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ABSTRACT

This paper presents two families of distances in the space of high or-
der proximity networks. The distances measure differences between net-
works and are shown to be valid metrics in the space of high order prox-
imity networks modulo permutation isomorphisms. Practical implica-
tions are explored by comparing the coauthorship networks of two popu-
lar signal processing researchers. The metrics succeed in identifying their
respective collaboration patterns.

Index Terms— High order networks, network distances.

1. INTRODUCTION

We consider high order proximity networks that describe relationships
between elements of a tuple and address the problem of constructing
valid metric distances between them. Most often, networks are defined as
structures that describe interactions between pairs of nodes [1,2]. This is
an indisputable appropriate model for networks that describe binary re-
lationships, such as communication or influence, but not so appropriate
for problems in which binary, ternary, or n-ary relationships in general,
have different implications. This is, e.g., true of coauthorship networks
were we count the number of joint publications by groups of scholars.
Papers written by pairs of authors capture information that can be used
to identify important authors and study mores of research communities.
However, there is extra information to be gleaned from collaborations
between triplets of authors, or even single author publications. The im-
portance of capturing tuple proximities between groups of nodes other
than pairs has been recognized and exploited in multiple domains [3–10].

The problem of defining distances between networks, or, more
loosely, the problem of determining if two networks are similar or not,
is important even in the case of pairwise networks. The problem is not
complicated if nodes have equal labels in both networks [11–14] but
very challenging otherwise, as we need to consider all possible mappings
between nodes of each network. This complexity has motivated the use
of network features as alternatives to the use of distances. Examples
of features that have proved useful in particular settings are clustering
coefficients [15], neighborhood topology [16], betweenness [17], mo-
tifs [18], wavelets [19], and graphlet-based heuristics [20–22]. Feature
analysis is valuable, but it does not allow for meaningful comparisons
unless application specific features are already known to be important.
A different alternative is to define actual distances [23]. Because they
have to consider node correspondences, network distances are compu-
tationally intractable. Their practical value is limited to small networks
and to the transformation of the problem into one of building distance
approximations instead of one of searching for appropriate features.

The main problem addressed in this paper is the construction of met-
ric distances between high order networks. These distances are build
as generalizations of the pairwise distances in [23] which are themselves
generalizations of the Gromov-Hausdorff distance between metric spaces
[24,25]. We use these distances to compare the coauthorship networks of
two popular signal processing researchers and show that they succeed in
discriminating their collaboration patterns. As in the case of pairwise net-
works these distances can be computed only when the number of nodes
is small. Ongoing work is focused on the problem of finding bounds on
these network distances that are computable in networks with large num-
bers of nodes.
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2. PAIRWISE NETWORKS

Conventionally, a network is defined as a pair NX = (X, d1X), where X
is a finite set of nodes and d1X : X × X → R+ is a function encoding
dissimilarity. We assume identity d1X(x, x′) = 0 if and only if x = x′

and symmetry d1X(x, x′) = d1X(x′, x) for all x, x′ ∈ X . The set of all
such networks is denoted as N . When defining a distance between net-
works we need to take into consideration that permutations of d1X amount
to relabelling nodes and must not be considered as different entities. We
therefore say two networks NX and NY are isomorphic if there exists a
bijection φ : X → Y such that for all x, x′ ∈ X ,

d1X(x, x′) = d1Y (φ(x), φ(x′)). (1)

Such a map is called an isometry. Since the map φ is bijective, (1) can
only be satisfied when d1X is a permutation of d1Y . When networks are
isomorphic we write NX

∼= NY . The space of networks where isomor-
phic networks NX

∼= NY are represented by the same element is termed
the set of networks modulo isomorphism and denoted by N mod ∼=.
The space N mod ∼= can be endowed with a valid metric [23]. The
definition of this distance requires introducing the prerequisite notion of
correspondence [26].

Definition 1 A correspondence between two sets X and Y is a subset
C ⊂ X × Y such that ∀ x ∈ X , there exists y ∈ Y such that (x, y) ∈ C
and ∀ y ∈ Y there exists x ∈ X such that (x, y) ∈ C. The set of all
correspondences between X and Y is denoted as C(X,Y ).

