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Abstract— We consider discriminative dictionary learning in
a distributed online setting, where a team of networked robots
aims to jointly learn both a common basis of the feature
space and a classifier over this basis from sequentially observed
signals. We formulate this problem as a distributed stochastic
program with a non-convex objective and present a block
variant of the Arrow-Hurwicz saddle point algorithm to solve it.
Only neighboring nodes in the communications network need to
exchange information, and we penalize the discrepency between
the individual feature basis and classifiers using Lagrange
multipliers. The application we consider is for a team of
robots to collaboratively recognize objects of interest in dynamic
environments. As a preliminary performance benchmark, we
consider the problem of learning a texture classifier across
a network of robots moving around an urban setting where
separate training examples are sequentially observed at each
robot. Results are shown for both a standard texture dataset and
a new dataset from an urban training facility, and we compare
the performance of the standard centralized construction to the
new distributed algorithm for the case when distinct samples
from all classes are seen by the robots. These experiments
yield comparable performance between the decentralized and
the centralized cases, demonstrating the proposed method’s
practical utility.

I. INTRODUCTION

We seek to develop a system to allow a network of robotic
agents to collectively perform high-level signal processing
tasks such as regression or classification in unknown dy-
namic environments. The problem formulation breaks down
into three aspects: developing data-driven feature represen-
tations, learning task-driven classifiers over these represen-
tations, and extending these formulations in a dynamic,
networked setting. Our particular application of interest is for
a network of robots driving through an urban environment
to perform real-time texture classification for the purpose of
mapping, navigability analysis, and object recognition.

Sparse coding, or a representing a feature vector as a linear
combination of a small number of basis elements, using a
learned dictionary, rather than a predefined one has yielded
state of the art results for image processing tasks such as
denoising [1] and classification [2], [3]. A classical way to
handle this representation problem is principle component
analysis [4], which requires orthogonality of the basis ele-
ments. In dictionary learning we relax this requirement and
seek a data-driven representation of the signal. The task of
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actually learning the dictionary is a difficult optimization
problem, especially in the context of large or dynamic
training sets.

A signal x ∈ Rm admits a sparse approximation of x
over a dictionary D ∈ Rm×k if it may be represented as
a combination of a small number of basis elements that is
close to x. Sparse coding methods have been successfully
applied to a variety of signal processing applications [5].
One approach is to use a pre-defined dictionary based upon
the application domain, i.e. wavelets for natural imagery [6].
Learning the dictionary from the data rather than using a pre-
defined method has shown to significantly improve signal
reconstruction tasks such as inpainting or denoising [1], [7],
[8], and has also been successfully applied to higher level
signal processing tasks such as classification [2], [9], yet
recent extensions which tailor the dictionary to the specific
learning task show significant improvements [10]–[12]. We
refer to the approach of tailoring the dictionary to the task
of learning a predictive model as discriminative dictionary
learning.

Dictionary learning in the online setting, where training
samples are sequentially observed, has been solved as a
matrix factorization problem using first [1] and second-
order stochastic approximation methods [13]. However, the
problem of developing a dictionary representation of a signal
specifically suited to the problem setting of interest is more
challenging to optimize. Recently, an online framework for
large-scale dictionary and discriminative model learning has
been proposed based upon alternating stochastic gradient
[14] which successfully generalizes the task-specific dictio-
nary methods for classification [15] and compact feature
learning, the later of which has also been approached with
convolutional neural networks and Boltzmann machines.

In this paper, we extend the online discriminative dic-
tionary learning formulation of [14] to networked settings,
where a team of agents seeks to learn a common dictionary
and model parameters based upon local dynamic informa-
tion, which is a discriminative extension of [16]. To develop
a framework for solving discriminative dictionary learning
problems online in networked settings, we consider tools
from stochastic approximation and distributed optimization.

