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Abstract—This paper presents methods to compare high order networks
using persistence homology. High order networks induce well-founded ho-
mological features and the difference between networks is measured by the
difference between the homological features. This is a reasonable approxima-
tion to a valid metric in the space of high order networks modulo permutation
isomorphisms. The approximations succeed in identifying collaboration pat-
terns of engineering and math academic journals.

I. INTRODUCTION

We consider high order proximity networks that describe relationships
between elements of a tuple and address the problem of constructing
valid metric distances between them. Most often, networks are defined as
structures that describe interactions between pairs of nodes [1], [2]. This
is an indisputable appropriate model for networks that describe binary
relationships, such as communication or influence, but not so appropriate
for problems in which binary, ternary, or n-ary relationships in general,
have different implications. This is, e.g., true of coauthorship networks
where we count the number of joint publications by groups of scholars.
Papers written by pairs of authors capture information that can be used
to identify important authors and study mores of research communities.
However, there is extra information to be gleaned from collaborations
between triplets of authors, or even single author publications. The
importance of capturing tuple proximities between groups of nodes other
than pairs has been recognized and exploited in multiple domains [3]–[10].

The problem of defining distances between networks, or, more loosely,
the problem of determining if two networks are similar or not, is important
even in the case of pairwise networks. The problem is not complicated if
nodes have equal labels in both networks [11], [12] but very challenging
otherwise, as we need to consider all possible mappings between nodes
of each network. This complexity has motivated the use of network
features as alternatives to the use of distances. Examples of features that
have proved useful in particular settings are clustering coefficients [13],
neighborhood topology [14], betweenness [15], motifs [16], wavelets [17],
and graphlet-based heuristics [18]–[20]. Feature analysis is valuable, but
it does not allow for meaningful comparisons unless application specific
features are already known to be important. A different alternative is
to define actual distances [21]. Because they have to consider node
correspondences, network distances are computationally intractable. Their
practical value is limited to small networks and to the transformation of
the problem into one of building distance approximations instead of one
of searching for appropriate features.

The main problem addressed in this paper is the approximation of
the metric distances between high order networks defined in [21]. To
achieve this, we relate high order networks to simplicial complexes
[22], [23] and relate relationship functions to homological features. The
difference between networks is then measured by the difference between
the homological features. We justify this is a reasonable approximation.
Persistence homology can be computed efficiently for very large networks
[24]. We use these approximations to compare the coauthorship networks
of academic journals from engineering and math communities and show
that they succeed in discriminating their respective collaboration patterns.

II. HIGH ORDER NETWORKS

A network of order K over the node space X is defined as a collection
of K + 1 relationship functions {rkX : Xk+1 → R+}Kk=0 from the space
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Xk+1 of (k + 1)-tuples to the nonnegative reals,

NK
X =

(
X, r0X , r

1
X , . . . , r

K
X

)
. (1)

For point collections x0:k := (x0, x1, . . . , xk) ∈ Xk+1, values of their
k-order relationship functions are denoted as rkX(x0:k) and are intended
to represent a measure of similarity or dissimilarity for members of the
group. A network of order 0 is one in which only node weights are given,
a network of order 1 is one in which weights and pairwise relationships
are defined, a network of order 2 adds relationships between triplets and
so on. We assume that relationship values are normalized so that 0 ≤
rkX(x0:k) ≤ 1 for all k and x0:k.