A correspondence in the sense of Definition 1 is a map between node
sets X and Y so that every element of each set has a correspondent in
the other set. Correspondences include permutations as particular cases
but also allow for the mapping of a single point in X to multiple corre-
spondents in Y or, vice versa. Most importantly, this allows definition of
correspondences between networks with different numbers of elements.
We can now define the distance between two networks by selecting the
correspondence that makes them most similar.

Definition 2 Given two networks NX and NY and a correspondence C
between the node spaces X and Y define the network difference with
respect to C as

Γ1
X,Y (C) := max

(x1,y1),(x2,y2)∈C

∣∣∣d1X(x1, x2)− d1Y (y1, y2)
∣∣∣. (2)

The network distance between NX and NY is then defined as

d1N (NX , NY ) := min
C∈C(X,Y )

{
Γ1
X,Y (C)

}
. (3)

For a given correspondence C the network difference Γ1
X,Y (C) se-

lects the maximum distance difference |d1X(x1, x2)−d1Y (y1, y2)| among
all pairs of correspondents. The distance in (3) is defined by selecting the
correspondence that minimizes these maximal differences. Observe that
since correspondences may be between networks with different number
of elements, Definition 2 defines a distance d1N (NX , NY ) when the node
cardinalities |X| and |Y | are different.

For Definition 2 to be a valid distance it must define a metric in the
space of networks modulo isomorphism. For future reference, the notions
of metric and pseudometric are formally stated next.



Definition 3 Given a space S and an isomorphism ∼=, a function d :
S×S → R+ is a metric in S mod ∼= if for any a, b, c ∈ S the function
d satisfies:

(i) Nonnegativity. d(a, b) ≥ 0.
(ii) Symmetry. d(a, b) = d(b, a).
(iii) Identity. d(a, b) = 0 if and only if a ∼= b.
(iv) Triangle inequality. d(a, b) ≤ d(a, c) + d(c, b).
The function is a pseudometric in S mod ∼= if for any a, b, c ∈ S the
function d satisfies (i), (ii), (iv), and

(iii’) Relaxed Identity. d(a, b) = 0 if a ∼= b.

A metric d in S mod ∼= gives a proper notion of distance. Since
zero distances imply elements being isomorphic, the distance between
elements reflects how far they are from being isomorphic. Pseudometrics
are relaxed since elements not isomorphic may still have zero distance
measured by the pseudometric. The distance in Definition 2 is a metric in
N mod ∼=; see [23]. The goal of this paper is to devise generalizations
of Definition 2 to high order networks and to prove that they define valid
metrics on the space of high order networks modulo isomorphism.

3. HIGH ORDER NETWORKS

A network of order K over the node space X is defined as a collection of
K + 1 relationship functions {dkX : Xk+1 → R+}Kk=0,

NK
X =

(
X, d0X , d

1
X , . . . , d

K
X

)
. (4)

For point collections x0:k := (x0, x1, . . . , xk) ∈ Xk+1, dkX(x0:k) are
intended to represent a measure of similarity or dissimilarity for members
of the group. Observe that pairwise networks are not particular cases of
networks of order 1 because a network of order K requires relationships
between (k + 1)-tuples for all integers 0 ≤ k ≤ K. A 0-order net-
work is one in which only node weights are given, an 1-order network
is one in which weights and pairwise relationships are defined, a 2-order
network adds relationships between triplets and so on. We assume that
relationship values are normalized so that 0 ≤ dkX(x0:k) ≤ 1 for all k
and x0:k.

