Target Tracking with Dynamic Convex Optimization
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Abstract—We develop a framework for trajectory tracking in
dynamic settings, where an autonomous system is charged with
the task of remaining close to an object of interest whose position
varies continuously in time. We model this scenario as a convex
optimization problem with a time-varying objective function and
propose an adaptive discrete-time sampling prediction-correction
scheme to find and track the solution trajectory while sampling the
problem data at a constant rate of 1/h. We propose approximate
gradient trajectory (AGT) and approximate Newton trajectory track-
ing (ANT) as prediction-correction algorithms that (i) analyze the
iso-residual dynamics of the optimality conditions in the prediction
step, (ii) use gradient descent and Newton’s method in the correction
step, respectively, and (iii) approximate the partial derivative of the
objective by a first-order backward derivative for the prediction step.
We establish that the asymptotic error incurred by both proposed
methods behaves as O(h?), and in some cases as O(h*), which
outperforms the state-of-the-art error bound of O(h) for correction-
only methods in the gradient-correction step. The utility of the
methods is demonstrated in an object tracking problem executed
by an autonomous system.

I. INTRODUCTION

Trajectory tracking refers to a problem in which an autonomous
system is charged with the task of remaining close to a reference
trajectory which varies continuously in time. This problem setting
has a rich history in control [1]-[5]. As in [6], we view this
problem as a dynamic signal processing problem, where at point
in time ¢ an autonomous system aims to solve for its position
trajectory x(t) € R™ by solving

min f(a(t);1), )

x(t)
where f : R” xR — R is a strongly convex function informing the
quality of the trajectory x(t). We propose sampling the problem at
discrete times t; and recursively updating the control input to the
system based upon remaining sufficiently close to the optimality
conditions of (1). This perspective has much in common with
finite horizon optimal control [7] and rolling horizon planning [8,
Chapter 10.3.4].

Path planning strategies in intelligent systems have been re-
cently approached using gradient schemes which seek a minimum-
energy path [9]-[11], or more sophisticated schemes which de-
compose the feasible space based upon the geometry [12] of the
particular task and implement sequential convex programming
[13], or covariant gradient information [14]. Such methods may
be viewed as variants of running methods [15] which only react
on how the optimality conditions vary in time.

In contrast, we propose a running-tracking method by analyzing
the iso-residual dynamics of the optimality conditions to predict
the correct solution. We approximate the partial derivative of
the objective in the prediction step by a first-order backward
derivative. Then, we correct the predicted variable by descending
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through the gradient descent or Newton’s method steps. Com-
bining these steps we propose the approximate gradient trajectory
tracking (AGT) method that uses gradient descent in the correction
step, and the approximate Newton trajectory tracking (ANT)
algorithm which corrects the predicted variable using Newton’s
method (Section II). Asymptotically the proposed algorithms track
the optimal trajectory up to an error bound dependent on the
sampling increment h (Section III). We observe that the proposed
methods work well in practice in a mobile robotic trajectory
tracking problem (Section IV). All proofs are given in [16].

II. ALGORITHM DEVELOPMENT

In this section we introduce a class of algorithms for solving
optimization problem (1) using prediction and correction steps.
To do so, we generate a sequence of near optimal control inputs
{x1} by considering both how the solution changes in time and
how far our current update is from optimality at time tj.

A. Approximate prediction step

Consider the optimal solution x*(tp) = argmin f(ax;tg) of the
initial objective f(ax;tp) and the case where we do not require
the initial position of the agent to be optimal, i.e. g # x*(to).
Define residual error for the gradient of the initial variable
Vaf(xo;to) = r(0). To improve the position estimation &, we set
up a prediction-correction scheme, similar to a Kalman filter [17],
[18]. We first predict the solution changes, and then correct this
prediction by using descent methods to push the predicted variable
towards the instantaneous optimizer. To derive the prediction step,
we reformulate the time-varying problem (1) in terms of its
optimality conditions, i.e. the following nonlinear system of n
equations

Vaf(@*(t);t) =0, )

for each t. The problems in (1) and (2) are equivalent since the
family of objective functions f(a;t) are strongly convex with
respect to x and only the optimal solutions of (1) satisfy (2).
For simplicity we henceforth make the trajectory’s dependence
on time implicit: = x(t).

Consider an arbitrary vector € R™ (for example the approx-
imate solution xj). The objective function gradient Vg, f(x;t)
computed at point x is

Va f(x;t) = (1) 3)

where r(t) € R™ is the residual error. The prediction step aims
to keep the residual error close to constant despite changes in
the optimization problem, which is tantamount to predicting
to stay close to the iso-residual manifold. Define Vg, f(x; %) as
the partial Hessian of the objective f(x;t) with respect to «, and
Vizf(x;t) as the mixed partial derivative of the objective f(x;t).
We aim to maintain the evolution of the trajectory close to the
residual vector r(t), i.e.