Pertinent to the approach considered here is projected
stochastic gradient [17], and its extensions to networks. Such
extensions have incorporated approaches from distributed
optimization such as weighted averaging [18]–[21], dual
reformulations where each agent ascends in the dual domain
[22], [23], and primal-dual methods which combine primal
descent with dual ascent [18], [24]. We note that [16] uses
a weighted averaging method for networked stochastic opti-



mization, which as shown in [25], [26], is ill-suited to tasks
of this kind as it may seek a consensus which diverges from
the globally optimal decision variable. Hence we develop a
modification of the primal-dual algorithm proposed in [26]
which more effectively solves the problem of learning a
common dictionary and discriminative model online in the
multi-agent setting.

The paper is organized as follows. We begin in Section II
by describing the dictionary learning and sparse representa-
tion problem [13], and develop its discriminative extension
[14], both of which are stochastic programs. In Section III,
we extend this problem to multi-agent systems, and derive an
algorithmic solution based upon the saddle point algorithm of
Arrow and Hurwicz [24], [26]. In Section IV, we demonstrate
the proposed framework’s practical utility in the context of
mobile robotic teams for collaborative learning tasks and
conclude in Section V.

II. PROBLEM FORMULATION

A. Dictionary Learning from Data

Consider a set of T signals in an m-dimensional feature
space {xt}Tt=1 ⊂ X ⊂ Rm. We aim to represent the signals
{xt}Tt=1 as a sparse combination of a common set of k basis
elements, which are unknown and must also be learned from
the data. Denote the dictionary as D ∈ Rm×k, the sparse
coding as α ∈ Rk and associate a loss function f̃t(α,D)
with each data point which is small when α and D sparsely
represent xt well. Classically the the dictionary learning and
sparse representation problem [27] has been formulated as
the empirical loss minimization

min
D∈Rm×k,α∈Rk

1

T

T∑
t=1

f̃t(α,D). (1)

Often the number of data points T is large, and the signal
dimension m is small.

An ideal way to induce sparsity in the coding α would be
with an `0 constraint which yields a NP-hard combinatorial
optimization problem. To circumvent this issue, [28] develop
soft thresholding methods based upon proximal operators.
These methods are computationally efficient and converge
quickly, yet have been shown to be less numerically stable
than convex relaxations [29], [30] with an elastic-net (`1 and
`2) penalty, which we state as

fu(D; x) := min
α∈Rk

1

2
‖x−Dα‖22 + ζ1‖α‖1 +

ζ2
2
‖α‖22. (2)

The subscript u denotes the unsupervised data driven method
for learning the dictionary. For a fixed D, (2) is an elastic
net problem, also known as `2 regularized lasso [31] or basis
pursuit [5], for which efficient exact solvers exist [32]. The
`1-regularizer induces sparsity in α. Moreover, ζ1 denotes
a regularization parameter tuning the sparsity level of the
coefficients and ζ2 tunes how equitably the sparse coding
is spread across its k coordinates. The `2 regularization
also guarantees (2) is strongly convex and may be solved
uniquely [33]. There is no analytical link between ζ1 and
the sparsity level, and hence values of α may becoming

arbitrarily small, which corresponds to the entries of D from
becoming arbitrarily large. To eliminate the scale ambiguity
of the bilinear term in (2), constrain the set of feasible
dictionaries to be those whose columns are of unit norm,
i.e.

D = {D ∈ Rm×k : ‖dl‖ ≤ 1, l = 1 . . . k}. (3)

B. Dictionary Learning for Discriminative Modeling

Following [14], we modify the stochastic optimization
problem formulated in [13] such that the dictionary learning
is supervised to the signal processing task of interest, which
has yielded promising results in image [10] and audio [2]
applications. To do so, begin by defining the optimal sparse
coding of (2) as

α?(D; x) := argmin
α∈Rk

1

2
‖x−Dα‖22+ζ1‖α‖1+ζ2‖α‖22, (4)

where we associate with each signal x a variable y ∈ Y .
Here Y denotes a set of labels in the case of classification
or Y ⊂ Rq in the case of regression. We aim to discern
the input-output relationship associated with the pair (x,y)
by learning model parameters w ∈ W ⊂ Rk. We use the
sparse coding α?(D; x) in (4) as a feature representation
of the signal, and seek to minimize a convex smooth loss
function of the form fs(y,w,α

?(D; x)), where the subscript
s denotes the supervised component of the learning. This loss
captures how well one may predict y when given the sparse
coding α?(D; x) for the dictionary D. The structure of fs is
dependent on the learning task of interest, examples of which
include the squared, logistic, and squared hinge-loss for
linear and logistic regression or support vector classification,
respectively.