We restrict attention to symmetric networks in which for all theK+1
functions dkX in (4) and x0:k, dkX(x[0:k]) = dkX(x0:k) where x[0:k] =
([x0], [x1], . . . , [xk]) is a reordering of x0:k. The set of all symmetric net-
works of order K is denoted asNK . As in the case of pairwise networks
we consider K-order networks NK

X and NK
Y to be equivalent for their

k-order functions if dkX is a permutation of dkY given integer 0 ≤ k ≤ K.
Specifically, we say that two networks NK

X and NK
Y are k-isomorphic if

there exists a bijection φ : X → Y such that

dkY (φ(x0:k)) = dkX(x0:k), (5)

for all x0:k ∈ Xk+1 where dkY (φ(x0:k)) := dkY (φ(x0), . . . , φ(xk)).
The map φ is called a k-isometry. When networks NK

X and NK
Y are

k-isomorphic we write NK
X
∼=k NK

Y . The space of K-order networks
modulo k-isomorphism is denoted byNK mod ∼=k. A stricter version
of isomorphism is to consider K-order networks being equivalent if for
all integers 0 ≤ k ≤ K, dkX is a permutation of dkX . Formally, we say
that two networks NK

X and NK
Y are isomorphic if there exists a bijection

φ : X → Y such that (5) follows for all 0 ≤ k ≤ K and x0:k ∈
Xk+1. The map φ is called an isometry. When networks NK

X and NK
Y

are isomorphic we write NK
X
∼= NK

Y . NK
X
∼= NK

Y implies NK
X
∼=k N

K
Y

for every 0 ≤ k ≤ K but the converse is not true. The space of K-order
networks modulo isomorphism is denoted byNK mod ∼=.

While different order functions dkX and dlX of a given network NK
X

need not be related, it is common to observe that adding nodes to a tuple
results in decreasing relationships. This motivates the consideration of
proximity networks that we undertake in the following section.
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Fig. 1. Collaboration between authors of a research community. The
k-order proximity function marks the number of publications between
members of (k + 1)-tuples normalized by the total number of papers.
E.g., author A published 11 papers which implies d0X(A) = 11/19. The
number of papers jointly published by A and B results in d1X(A,B) =
4/19 and the number of papers written by A, B, and C implies that
d2X(A,B,C) = 1/19. The order decreasing property in Definition 4 is
satisfied because a paper written by a (k + 1)-tuple is also written by
members of each of the included k-tuples.

3.1. Proximity Networks

In proximity networks the relationship functions dkX(x0:k) denote simi-
larity between elements of a tuple. Thus, large values of the proximity
functions represent strong relationship whereas small values denote weak
relationships. In this framework it is reasonable to assume that adding el-
ements to a tuple forces the group to be less similar. This constraint along
with an identity property makes up the formal definition that follows.

Definition 4 TheK-order network PK
X =

(
X, d0X , d

1
X , . . . , d

K
X

)
is said

to be a proximity network if the following two properties holds:
Identity. For any 0 ≤ k ≤ K, pkX(x0:k) = 1 if and only if all nodes in
x0:k are identical; i.e., if and only if xi = xj for all xi, xj ∈ x0:k.
Order decreasing. For any order 1 ≤ k ≤ K and tuples x0:k ∈ Xk+1

and x0:k−1 ∈ Xk it holds that

dkX(x0:k) ≤ dk−1
X (x0:k−1). (6)

The set of all proximity networks of order K is denoted as PK .

In pairwise networks we required dkX(x, x′) = 0 if and only if x =
x′. The identity property in Definition 4 can be considered as a general-
ization. In pairwise dissimilarity networks dissimilarity 0 stands for most
similarity and is reserved to represent the dissimilarity of a node to itself.
In high order proximity networks the highest proximity pkX(x0:k) = 1 is
reserved to represent the closeness of a node to itself. Further note that
since we restricted attention to symmetric networks a relationship as in
(6) holds if we remove an arbitrary node from the tuple x0:k, not neces-
sarily the last. Thus, the order decreasing property implies that removing
an element from a tuple can’t make the set less similar than it was.

