built based on publicly available data [15]. In order to
build this network, we first extract the pairwise gene-gene interactions
from [15] using the NCI Nature database. After normalization, every edge
weight is contained between 0 and 1, which we interpret as a probability of
interaction between genes. We assign to each path the probability obtained
by multiplying the probabilities in the edges that form the path. For every
pair of genes in the network, we compute a similarity value between them
corresponding to the maximum probability achievable by a path that links
both genes. Finally, we apply normalization and thresholding operations to
obtain the gene-to-gene network that we use in our experiments. Observe
that the gene-to-gene network contains accepted relations between genes
in humans in general and is not patient dependent, hence, it defines
a common underlying network for all subjects being compared. Thus,
denoting as L the Laplacian of the gene-to-gene network and using the
`2 as input norm we compute the diffusion distances between patients i
and j as [cf. (7)]

dLdiff(i, j) =
∥∥(I + αL)−1(vi − vj)

∥∥
2
, (14)

where α was set to 15, however, results are robust to this particular choice.
In order to evaluate the classification power of both approaches – `2 and

diffusion distance – we perform 240-fold cross validation for a k nearest
neighbors (k-NN) classifier. More precisely, for a particular patient, we
look at the k nearest patients as given by the metric being evaluated and
assign to this patient the most common cancer histology among the k
nearest patients. We then compare the assigned histology with her real
cancer histology and evaluate the accuracy of the classifier. Finally, we
repeat this process for the 240 women considered and obtain a global
classification accuracy for both approaches.

In Figure 4a we show the reduction in histology classification error
when using the diffusion distance (14) compared to using the `2 distance
(13) when comparing genetic profiles. The four groups of bars correspond
to classifiers built using different numbers of neighbors k ∈ {1, 3, 5, 7}.
Notice that the reduction in error is consistent across all classifiers
analyzed with an average error reduction of over 21%, unveiling the value
of incorporating the network information in the classification process.

To further analyze the obtained results, in Figure 4b we present the
accuracy obtained for the serous subtype versus the accuracy obtained for
the endometrioid subtype for different classifiers based on the diffusion
(green) and `2 (blue) distances. Points on the top right corner of the plot
are ideal, obtaining perfect classification for both subtypes. When using
diffusion, accuracies shift towards the ideal position since the accuracies
for the serous subtypes increase by 20% to 40% whereas the accuracies
for endometrioid subtypes decrease by less than 5%. Furthermore, among
the 240 patients analyzed, there are 196 of them with endometrioid
subtype and only 44 with serous subtype. Hence, a nearest neighbor
classifier based on an uninformative distance would tend to have a high
classification accuracy for the former but a low one for the latter. This is
the case for the `2 metric. The diffusion distance, in contrast, by exploiting
the gene-to-gene interaction can overcome this limitation.

B. Handwritten digit recognition

Diffusion distance can be instrumental in the classification of digits
via semi-supervised learning. To illustrate this, consider the well-known
MNIST handwritten digit database [16]. Each observation consists of a
square gray-scaled image of a handwritten digit with 28 × 28 pixels.
Consequently, we can think of each observation as a vector x ∈ R784

where the value of each component corresponds to the intensity of the
associated pixel. A subset of these images – the training set – are labeled,
i.e. we know the digit that the image represents. The rest of the images
– the testing set – are unlabeled and our objective is to correctly identify
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Fig. 5: Digit recognition based on the traditional and diffused k near-
est neighbors approaches. (a) Error rates for three binary classification
problems of written digits given by the traditional and diffused k-NN
approaches. Error is reduced by diffusion in the three cases. (b) Two
instances of handwritten threes (top) which are interpreted as fives by
the classical k-NN approach and their corresponding diffused image (bot-
tom). Diffusion averages out irregularities, achieving higher classification
accuracy.