We view the prediction loss fs as a function of both the
model w and the dictionary selection D, since the sparse
coding α?(D; x) is clearly dependent on the selection of
basis elements. Hence we seek to learn D and w jointly by
solving

min
D∈D,w∈W

Ey,x [fs(y,w,α
?(D; x))] +

ξ

2
‖w‖2F . (5)

where ξ is a regularization parameter guaranteeing the prob-
lem is strongly convex in w when the dictionary and sparse
coefficients are fixed. By using the analysis in [14], we may
use smooth optimization methods to solve (5) despite the
non-smooth sparsity-inducing norm in (2). Thus both the
model and dictionary are tuned for prediction risk in (5).

C. Extension to Networks

We propose solving (5) in distributed settings, where the
signal y is independently observed by agents of a network
which aim to learn a dictionary and model parameters in
common with all others while only having access to local
information. To this end, fix a network G = (V, E) which
is assumed to be symmetric and connected network with
node set V = {1, . . . , N} and M = |E| directed edges of
the form e = (i, j). That the network is symmetric means
that if e = (i, j) ∈ E it must also be that e′ = (j, i) ∈
E . That the network is connected means that all pairs of



nodes are connected by a chain of edges. We also define the
neighborhood of i as the set of nodes ni := {j : (i, j) ∈ E}
that share an edge with i. Suppose the functions fu in (2)
and fs may be written as a sum of local losses available at
different nodes of a network, i.e.

fu(D; x) =

N∑
v=1

fi,u(Di; xi), (6)

fs(y,w,α
?(D; x)) =

N∑
i=1

fi,s(yi,wi,α
?(Di; xi)). (7)

Associated with each node i in the network are the local
functions fu and fs parameterized by the random variable
xi, whose explicit expressions are given by substituting the
local random variable into (2) and fs, which is dependent
on the particular learning task of interest.

Since the loss functions fi,u and fi,s are the same for
all agents i, dictionary and model parameter selections that
are good for one agent are also good for another. Thus, a
suitable strategy is to learn a dictionary Di and model wi

in the same way for each agent. Since the network G is
assumed to be connected, this relationship can be attained
by imposing the constraints Di = Dj and wi = wj for
all pairs of neighboring nodes (i, j) ∈ E . Substituting (6)
into the objective in (5) with these constraints, we obtain the
following networked stochastic program:

min
D∈DN ,w∈WN

N∑
i=1

Eyi,xi
[fs(yi,wi,α

?
i(Di; xi))]+

ξ

2
‖wi‖2.

(8)
such that Di = Dj ,wi = wj for all j ∈ ni

Here each agent i aims to learn a common dictionary Di and
discriminative model wi that asymptotically converges to the
solution of (5). Note that when the agreement constraints in
(8) are satisfied, the problems (5) and (8) are equivalent. Thus
(8) corresponds to a problem in which each agent i, having
only observed the local signals yi, aims to learn a dictionary
representation and model parameters that are optimal when
information is aggregated globally over the network

III. BLOCK SADDLE POINT METHOD

We turn to deriving an algorithmic solution to (8), the
dynamic discriminative dictionary learning problem in net-
works. We build upon the stochastic gradient approach of
[1] which is competitive with other stochastic approximation
based dictionary learning methods.

To derive the saddle point algorithm for this problem,
we need a manner for computing the sparse coding [cf.
(2)] efficiently. The loss function in (2) is a regularized
least squares problem, for which several approaches have
been proposed. Those based upon coordinate descent with
soft-thresholding converge quickly [28], [31], yet lack the
numerical stability of those based upon homotopy methods
[34]. We compute the sparse codings using the Elastic-Net
modification of Least Angle Regression (LARS-EN) [33]

method for solving lasso and elastic-net regression problems,
which solves for the entire regularization path.