To see that the order decreasing property in Definition 4 is reasonable
consider a 2-order network where the k-order proximity function records
the normalized number of papers between members of a given (k + 1)-
tuple. Proximities d0X(x) are the numbers of papers published by author
x, proximities d1X(x, x′) are the total number of papers in which x and
x′ are coauthors, and d2X(x, x′, x′′) the number of papers jointly written
by x, x′, and x′′. In all three cases we divide proximities by the total
number of papers. Since a paper for a pair is also a paper for each of
the individuals, d1X(x, x′) ≤ d0X(x) and d1X(x, x′) ≤ d0X(x′) for all x
and x′. Likewise, a paper of a triplet is also a paper of each of the three
pairs, which implies that d2X(x, x′, x′′) ≤ d1X(x, x′), d2X(x, x′, x′′) ≤
d1X(x, x′′), and d2X(x, x′, x′′) ≤ d1X(x′, x′′) for all x, x′, and x′′. The
order decreasing property is satisfied in both cases; see also Figure 4.

For each integer 0 ≤ k ≤ K, the space PK mod ∼=k can be
endowed with a proper metric akin to the pairwise network distance in
Definition 2 as we formally specify next.



Definition 5 Given proximity networks PK
X and PK

Y , a correspondence
C between the node spaces X and Y , and an integer 0 ≤ k ≤ K define
the k-order network difference with respect to C as

Γk
X,Y (C) := max

(x0:k,y0:k)∈C

∣∣dkX(x0:k)− dkY (y0:k)
∣∣. (7)

The k-order network distance between PK
X and PK

Y is then defined as

dkP(PK
X , PK

Y ) := min
C∈C(X,Y )

{
Γk
X,Y (C)

}
. (8)

The distance vector between PK
X and PK

Y is defined as

dK
P (PK

X , PK
Y ) =

(
d0P(PK

X , PK
Y ), . . . , dKP (PK

X , PK
Y )
)T
. (9)

Both, Definition 2 and Definition 5 consider correspondences C that
map the node space X onto the node space Y , compare dissimilarities,
and set the network distance to the comparison that yields the smallest
distance value in terms of maximum differences. The distinction be-
tween Definition 2 and (8) in Definition 5 is that dkP only considers one
out of K + 1 relationship functions. Other than that the definition is not
much different since Γk

X,Y (C) selects the maximum k-order difference
|dkX(x0:k)− dkY (y0:k)| among all tuples of correspondents. The distance
dkP is defined by selecting the correspondence that minimizes these max-
imal differences. The distance vector dK

P defined in (9) is a vector with
each element measuring the dissimilarity between functions of a specific
order. Similar as in Definition 2, dkP and dK

P are defined even if networks
have different number of nodes. The function dkP is a valid metric in PK

mod ∼=k for any integer 1 ≤ k ≤ K (see [27] for proofs in this paper).

Theorem 1 Given any nonnegative integer K, for any integers 1 ≤ k ≤
K, the function dkP : PK × PK → R+ defined in (8) is a metric in PK

mod ∼=k. The function d0P : PK ×PK → R+ is a pseudometric in PK

mod ∼=0.

The caveat for d0P is because two networks may own different num-
ber of nodes and identical zero order proximities for any nodes. Networks
are not isomorphic however their 0-order distance is zero. A family of
valid metrics measuring the difference between networks over all order
functions can be endowed on the space PK mod ∼=.

Definition 6 Given networks PK
X and PK

Y , a correspondenceC between
the node spaces X and Y , and some p-norm ‖ · ‖p define the network
difference with respect to C and the p-norm ‖ · ‖p as∥∥∥ΓK

X,Y (C)
∥∥∥
p

:=
∥∥∥(Γ0

X,Y (C),Γ1
X,Y (C), . . . ,ΓK

X,Y (C)
)T∥∥∥

p
, (10)

where Γk
X,Y (C) is defined in (7). The network distance respect to the

p-norm ‖ · ‖p between PK
X and PK

Y is then defined as

dP,p(PK
X , PK

Y ) := min
C∈C(X,Y )

{∥∥ΓK
X,Y (C)

∥∥
p

}
. (11)

The difference between Definition 2, Definition 5 and Definition 6
is that in dP,p we compare not only one functions but also all functions
defined on networks. The norm ‖ΓK

X,Y (C)‖p is assigned as the differ-
ence between PK

X and PK
Y measured by the correspondence C. The

distance dP,p(PK
X , PK

Y ) is then defined as the minimum of these dif-
ferences achieved by some correspondence. Similarly dP,p is defined
even if the numbers of nodes in networks are different. The function
dP,p : PK × PK → R+ is a proper metric in PK mod ∼=.