We restrict attention to symmetric networks in which for all the K+ 1
functions rkX in (1) and x0:k, rkX(x[0:k]) = rkX(x0:k) where x[0:k] =
([x0], [x1], . . . , [xk]) is a reordering of x0:k. The set of all symmetric
networks of order K is denoted asNK . When defining a distance between
networks we need to take into consideration that permutations of rkX
amount to relabelling nodes and must not be considered as different
entities. We therefore say two K-order networks NK

X and NK
Y are k-

isomorphic if there exists a bijection φ : X → Y such that

rkY (φ(x0:k)) = rkX(x0:k), (2)

for all x0:k ∈ Xk+1 where rkY (φ(x0:k)) := rkY (φ(x0), . . . , φ(xk)).
The map φ is called a k-isometry. When networks NK

X and NK
Y are

k-isomorphic we write NK
X
∼=k NK

Y . The space of K-order networks
modulo k-isomorphism is denoted by NK mod ∼=k. For each nonneg-
ative integer 0 ≤ k ≤ K, the space NK mod ∼=k of networks of
order K modulo k-isomorphism can be endowed with a pseudometric.
The definition of this distance requires introducing the prerequisite notion
of correspondence [25].

Definition 1 A correspondence between two sets X and Y is a subset
C ⊂ X × Y such that for all x ∈ X , there exists y ∈ Y such that
(x, y) ∈ C and for all y ∈ Y there exists x ∈ X such that (x, y) ∈ C.
The set of all correspondences between X and Y is denoted as C(X,Y ).

A correspondence in the sense of Definition 1 is a map between node
sets X and Y so that every element of each set has a correspondent in
the other set. Correspondences include permutations as particular cases
but also allow for the mapping of a single point in X to multiple
correspondents in Y or, vice versa. Most importantly, this allows definition
of correspondences between networks with different numbers of elements.
We can now define the distance between two networks by selecting the
correspondence that makes them most similar.

Definition 2 Given networks NK
X and NK

Y , a correspondence C between
the node spaces X and Y , and an integer 0 ≤ k ≤ K define the k-order
network difference with respect to C as

ΓkX,Y (C) := max
(x0:k,y0:k)∈C

∣∣∣rkX(x0:k)− rkY (y0:k)
∣∣∣ . (3)

The k-order network distance between networks NK
X and NK

Y is then
defined as

dkN (NK
X , N

K
Y ) := min

C∈C(X,Y )

{
ΓkX,Y (C)

}
. (4)

For a given correspondence C the network difference ΓkX,Y (C) se-
lects the maximum distance difference |rkX(x0:k)− rkY (y0:k)| among all
pairs of correspondents. The distance in (4) is defined by selecting the
correspondence that minimizes these maximal differences. Observe that



since correspondences may be between networks with different number
of elements, Definition 2 defines a pseudometric dkN (NK

X , N
K
Y ) when the

node cardinalities |X| and |Y | are different. The distance in Definition 2 is
a pseudometric in the space of high order network modulo isomorphism
[21]. For future reference, the notions of metric and pseudometric are
formally stated next.

Definition 3 Given a space S and an isomorphism ∼=, a function d :
S × S → R is a metric in S mod ∼= if for any a, b, c ∈ S the function
d satisfies:

(i) Nonnegativity. d(a, b) ≥ 0.
(ii) Symmetry. d(a, b) = d(b, a).
(iii) Identity. d(a, b) = 0 if and only if a ∼= b.
(iv) Triangle inequality. d(a, b) ≤ d(a, c) + d(c, b).

The function is a pseudometric in S mod ∼= if for any a, b, c ∈ S the
function d satisfies (i), (ii), (iv), and

(iii’) Relaxed identity. d(a, b) = 0 if a ∼= b.

While different order functions rkX and rlX of a given network NK
X

need not be related, it is common to observe that adding nodes to a
tuple results in decreasing or increasing relationships. This motivates the
consideration of dissimilarity and proximity networks that we undertake
in the following section.

A. Dissimilarity and Proximity Networks

In dissimilarity networks the function rkX(x0:k) encodes a level of
dissimilarity between elements of the x0:k tuple. In this scenario it is
reasonable to assume that adding elements to a tuple makes the group
more dissimilar and therefore results in a higher value in the relationship
function. In proximity networks the function rkX(x0:k) encodes a level of
similarity or proximity between elements of the tuple. Under this circum-
stance it is reasonable to assume that adding elements to a tuple makes the
group less similar, resulting in a lower value in the relationship function.
These restrictions make up the formal definition that we introduce next.