Formulating a distributed algorithm is not possible if the
agreement constraint in (8) is enforced for each realization
of the random variable y. By considering a Lagrangian
relaxation of the agreement constraint, we develop a block
stochastic variant of the Arrow-Hurwicz Saddle Point Al-
gorithm [24]–[26]. In the dictionary and model updates, we
implement a stochastic gradient method with a dual correc-
tion term to account for local discrepancy. The Lagrange
multipliers are updated via a dual ascent step which penalizes
local dictionary and model parameter disagreement, and are
transmitted across network communication links.

First, write the constraints in (8) more compactly by
defining the vertical block concatenation matrices D :=
[D1; . . . ; DN ] ∈ RNm×k and w := [w1; . . . ; wN ] ∈ RNk.
We define an the augmented graph edge incidence matrix
associated with each constraint as follows CD : RNm×k →
RMm×k. The matrix CD is formed by M×N square blocks
of dimension mk. If the edge e = (i, j) links node i to
node j the block (e, i) is [CD]ei = Imk and the block
[CD]ej = −Imk, where Imk denotes the identity matrix of
dimension mk. All other blocks are identically null, i.e.,
[C]el = 0mk for all edges e 6= (i, j). The matrix Cw

is defined in the exact same way, substituting the model
parameter dimension np for the dictionary dimension mk.
With these definitions the constraints Di = Dj and wi = wj

for all pairs of neighboring nodes can be written as

CDD =0,

Cww =0. (9)

The edge incidence matrices CD and Cw have exactly mk
and m null singular values, respectively. We denote as 0 < γ
the smallest nonzero singular value of C := [CD; Cw] and
as Γ the largest singular value of C. The singular values γ
and Γ are measures of network connectedness.

Imposing the constraints in (9) for all realizations of
the local random variables requires global coordination –
indeed, the formulation would be equivalent to the central-
ized problem in (5). Instead, we consider a modification
of (6) in which we add linear penalty terms to incentivize
the selection of coordinated actions. Introduce then dual
variables Λe = Λij ∈ Rm×k associated with the constraint
Di − Dj = 0 and consider the addition of penalty terms
of the form tr[ΛT

ij(Di − Dj)]. For an edge that starts at
node i, the multiplier Λij is assumed to be kept at node i.
Similarly, introduce dual variables Nij ∈ Rn×p associated
with the constraint wi − wj = 0 for all neighboring node
pairs and penalty terms NT

ij(wi −wj). By introducing the
stacked matrices Λ: = [Λ1; . . . ; ΛM ] ∈ RMm×k and N :=
[N1; . . . ; NM ] ∈ RMn×p, we may define the Lagrangian of
the decentralized dynamic discriminative dictionary learning
problem as



L(D,w,Λ,N)=

N∑
i=1

Eyi,xi[fs(yi,wi,α
?
i (Di; xi))] (10)

+
ξ

2
‖wi‖2+tr

(
ΛTCDD

)
+tr
(
NTCww

)
This function is a smooth non-convex function of the

primal variables D,w and a concave function of its Lagrange
multipliers Λ,N. Suppose agent i receives a realization of
the local random variables at time t as xi,t with associated
output (label) yi,t. Using this interpretation of the Lagragian
we consider the use of the Arrow-Hurwicz saddle point
method in parallel block variable updates. This method
exploits the fact that primal-dual stationary pairs are saddle
points of the Lagrangian to work through successive primal
alternating gradient descent steps and dual gradient ascent
steps. Particularized to the Lagrangian in (10) with fixed
sparse coefficients α?

t , the saddle point algorithm takes the
form

Algorithm 1 D4L: Decentralized Dynamic Discriminative
Dictionary Learning
Require: D0 (initial dictionary); yu (local random variables);

ζ1, ζ2, ξ ∈ R (regularization parameters)
1: for t = 0, 1, 2, . . . do
2: for Agent i = 1, . . . , N do
3: Acquire independent local signal-output pair (xi,t,yi,t)
4: Sparse coding: compute using LARS-EN

α?
i,t+1 = argmin

α̃∈Rk

1

2
‖xi,t+1 −Di,tα̃‖22 + ζ1‖α̃‖1 +

ζ2
2
‖α̃‖22.