Theorem 2 Given some p-norm ‖ · ‖p, for any nonnegative integer K
the function dP,p : PK × PK → R+ defined in (11) is a metric in PK

mod ∼=.

In (11) we are only allowed to pick one correspondence minimizing
‖ΓK

X,Y (C)‖p whereas in (8) for each k we are able to pick one corre-
spondence minimizing the order specific Γk

X,Y (C). This establishes a
relationship between dP,p and ‖dK

P ‖p as we formally state next.

Proposition 1 Given some p-norm ‖ · ‖p, for any nonnegative integerK
and any proximity networks PK

X , PK
Y ,

dP,p(PK
X , PK

Y ) ≥
∥∥dK
P (PK

X , PK
Y )
∥∥
p
. (12)

4. COMPARISON OF COAUTHORSHIP NETWORKS

We apply the metrics of Section 3.1 to compare 2-order coauthorship
networks. Since Definitions 5 and 6 require searching over all correspon-
dences, we can compute exact distances for networks with a small num-
ber of nodes only. Thus, we consider publications in the IEEE Transac-
tions on Signal Processing (TSP) but restrict attention to the collaboration
networks of Prof. Georgios B. Giannakis (GG) and Prof. Martin Vetterli
(MV). For each of them we construct networks for the 2004-2008 and
2009-2013 quinquennia (GG0408, GG0913, MV0408, and MV0913).
For GG we also define networks for the five biennia between 2004 and
2013 (GG0405 through GG1213). Publication lists are queried from [28].

We consider all TSP publications in the period of interest and con-
struct proximity networks where the node space X is formed by the lead
author and their respective set of coauthors; see Figure 2. Zeroth order
proximities are defined as the total number of publications of each mem-
ber of the network, first order proximities as the number of papers by
pairs, and second order proximities as the number of papers coauthored
by triplets. We then normalize all proximities by the total number of pa-
pers in the network. With this construction the zeroth order proximities
of GG or MV are 1 in all of their respective networks. There are papers
with more than three coauthors but we don’t record proximities of order
higher than 2.

There are clear differences in the collaboration patterns which the
network distances succeed in identifying. Two dimensional Euclidean
embeddings of the distances d0P , d1P , d2P , and dP,1 between all net-
works are shown in Figure 3. Five of the seven GG networks; the biennia
GG0405, GG0607, GG1011 (up triangles) and the quinquennia GG0408,
GG0913 (diamonds); cluster closely for all four distances shown. The
other two biennia (down triangles) may be closest to some of the other
GG networks or to one of the two MV networks (circles), depending
on which distance we consider. The two MV networks do not group as
clearly. Overall, they are closer to each other than to the GG networks,
but the difference is small. An unsupervised classification run across all
four distances would assign 6 networks correctly to GG and the other
three networks to MV – one of them incorrectly.

To further parse these results, recall that dkP is defined by search-
ing for a correspondence such that the maximum k-order difference
|dkX(x0:k) − dkY (y0:k)| is minimized [cf. (7) and (8)]. For the optimal
correspondence C? = argminC∈C(X,Y ) Γk

X,Y (C), define the pair of
correspondent tuples achieving the maximum k-order difference as

(x?0:k, y
?
0:k) = argmax

(x0:k,y0:k)∈C?

∣∣∣dkX(x0:k)− dkY (y0:k)
∣∣∣ . (13)

The tuple pair (x?0:k, y
?
0:k) is the bottleneck that prevents making the net-

works closer to each other. Examining these bottleneck pairs for each
k-order distance reveals what are the differences between proximity net-
works to which dkP is most sensitive about. In general, k-order bottleneck
pairs tend to be pairs of tuples with high proximity values in their respec-
tive networks. Minimizing correspondences C? map tuples with high
proximity as closely as possible. Therefore, network distances are typ-
ically determined by large proximity values in one of the networks that
can’t be matched closely to proximity values in the other network.