the digits they represent. Given n the total number of images – labeled
or unlabeled –, we define X ∈ R784×n as X = [x1, x2, . . . , xn] so that
each row in X corresponds to the pixels of one digit.
K nearest neighbors is a simple conventional approach used to classify

the digits. In order to implement it, we first compute the `2 pairwise
distance between all the vectors xi. Equivalently, if we denote by ei the
i-th canonical vector – all entries of ei are zero except the i-th entry
which is 1 – the `2 distance between digits i and j can be written as

d`2(i, j) = ‖X(ei − ej)‖2 . (15)

To obtain the estimated label of an image in the testing set, we look at
the labels of the k closest images among those in the training set as given
by (15) and pick the mode of these labels, i.e., the most popular one.

An alternative k-NN approach can be designed using diffusion by
defining a graph Gd whose nodes are the handwritten digits. To do this,
we draw an edge – with weight 1 – between two digits i and j in Gd if the
`2 pairwise distance (15) is less than a threshold τ . We can interpret digit
i as being represented by the signal ei on Gd, with value 1 at node i and
0 elsewhere. The diffused version of ei is given by (I + αLd)

−1ei [cf.
(8)] where Ld is the Laplacian of Gd. We can then quantify the distance
between two diffused digits i and j as

d
Ld
diff (i, j) =

∥∥X(I + αLd)
−1(ei − ej)

∥∥
2
. (16)

We can then train a k-NN classifier based on the distance between the
diffused digits and compare the results with the conventional k-NN based
on the `2 distance without diffusion. Notice that dLd

diff (i, j) reduces to
d`2(i, j) when Ld = 0 or when α = 0.

In Fig. 5a we present the attribution error comparison between both
approaches when performing a binary attribution task between hard-to-
distinguish digits: 3 vs. 5, 3 vs. 8, and 5 vs. 8. For each of these cases, we
use the entire MNIST training set and testing set with k ∈ {3, 5, 7}. It is
immediate to see that the diffusion approach outperforms the traditional
k-NN in the three tasks. To see why this is the case, in Fig. 5b (top)
we present two handwritten images that correspond to threes but are
misclassified as fives by the traditional k-NN method. As comparisons,
in Fig. 5b (bottom) we present their representations after diffusion in Gd.
It is clear that diffusion averages out irregularities found in particular
handwritten digits and drives them towards a canonical representation of
the number 3.

If we replicate the comparison for a ten class classification problem,
i.e. for all digits between 0 and 9, diffusion still improves the accuracy
by reducing the error rates from 4.43% to 4.21% (training set of 8600

digits, testing set of 1400 digits and k = 3). Moreover, further accuracy
improvements can be obtained by combining the traditional and the
diffused k-NN methods by choosing the most popular label among the
k nearest neighbors in the traditional approach and the k + 1 nearest
neighbors in the diffused approach. The error rate is further reduced to
3.93%. We pick k neighbors from one approach and k+1 from the other
to obtain an odd total number of neighbors, reducing the possibility of a
multimodal distribution of labels. For the cases where k ∈ {5, 7}, similar
results are obtained where we see still see the benefit of using diffusion
which is further boosted by combining the traditional and the diffused
k-NN methods.

Notice that this application of the diffusion distance is fundamentally
different from the one presented in Section V-A. In the ovarian cancer
case, the nodes in the network represent genes and each signal on the
network represents a patient. In contrast, in the current case, both the
nodes in the network and the signals represent handwritten digits. This
approach can be used in general for label propagation problems in graphs.

VI. CONCLUSION

We defined the diffusion distance as a metric to compare signals in
networks. It relies on the temporal heat map induced by the diffusion of
signals across the network and evaluates the accumulated effect across
time. We showed the diffusion distance to be stable with respect to
perturbations in the underlying network. We demonstrated how diffusion
distance can be used to obtain a better classification of signals in a real-
world classification of cancer histologies. Finally, we illustrated the use
of diffusion as part of a label propagation process to classify handwritten
digits.
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