5: Send Lagrange multipliers Λij,t,νij,t to neighbors j ∈
ni, receive Λji,t,νji,t

6: Compute active set Zi,t as the indices associated with
nonzero entries of α?

i,t+1.
7: Compute β?

i,t: Set [βi,t]ZC
i,t

= 0 and

[βi,t]Zi,t =
(
[Di,t]

T
Zi,t

[Di,t]Zi,t+ζ2I
)−1

∇αZi,t
fs(yi,wi,α

?
i,t).

8: Update dictionary and model parameters

Di,t+1=PD
[
Di,t−εt

(
−Di,tβ

?
i,tα

?
i,t+(xi,t−Di,tα

?
i,t)β

?
i,t
T

+
∑
j∈ni

(Λij,t −Λji,t)
)]
.

wi,t+1 = PW
[
wi,t − εt

(
∇wifs(yi,wi,α

?
i,t) + ξwi,t

+
∑
j∈ni

(Nij,t −Nji,t)
)]
.

9: Update Lagrange Multipliers at communication link
(i, j)

Λij,t+1 = PL

[
Λij,t + εt (Di,t −Dj,t)

]
Nij,t+1 = PN

[
Nij,t + εt (wi,t −wj,t)

]
10: end for
11: end for

Dt+1 = PD
[
Dt − εt∇DL̂t(Dt,wt,Λt,Nt)

]
, (11)

wt+1 = PW
[
wt − εt∇wL̂t(Dt,wt,Λt,Nt)

]
. (12)

Similarly, the update in the dual domain which tracks the
price of dictionary and model parameter disagreement, takes
the form

Λt+1 = PL

[
Λt + εt∇ΛL̂t(Dt,wt,Λt,Nt)

]
, (13)

Nt+1 = PN

[
Nt + εt∇NL̂t(Dt,wt,Λt,Nt)

]
, (14)

where ∇DL̂t(Dt,wt,Λt,Nt), ∇wL̂t(Dt,wt,Λt,Nt),
∇ΛL̂t(Dt,wt,Λt,Nt), and ∇NL̂t(Dt,wt,Λt,Nt) are the
stochastic subgradients of the Lagrangian, which are approx-
imates of the gradient of the expectation term evaluated at
the current realizations of the signals xi,t.PX denotes the
projection onto the set X . Moreover, εt is a step size which
is usually chosen as O(1/t), and will be discussed further
in Section IV. The quantity ∇DEy,x [fs(y,w,α

?(D; x))]
is derived in [14]. The remaining derivatives are easily
computed from (10) and are incorporated into the description
of Algorithm 1.

IV. EXPERIMENTS

Our goal is for a team of robots to identify objects of
interest in a real-time decentralized manner when deployed in
dynamic environments. However, each robot only has access
to information about the environment based on the path it
has traversed, which may omit regions of the feature space
crucial for achieving this task. By communicating with other
robots in the network, each agent may learn over a broader
domain associated with that which has been explored by the
whole robotic network, and hence more effectively identify
objects of interest.

This problem is challenging due to the reliance of many
computer vision algorithms on static data and centralized
processing. Recent works have made progress towards online
object recognition [35], [36], yet solving this task in dynamic
distributed settings remains an open problem. As a prelimi-
nary benchmark towards this goal, we consider decentralized
online texture classification in teams of robots. In this case,
each robot in the network sequentially observes images,
partitions them into small patches, and identifies properties
of each patch. Experimentally we consider cases where each
agent observes training examples which contain all of the
class types, and is able to communicate with all others in
the network.

A. Feature Generation

Inspired by the two-dimensional texton features discussed
in [37], we generate texture features to classify, z, as
the sum of the sparse dictionary representations of sub-
patches. That is, we classify image patches of size 24-by-
24 by first extracting the nine non-overlapping 8-by-8 sub-
patches within it. We vectorize (column-major order) and
normalize (zero mean and unit `2 norm) each sub-patch
and use this collection of vectors as columns in a matrix



Fig. 1. Sample images from the Brodatz texture database.