Definition 4 We say that the K-order network DK
X =

(
X, r0X , . . . , r

K
X

)
is a dissimilarity network if order increasing property holds, i.e. for any
order 1 ≤ k ≤ K and tuples x0:k ∈ Xk+1 we have

rkX(x0:k) ≥ rk−1
X (x0:k−1), (5)

and the inequality (5) equalizes if and only if the point xk also appears
in the point collection x0:k−1. We say that the K-order network PKX is
a proximity network if order decreasing property holds, i.e. under the
same conditions we have rkX(x0:k) ≤ rk−1

X (x0:k−1) and the inequality
equalizes if and only if the point xk also appears in the point collection
x0:k−1. Denote the set of all dissimilarity networks of order K as DK
and the set of all proximity networks of order K as PK .

To see that the order decreasing property in Definition 4 is reasonable,
consider the specific case of dissimilarities r2X(x, x′) and r3X(x, x, x′),
they entail same information as they both convey how different is x from
x′. On the other hand, dissimilarities r2X(x, x′) ≤ r3X(x, x, x′′) and they
cannot equalize unless x = x′′ or x′ = x′′. Order increasing property
generalizes this observation and requires dissimilarity x0:k being equal to
x0:k−1 if and only if the added point xk is identical to some point in
the point collection x0:k−1. Further note that since we restricted attention
to symmetric networks a relationship as in (5) holds if we remove an
arbitrary node from the tuple x0:k, not necessarily the last. Thus, the
order increasing property implies that removing an element from a tuple
can’t make the set less dissimilar than it was.

When the input networks in Definition 2 are dissimilarity networks
or proximity networks we refer to the k-order distance as the k-order
dissimilarity or proximity network distance, respectively. We state this
formally in the following definition for future reference.

a
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tetrahedron [a, b, c, d]

Fig. 1: k-simplices in Rk+1 for 0 ≤ k ≤ 3.

Definition 5 Given dissimilarity networks DK
X , D

K
Y ∈ DK we say that

the k-order distance dkD(DK
X , D

K
Y ) = dkN (DK

X , D
K
Y ) of Definition 2 is

the k-order dissimilarity network distance between DK
X and DK

Y . The
k-order proximity network distance dkP(PKX , P

K
Y ) is defined similarly.

The restrictions to dissimilarities or proximities make dkD a well-defined
metric in the space DK mod ∼=k and dkP a metric in the space PK
mod ∼=k [21]. Proximity and dissimilarity networks have been defined
separately for simplicity of presentation, but they are actually related
entities. We formalize this equivalence through the introduction of dual
networks in the following definition.

Definition 6 Given a node space X , the K-order proximity and dissim-
ilarity networks PKX =

(
X, p0X , . . . , p

K
X

)
and DK

X =
(
X, d0X , . . . , d

K
X

)
are said duals if and only if

dkX(x0:k) = 1− pkX(x0:k), (6)

for all orders 0 ≤ k ≤ K and tuples x0:k.

The network distance definitions have been constructed such that given
dual networks, dkP for proximity networks and dkD for dissimilarity
networks are the same, as we formally state in the following proposition.

Proposition 1 Consider two proximity networks PKX and PKY and their
corresponding dual dissimilarity networks DK

X and DK
Y . The k-order

proximity distances dkP(PKX , P
K
Y ) and k-order dissimilarity distances

dkD(DK
X , D

K
Y ) coincide for all 0 ≤ k ≤ K,

dkD(DK
X , D

K
Y ) = dkP(PKX , P

K
Y ). (7)

The metrics defined in Definition 5 provides us well-founded methods
to compare high order networks. However, the combinatorial nature in
searching for the optimal correspondence in (3) makes it impossible to find
the exact solution when the number of nodes in networks are large. For this
reason, we want to find reasonable as well as computationally tractable
approximations to the metrics. The structure of dissimilarity networks
relates well to the concept of filtrations in computational homology [22],
[23]. This motivates the consideration of using persistence homology to
approximate networks distances as we start by giving a brief introduction
to computational homology in the following section.