In the networks of Figure 2 the bottleneck pair for 0-order distances
d0P is formed by nodes with high zero order proximities and d0P reflects
the difference between their zero order proximities. Since the networks
are normalized so that the lead nodes have size 1, d0P is determined by
their predominant coauthors, i.e., the scholars that collaborated most pro-
lifically with GG or MV during the period of interest. Focusing first on
the quinquennial networks, observe that the distances d0P between GG
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Fig. 2. Coauthorship networks representing research communities centered at Prof. Georgios Giannakis (GG) or Prof. Martin Vetterli (MV). The
size of the nodes is proportional to the zeroth order proximities, and the width of the links to the first order proximities. Second order proximities are
represented by shading the triangle enclosed by the coauthor triplet. Color intensity is proportional to the second order proximities.
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Fig. 3. Two dimensional Euclidean embeddings of the distances d0P , d1P , d2P , and dP,1 between networks. In the embeddings, denote MV0408,
MV0913 as circles, GG0408, GG0913 as diamonds, GG0405, GG0607, GG1011 as up triangles and GG0809, GG1212 as down triangles.

and MV networks are large because these predominant collaborations are
different. In GG networks there are usually groups of 3 to 5 predominant
collaborators, whereas in MV networks there are usually one or two that
concentrate a larger fraction of the total number of publications.

Similarly, first-order proximity distances between networks are likely
due to: (i) Large differences between the numbers of papers authored by
the predominant collaborators. (ii) Different patterns in the formation of
communities – defined here as clusters of pairwise collaboration. In the
latter case large distances arise because it is impossible to match the com-
munities in one network to communities in the other. The distances d1P
between quinquennial GG and MV networks are large because the latter
contain a smaller number of communities, which are also more strongly
connected than the communities in GG networks.

In second order distances the bottleneck pair of triplets may reflect:
(i) One network has collaboration between four or more authors while
the other doesn’t (ii) There exist three authors with a strong collaboration
in one network whereas in the other network there does not exist collab-
oration between three authors or, if such collaboration exists, it is weak.
Many papers written by MV are collaborations of three or four scholars
and the predominant coauthor in MV networks appears in at least one
collaboration of four scholars. For GG, his 0408 network has a few col-
laborations consisting of four scholars however all such collaborations
are weak. GG0913 has no publications written by four authors.

In biennial networks we see more random variation. Still, the bi-
ennial networks, GG0405, GG0607, GG1011 (up triangles) are close to

the quinquennial networks GG0408, GG0913 (diamonds) in every met-
ric used because the distinctive features of GG coauthorship are well re-
flected in them. Indeed, these networks have: (i) Multiple predominant
coauthors, each of whose collaboration with GG does not comprise a
dominant portion of GG’s scholarship during the period. (ii) Multiple
small coauthorship communities in which strong collaborations within
each community are rare. (iii) Few publications with four or more au-
thors. GG0809 and GG1213 do not cluster with other GG networks be-
cause they have features that resemble GG networks and some features
that resemble MV networks. This happens because of prolific collabora-
tions with Ioannis Schizas (IS) in the 08-09 period and Gonzalo Mateos
(GM) in the 12-13 period. In the network GG0809 the IS node commands
a significant fraction of GG publications and creates strong links between
collaboration clusters that would be otherwise separate. In the network
GG1213 GM accounts for half of the publications in which GG is an
author. Both of these features are more characteristic of MV networks.

5. CONCLUSION

We defined two families of distances measuring differences between
proximity networks. These distances are valid metrics in the space of
high order networks modulo isomorphism. We use this distances to suc-
cessfully identify collaboration patters of Prof. Georgios B. Giannakis
and Prof. Martin Vetterli. Tractable approximations will be provided in
forthcoming contributions.
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