Fig. 2. Initialized (left) and final (right) dictionary for 8-by-8 grayscale
patches. These dictionaries were computed using the centralized (N = 1)
algorithm with step-size ε = 0.25.

X =
[
x(1); · · · ; x(9)

]
. We then compute the feature zi,t at

robot i at time t according to

zi(Xi,t,Di,t) =

9∑
l=1

α?(Di,t; x
(l)
i,t) . (15)

Note that this form for z means that at time t the local
stochastic gradient of the dictionary [∇Di f̂i,s]t is the sum of
contributions from each sub-patch representations, i.e.,

[∇Di f̂i,s]t =

9∑
l=1

−Di,tβ
?(l)
i,t α

?(l)
i,t +(xi,t−Di,tα

?(l)
i,t )β

?(l)
i,t

T
,

(16)
where α

?(l)
i,t = α

?(l)
i,t (Di,t; xi,t) is used to compute β

?(l)
i,t as

defined in Algorithm 1.

B. Classifier and Loss Function

We cast texture classification as a multi-class logistic
regression problem in which agent i receives signals xi,t and
is charged with outputting a decision variable yi,t ∈ {0, 1}C
where C is the number of classes. Each component [yi,t]c
of the vector yi,t is a binary indicator of whether the signal
falls into class c. The supervised local loss fi,s for this
problem specification is the negative log-likelihood of the
corresponding probabilistic model (see [38] for more detail)
stated as

fi,s(yi,Wi, zi)=log

(
C∑

c=1

ew
T
i,czi+w0

i,c

)
−

C∑
c=1

yi,cw
T
i,czi+w

0
i,c ,

(17)
where C is the number of classes, yi ∈ {0, 1}C is the
class-indicator vector, and the activation functions gc(zi) =

ew
T
i,czi , are computed using the cth column wc of the weight

matrix Wi ∈ R(k+1)×C . To ensure identifiability, every
element of the last column of Wi is set to zero. Moreover,
w0

i,c is a bias term for each class c. With Wi, the probability
that zi belongs to class c is given by gc(zi)/

∑
c′ gc′(zi), the
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Fig. 3. We plot the classification accuracy over iteration number t for
various dictionary sizes k for the Brodatz texture dataset in the centralized
case with constant step-size ε = 0.25. Observe that increasing the dictionary
size improves performance with diminishing returns for k ≥ 128.
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Fig. 4. D4L classifier performance improvement for the Brodatz texture
dataset with step-size ε = 10−2. “D4L, Complete” refers to a fully-
connected, three-node network where each node has access to training
data from all classes. Classifier performance is averaged over all nodes.
An accuracy of 0.70 is achieved by iteration T = 103, although the
accuracy continues to improve as additional training examples are processed.
Observe that the decentralized and centralized algorithms yield comparable
performance.

classification decision is made by selecting the maximum
likelihood class label, i.e. c̃ = argmaxc gc(zi)/

∑
c′ gc′(zi).

This means that the only nonzero element of yi is its c̃th
entry.

C. Design Considerations

Before considering the implementation on a robotic net-
work, we seek to understand which problem parameters yield
acceptable empirical performance. To do so, we study the
learning achieved by the D4L algorithm on the Brodatz
texture database [39]. In this case, the data is made up of four
class labels {grass, bark, straw, herringbone weave}. Sample
images from this data set are shown in Figure 1. The Brodatz
texture dataset consists of one grayscale image per texture.
For the subset we consider here, this amounts to four 512-
by-512 images that together consist of 956, 484 overlapping
patches of size 24 by 24.

(i) Dictionary Size To select a dictionary of the appropriate
size suited to this problem, we investigate its affect on
performance using the Brodatz texture dataset. Because the
number of atoms k in the dictionary will similarly affect both
the centralized and decentralized algorithms, we conduct
out this experiment for the centralized (N = 1) algorithm
only. The performance of the resulting classifier on the
testing set is shown in Figure 3. As in [14], we find that



Fig. 5. Sample image from the IRA dataset (left) associated with an
N = 3 node network of Husky robots (right) moving around a cluttered
urban setting.

increasing the size of the dictionary led to better classifier
performance. However, because of diminishing performance
returns, we select k = 128 in all subsequent experiments due
to computation time considerations. We show the initialized
and final 128-element, 8-by-8 patch dictionaries in Figure 2.