III. INTERPRETATING DISSIMILARITY NETWORKS AS FILTRATIONS

In topology, given k points x0:k, one normally considers they live in
some Rk+1 space where the coordinates of point xi are all zero except
unity on the i-th axis. The k-simplex generated by the set of non-repeating
points x0:k, σ = [x0:k], is defined as the convex hull of of the set of points,
conv{x0:k}. See Figure 1 for examples of k-simplex with 0 ≤ k ≤ 3.

For all k ≥ 1 removing a point xs from the set x0:k yields a set with
k−1 points that we denote as x0:ŝ:k := x0:k\xs. Each of the k+1 convex
hulls [x0:ŝ:k] = conv{x0:k\xs} formed by removing the point xs from the
original set is a (k−1)-simplex we call a face of σ. For example, the set
of faces for the 1-simplex [a, b] and the 2-simplex [a, b, c] in Figure 1 are
{[a], [b]} and {[a, b], [a, c], [b, c]}, respectively. Given the simplex σ =
[x0:k], the boundary ∂kσ of the simplex is the collection of all faces
considering orientations, which are generalizations of directed edges in
graphs. The boundary of the simplex σ is ∂kσ =

∑k
s=0(−1)s[x0:ŝ:k].

Observe that since a 0-simplex σ has no faces, ∂0σ = 0. For the k-
simplices in Figure 1, ∂0[a] = 0, ∂1[a, b] = [b]− [a], ∂2[a, b, c] = [b, c]−
[a, c] + [a, b] and ∂3[a, b, c, d] = [b, c, d]− [a, c, d] + [a, b, d]− [a, b, c]. A
simplicial complex L is a finite collection of simplices such that every face
of a simplex of L is also in L and the intersection of any two simplices
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Fig. 2: (a): Two connected bow ties as an example of a simplicial complex
which consists 8 0-simplices, 11 1-simplices and 3 2-simplices. The set of
faces for the 2-simplex [a, g, h] is {[a, g], [a, h], [g, h]}. The intersection
of the two 2-simplices [b, f, g] and [b, d, f ] is an 1-simplex [b, f ]. (b):
A weighted high order network can be represented equivalently as a
simplicial complex with weights. The weight of a simplex is the time
instant the simplex appears in the simplicial complex. In the original
network, r1X(a, g) = 0.3; in the simplicial complex with weights, the
1-simplex [a, g] appears at time 0.3. (c): the zeroth-dimensional and (d):
the first-dimensional persistence diagrams of the filtration induced by (b).

is either empty or a shared face. See Figure 2 (a) for two connected bow
ties as an example of a simplicial complex of dimension 2.

A k-chain is a formal sum of k-simplices of L, denoted by c =∑
i βiσi, where each σi is a k-simplex and each βi is a coefficient.

The k-chains together with the addition operation form the group of
k-chains, denoted as Ck(L), or simply Ck. For a k-chain with c =∑
i βiσi, its boundary is the sum of the boundaries of its simplices,

∂kc =
∑
i βi(∂kσi). Hence, ∂k maps a k-chain to a (k − 1)-chain,

∂k : Ck → Ck−1. The sequence of chain groups connected by boundary
maps can be represented as

· · ·
∂k+2−→ Ck+1

∂k+1−→ Ck
∂k−→ Ck−1

∂k−1−→ · · · . (8)