(ii) Mini-Batching In our implementation of D4L, we
adopted a mini-batching procedure. That is, at each iteration,
we replaced the single labeled patch with a small batch of
randomly-drawn labeled patches. The procedure for gener-
ating this batch is as follows: for each patch, a label is
first drawn uniformly at random from the set of all possible
labels. Then, the patch is selected uniformly at random from
the set of all patches with that label. We then compute the
dictionary and classifier gradient values for the iteration by
averaging the gradient values generated by each individual
patch within the mini-batch. Practically, this process reduces
the variance of the local stochastic gradients, which often
empirically yields improved convergence behavior. 1

(iii) Initialization We initialized D using unsupervised
dictionary learning [13] for a small set of randomly-drawn
initialization data. We then used the labels and the dictionary
representations of the data to initialize the classifier param-
eters W.

(iv) Parameter Selection The D4L algorithm requires
several parameters to be specified. Following [14], we used
ζ1 = 0.125, ζ2 = 0, ξ = 10−9. We also adopted the
learning-rate selection strategy discussed in [14], which is to
select the initial step-size ε by implementing a grid search
over a fixed small number of iterations (T = 2 × 102) and
using the one that minimized the cross-validation error. When
implementing the mini-batch stochastic algorithm, we set
εt = min(ε, εt0/t), where t0 = T/2. This selection amounts
to using a step-size of ε for the first half of the iterations
before and then following a 1/t annealing rate for those that
remain, enforcing convergence.

We note here that, due to the non-convexity of the objec-
tive, the algorithm may diverge if ε is too large. This follows
from the fact convergence guarantees for stochastic gradient
algorithms in non-convex settings only occur under certain
conditions on the distributions of the stochastic gradient
errors, which may not hold if the step-size is too large.

1Another variance reduction technique one may consider is computing the
running empirical average of the local stochastic gradients, which introduces
memory into the algorithm.
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Fig. 6. D4L classifier performance improvement for the IRA texture
dataset with step-size ε = 5 × 10−3. “D4L, Complete” refers to a fully-
connected, three-node network where each node has access to training data
from all classes. Classifier accuracy is averaged over all robots. Increasing
the step-size ε may improve performance faster, but may yield divergence
in the decentralized cause. The field setting is more challenging for pattern
recognition, yet the decentralized and centralized algorithms still achieve
comparable performance.

Moreover, we have experimentally observed that values of
ε which avoid this behavior are smaller than effective values
for the centralized version by an order of magnitude or
more. Consequently, when comparing D4L to its centralized
counterpart, we select ε that yield convergence for both
settings, i.e., the smaller values appropriate for D4L. For the
Brodatz dataset, we found that ε = 10−2 led to convergence.

(v) Results on Texture Database We study the performance
of D4L for multi-class texture classification on the Brodatz
dataset for two cases: (A) the centralized case (see [14]), and
(B) a N = 3 node fully-connected network where each node
has access to observations from every class, which is the
experimental setting of our robotic network that we describe
in the next section. We quantified performance by using
a small testing set to compute the average empirical loss
and global time-average classifier accuracy

∑N
i=1 P (ŷi,t =

yi,t)/N at each iteration. Here yi,t denotes the true texture
labels, ŷi,t denotes the predicted labels, and P (ŷi,t 6= yi,t)
represents the empirical misclassification rate on a fixed test
set of size T̃ = 4.096× 103.

Results for both settings (A) and (B) using the Brodatz
dataset are shown in Figure 4. With this choice of ε, observe
that algorithm behavior is extremely similar under both (A)
and (B). In particular, both methods achieve a classification
accuracy of .69 by T = 103 and continue to improve
at similar rates, demonstrating that we achieve comparable
performance in the centralized and decentralized cases.