For the connected bow ties in Figure 2 (a), C0 = β1[a]+· · ·+β8[h], C2 =
β′1[a, g, h] + β′2[b, g, f ] + β′3[b, d, f ]. A k-cycle is a k-chain with empty
boundary, ∂c = 0. In the example, [a] is a 0-cycle and [a, g]+[g, h]+[a, h]
is a 2-cycle. Zk denotes the group of k-cycles and is the kernel of the
k-th boundary map, Zk = ker ∂k. Observe that any 0-chain is a 0-cycle,
therefore Z0 = C0. A k-boundary is a k-chain that is the boundary of a
(k+1)-chain, c = ∂k+1d for some d ∈ Ck+1. In the example, [g]−[h] is a
0-boundary since [g]− [h] = ∂1[h, g] and [h, g] is an 1-chain. Bk denotes
the group of k-boundaries and is the image of the (k + 1)-th boundary
map, Bk = im ∂k+1. The k-th homology group is the k-th cycle group
modulo the k-th boundary group, Hk = Zk/Bk. The homology groups
considered in this paper are of the form Hk ∼=

∑
i γiΣi where each γi ∈ R

denotes a degree of freedom and Σi =
∑
j βjσj with βi ∈ {−1, 1} is

a linear combination of simplices. We say that each Σi represents a k-th
dimensional homological feature.

We now connect computational topology with dissimilarity networks.
Simplicial complexes can be considered as structures of high order net-
works, detailing the number and labels of vertices, edges, and higher
dimensional counterparts. To incorporate relationship functions, we assign
each simplex in the simplicial complex L a real value denoting the time
when this simplex appears. For any α ∈ R, we then define Lα ⊆ L to be
the collection of simplices appearing before or on time α. If all faces of
each simplex and intersections of any simplices in Lα also appear before
time or on α, Lα is a well-defined simplicial complex and the nested
sequence of ∅ = Lα0 ⊆ · · · ⊆ Lαm = L with 0 = α0 < · · · < αm an
ordered sequence of real numbers is defined as a valid filtration L. From
Definition 4, if we assign time information based on relationship functions
in a given dissimilarity network DK

X , we have a naturally induced filtration
which we denote as L(DK

X ). See Figure 2 (c) for an example where the
numbers adjacent to simplices denote the time when simplices appears in
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Fig. 3: Examples of dissimilarity networks where the network distances
measured by persistence homology exceed the actual metric however are
justifiable. Simplices without weights described are considered with the
highest dissimilarity 1.
the simplicial complex. L0 is consisted of all vertices except [g] and L2

is consisted of all vertices union three 1-simplices {[a, h], [b, f ], [d, e]}.
Finally we give an intuitive definition of persistence homology. Con-

sider the homological feature represented by Σi that exists in the k-th
homology group Hk(Lα) for any α satisfying αb ≤ α ≤ αd. This
feature starts to appear in the homology group at time αb as a new
independent non-trivial cycle is formed at time αb and diminishes at
time αd since this cycle is trivialized by a boundary. This formation
and diminishment in the homology group of simplicial complexes in a
filtration is defined as persistence homology. The interval (αb, αd) is
named persistence interval for the corresponding homological feature and
can also be represented in a two-dimensional diagram. Denote BkL and
DkL as the set of birth time and death time of the k-th dimensional
homological features of the filtration L. For the example in Figure 2 (b),
at time 0, L0 consists of all 0-simplicies except [g]. Since every 0-simplex
is a 0-cycle, there exist 7 zeroth-dimensional homological features. At
time 0.1, the appearance of the 1-simplex [b, f ] makes the 0-cycles [b]
and [f ] dependent and one zeroth-dimensional homological features dies,
generating a zeroth-dimensional persistence interval (0, 0.1). At the same
time, a new zeroth-dimensional homological feature represented by [g]
appears. As the filtration continues and more edges appear, all zeroth-
dimensional homological features disappear except one denoting the entire
connected component. For the first-dimension, the homological feature
represented by the cycle [a, h] + [h, g] + [g, a] appears at time 0.3 and
is killed at time 0.8 by the appearance of the triangle [a, g, h]. At the
end of the filtration, we have one zeroth-dimensional homological feature
born at time 0 and one first-dimensional homological feature represented
by [c, d] + [d, e] + [e, c] born at time 0.4. Figure 2 (c) and (d) plot the
zeroth-dimensional and the first-dimensional persistence diagrams of the
filtration induced by (b). Persistence homologies can be computed with
very low cost [24], [26], and we are going to use them to approximate
network distances that we undertake in the following section. We will
focus on the analysis of dissimilarity networks but it generalizes easily to
proximity networks as a direct result of Proposition 1.

IV. APPROXIMATING NETWORK DISTANCES USING PERSISTENCE

The main challenge in exactly computing network distances as Defi-
nition 5 is that we need to search the optimal correspondence between
vertices while minimizing the maximal differences for the k-order dis-
similarities. It compares k-order functions while considers the complete
structures in the networks. A relaxation can be made by comparing k-order
functions with no consideration about the network structures and searching
the optimal correspondence between k-simplices. More explicitly, given
dissimilarity networks DK

X and DK
Y , the relaxed network distance can be

defined as

ekD(DK
X ,D

K
Y )= min
Ck∈C(Xk+1,Y k+1)

{
max

(x0:k,y0:k)∈Ck

∣∣∣rkX(x0:k)−rkY (y0:k)
∣∣∣}, (9)

where Ck is a k-correspondence between the powered node spaces Xk+1

and Y k+1 with each element in Ck being a pair of k + 1 tuples
(x0:k, y0,k). ekD(DK

X , D
K
Y ) can be computed with very low cost and

ekD(DK
X , D

K
Y ) ≤ dkD(DK

X , D
K
Y ) follows easily.

We want to find an approximation of dkD that is more intricate than ekD
and partly considers the underlying network structures. We are going to
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achieve this using persistent homology. First observe that follows from the
dissimilarity network definition, all the non-trivial k-order dissimilarities
of any given dissimilarity network DK

X can be found in homological
features, as we formally state in the following proposition.

Proposition 2 Given a dissimilarity network DK
X , any of its k-order

dissimilarities between tuples of non-repeating nodes appear either in
the death time of the (k− 1)-th dimensional homological features or the
birth time of the k-th dimensional homological features.
Proof: See [27]. �

Proposition 2 guarantees that nothing about dissimilarities between non-
repeating tuples is lost when we consider the persistence homology of the
induced filtration. This motivates us to compare networks by comparing
their respective persistence intervals as we formally state next.

Definition 7 Given dissimilarity networks DK
X and DK

Y , the k-order
network distances between DK

X and DK
Y measured by the death time of

the (k− 1)-th and by the birth time of the k-th dimensional homological
features are defined as

fkD,d(D
K
X ,D

K
Y )= min
C∈C(Dk−1L(DK

X
),Dk−1L(DK

Y
))

{
max

(αX ,αY )∈C
|αX−αY |

}
. (10)

fkD,b(D
K
X ,D

K
Y )= min

C∈C(BkL(DK
X

),BkL(DK
Y

))

{
max

(αX ,αY )∈C
|αX−αY |

}
. (11)

In words, fkD,d considers the maximal differences between the sets
Dk−1L(DK

X ) and Dk−1L(DK
Y ) of death time for the (k − 1)-th di-

mensional homological features and fkD,b considers the maximal dif-
ferences between the sets BkL(DK

X ) and BkL(DK
Y ) of birth time for

the k-th dimensional homological features. They are related to (9) via
max{fkD,d, fkD,b} ≥ ekD since the latter has more freedom in choosing
the correspondence. Both fkD,b and fkD,b are approximations to dkD and
there are situations where fkD,b > dkD or fkD,d > dkD . We now argue it is
reasonable to use the approximations in Definition 7 to compare networks
by claiming: (i) the decomposition of dissimilarities into two sets, one rep-
resenting death time and the other representing birth time, is reasonable,
and (ii) it is reasonable that under some scenarios approximation based
on persistence homology would exceed the network distance dkD .