D. Robotic Experiments

We collected images that were sequentially observed by a
N = 3 agent network of Husky robots at Camp Lejeune,
a cluttered urban setting, and labeled the images offline.
See Figure 5 for an example of the images taken by a
prototypical Husky platform. Running the D4L algorithm on
these image observations resembles a field implementation of
a robotic network. We call this data the Integrated Research
Assessment for the U.S. Army’s Robotics Collaborative
Technology Alliance, abbreviated as IRA. The associated
texture classes for the IRA field data are {sky, grass, building,
concrete floor}. The IRA dataset consists of 16 images



converted to grayscale of size 320 by 240. Using the human-
generated label masks, we are able to extract 610, 528 label-
homogeneous, overlapping 24-by-24 patches that have labels
within our subset. Values of ε that avoided divergence varied
between the two problem settings (Brodatz vs. IRA). In the
IRA setting, we select ε = 5× 10−3.

Results for the implementation on a N = 3 robotic
network associated with the IRA dataset as compared with
the centralized processing of each robot’s data in aggregate
is shown in Figure 6. Due to the more challenging nature of
field data and hence distributions of stochastic gradient errors
associated with the updates (11)-(14), reducing the algorithm
step-size to ε = 5 × 10−3 to ensure convergence was
necessary. However, such a small step-size makes learning
occur at a slow rate. We do observe that learning occurs,
albeit slowly. Observe that the accuracy of the algorithm
continues to climb as more data is accumulated, though by
T = 103 we approach an accuracy of only .54.

In the centralized case, step-sizes which are orders of
magnitude larger still yield convergent behavior, and hence
learning occurs at a faster rate, as may be observed for
k = 128 in Figure 3 as compared with Figure 4. With
the larger ε tolerated by the centralized algorithm, a much
larger improvement is seen after T = 103 iterations. We
note that for larger T , we still observe improvement, but the
experiments have been truncated due to computation time.
Typically in distributed algorithm one expects learning to
occur more slowly than in centralized formulations, and this
expectation is verified empirically in both the Brodatz and
IRA robotic network settings.

V. CONCLUSION

This work represents the first attempt to extend the dis-
criminative dictionary learning problem of [14] to networked
settings. To do so we formulated a decentralized stochastic
non-convex optimization problem. By considering the La-
granian relaxation of an agreement-constrained system, we
develop a block variant of the Arrow-Hurwicz saddle point
method to solve it.

Our main goal is to design strategies for teams of robots
in dynamic environments to collaboratively perform object
recognition. Due to the technical limitations of computer
vision algorithms to date, we consider texture classification
in dynamic networked settings as a preliminary benchmark
for this problem. To do so we use sub-patches and consider
a multiclass logistic regression formulation of this problem.

Our experiments demonstrated comparable classifier per-
formance between the centralized and decentralized settings,
but it is important to note that the the final classifier is not
competitive with existing approaches to texture classification
(e.g. [37], [40]). These existing approaches utilize nearest-
neighbor classifiers, however it is not clear how such a
classifier can be adapted to the framework of [14] and
therefore what was presented here.

Though the D4L algorithm does result in improvement of
the joint classification performance, the overall improvement
was much smaller than that seen by using our texture

classification scheme in the centralized implementation of
[14] due to the small step sizes required for convergence.
The asymptotic convergence of D4L is established in [41],
yet the largest learning rate able to achieve this convergence
is still unknown. By better understanding the feasible step-
sizes in the distributed case, we expect better performance
to be possible. However, because algorithms for non-convex
stochastic optimization in distributed settings is a still incip-
ient research area, achieving convergence to stationarity in
such settings is more challenging than the centralized case.

Although the gains were small, we must note that the
networked performance did increase, confirming that dis-
criminative dictionary learning in networks was achieved,
providing a baseline for which decentralized collaborative
object recognition may be achieved in dynamic robotic
networks. It remains future work to modify the algorithm
to better handle the equality constraints without destroying
the convergence properties of the original discriminative
dictionary learning, thus improving the convergence rate in
the decentralized case.
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