For (i), first observe that as filtration continues, simplices representing
more distant relationships are included. When k = 1, f1

D,d considers the
time when 0-cycles are trivialized and f1

D,b considers the time when 1-
cycles are formed. This separation is reasonable since 0-cycles represent
connected components or communities and 0-cycles are trivialized when
two isolated communities are merged together. The formation of 1-cycles
represents the construction of a closed two-way path through at least three
nodes that are now pairwise highly similar. When k = 2, f2

D,d represents
the time when three nodes are not only pairwise highly similar but are
highly similar as a single entity; f2

D,b denotes the establishment of a set
of at least 4 highly similar nodes, i.e. given any pairs within the set, we
can find a third node in the same set such that the triplet as a whole is
highly similar. This analysis can be generalized to higher orders.

For (ii), we focus the cases with k = 1 due to simplicity and consider
examples of dissimilarity networks in Figure 3. The network distance
between (a) and (b) and between (c) and (d) measured by persistence
homology exceed the actual metric. We here give justifications that the
comparisons based on persistence are more reasonable. In comparing (a)
and (b), the network metric is 0.19 with the correspondence of pairs
(A, Ã), (B, B̃), (A′, X), (B′, X). However notice the dissimilarity of X
to itself is 0.99, very close to the maximal dissimilarity, meaning X is
likely a noisy observation and therefore mapping both A′ and B′ to X
may not be appropriate. The correspondence using persistence will map
both (A,B) and (A′, B′) to (Ã, B̃), preserving the structure of pairs. In
comparing (c) and (d), persistence will yield high network distance due
to the fact that in (d) we have non-trivial first dimensional homological
features represented by the cycles L′, A′, B′ and L′, C′, D′. This is
reasonable since they represent three nodes that are pairwise highly similar
to each other and we can not find such three nodes in (c).

V. COMPARISON OF COAUTHORSHIP NETWORKS

In this section, we exemplify the usage of persistence to compare
coauthorship networks constructed from engineering or math academic
journals. We used the publicly available database of academic journals
from Engineering Village [28] and and selected 5 journals from mathe-
matics community: Computational Geometry, Discrete Computational Ge-
ometry, Journal of Applied Probability, Journal of Mathematical Analysis
and Applications, SIAM Journal on Numerical Analysis, and 6 journals
from engineering community, all from IEEE: Signal Processing Magazine
(SPM), Trans. Automatic Control (TAC), Trans. Pattern Analysis and
Machine Intelligence (TPAMI), Trans. Information Theory (TIT), Trans.
Signal Processing (TSP), Trans. Wireless Communication (TWC). For
each journal, we construct two coauthorship networks for quinquennia
2004 - 2008 and 2009 - 2013. These are proximity networks and we
transform them into dissimilarity network by Definition 6 and compare
the network distance using Definition 7 where persistence homologies are
computed using JavaPlex [29]. For visualization, we plot multidimensional
scale (MDS) [30] based on the computed distances in Figure 4. It can
be seen that network distances truly reflect the difference in community
formation of engineering and math journals. A linear classifier on the
MDS results would give errors of 1 (4.55%) to 5 (22.73%) out of 22
networks. Moreover, networks constructed from same engineering journal
with different quinquenniums tend to be close to each other. This is most
conspicuous when the distance used is f2

D,d where networks constructed
from same engineering journal form clear clusters.

VI. CONCLUSION

We relate high order networks to simplicial complexes and use the
differences between the induced homological features to measure the
differences between networks. We justify that this is a reasonable ap-
proximation to a valid metric in the space of high order networks modulo
permutation isomorphisms. We use these approximations to successfully
identify collaboration patterns of engineering and math academic journals.
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