Vaef(x;t) + Vaz f(x;0)0x + Vig f(x; 8)0t = v(t), (4)



Algorithm 1 Approximate Gradient Tracking (AGT)

Algorithm 2 Approximate Newton Tracking (ANT)

Require: Initial variable axg. Initial objective function f(a;to)
1: for k =0,1,2,... do
2: Predict the solutlon using the prior information [cf. (7)]

Tpi1)p = Tk — [Vaaf @k te)] " Vi f(@r; te) b

Acquire the updated function f(x;tx41)
Initialize the sequence of corrected variables mg 11 = Ttk
for s=0:7—1do

Correct the variable by the projected gradient step [cf. (9)]

AR

~s+1

1, = Px [®541 — YValf( @51 thr)]

7 end for
8: Set the corrected variable g1 = i:;_H
9: end for

Require: Initial variable aq. Initial objective function f(a;to)
1: for k =0,1,2,... do
2: Predict the solutlon using the prior information [cf. (7)]

Tp1)k = Tk — [Vaaf @k te)] " Via f(@r; te) b

Acquire the updated function f(x;tx41)
Initialize the sequence of corrected variables ig 11 = Thi1k
for s=0:7—1do

Correct the variable by the projected Newton step [cf. (10)]

71me(:i:z+1§ tk+1)]

AR

~s+1

T, = Px [i’2+1 —VVaa f(&;115tk+1)

7 end for
8: Set the corrected variable &y 1 = i:;_H
9: end for

where dx and 0t are small perturbations of the position variable x
and the time variable ¢, respectively. By subtracting (3) from (4)
and dividing the resulting equation by the time variation &t, we
obtain the continuous dynamical system

&= —[Vaof(x;t)] ' Via f(x;1), (5)

where & = Jx/dt. We consider the discrete time approximation
of (5), which amounts to sampling the problem at times ?, for
k =0,1,2,... . The prediction step consists of a discrete-time
approximation of integrating (5) by using an Euler scheme. Let
Zp41)k be the predicted position variable based on the available
information up to time ¢, then we may write the Euler integral
approximation of (5) as

(Voo f (@i ti)] ' Via f(Tr; t) he (6)

Observe that the prediction step in (6) is computed by only in-
corporating information available at time ¢; however, the variable
Zp41|k is supposed to be close to the iso-residual manifold of the
objective function at time 1.

Algorithms that assume the variation of the objective in time
is accessible were derived in [19]; however, frequently in ap-
plications this time variation is not known. For example, if the
reference path the agent aims to follow is varying erratically,
computing its velocity is difficult, and may be approximated
instead. Consider the mixed partial derivative at time tj using
the gradient of the objective with respect to x at times it
and t;_1, that is, define the approximate partial mixed gradient
Vief(xr;ty) as

Lr+1|k = Lk —

Vief(xr;ty) = %(me(wldtk) = Vaf(Tr-1:ti—1)). (D

which is called a first-order backward derivative since it requires
information of the first previous step for approximating the current
mixed partial derivative. Substituting the partial mixed gradient
Vief(xr;ty) in (6) by its approximation Vi f(xy;ty) in (7)
leads to the approximate prediction step

Winf(xrity) b (8)

The predicted variable &y 1| is an initial estimate for the optimal
solution of the objective function f(x;tx1). This estimation can
be corrected by descending through the optimal argument of the
objective function f(x;tgy1).

Trt1lk = Tk — [vwmf(a:k;tk‘)]

B. Correction step

To correct the predicted control input @y, we modify it
towards the optimal argument of the objective at time tx41. We

introduce the approximate gradient trajectory (AGT) algorithm
that corrects the predicted variable xj, 1|, by executing projected
gradient descent steps for the objective function f(x;tgi1).
Notice that the number of steps that can be afforded depends on
the sampling increment h = ¢y —tx. Define 7 as the number of
projected gradient descent steps used for correcting the predicted
variable @, 1), and @7 , , as the corrected position variable after
executing s gradient descent steps. The sequence of variables
&; , is initialized by &), = @j1x and updated as

= WVaf( @11 te1)], )

where Px denotes the Euclidean projection operator onto the set
X and v > 0 is the stepsize. After executing 7 steps of (9) the
decision variable x(ty41) := T41 = ], is computed.

Notice that AGT uses the steps of projected gradient descent for
correcting the predicted control input @y 1|5. This process can be
accelerated by implementing Newton’s method that incorporates
the second-order information of the objective in (1). We define the
approximate Newton trajectory (ANT) algorithm which corrects
the predicted variable @1, in (8) by the projected Newton’s
method. The prediction step of the ANT algorithm is identical to
that of the AGT method [cf. (8)]; however, the correction step
of ANT updates the predicted solution trajectory by applying 7
steps of the Newton method. In particular, the predicted variable
wkH‘ . 1s used for initializing the sequence of corrected variables
ack 410 L€, TP, 4 = Txy1),. The sequence of corrected variables
@7, is updated using Newton steps as

~s+1

S
&)\ = Px[@14,

~s5+1

@11 = Px (@701 = VVaaf (&5 41; the1) Ve f( @51 tes1)] -

(10)
The control input at step ¢ for the ANT method is the outcome
of 7 iterations of (10), i.e., 41 = Tf ;.

Remark 1: Notice that the prediction step of both AGT and
ANT introduced in (6) requires computation of the partial Hessian
inverse [V e f(xk;tx)] 1, which has a computational complexity
of order O(n3). This computation justifies the use of Newton’s
method for the correction step in ANT. On other hand, the number
of projected gradient descent steps 7 that AGT can execute for
correcting the predicted variable is larger than the number of
Newton’s steps that ANT can accomplish in the same amount
of time. We study the effect of the computational complexity
difference of these algorithms in Section IV.

III. CONVERGENCE ANALYSIS

We turn to establishing that the prediction-correction schemes
derived in Section II solve the continuous-time problem stated in
(1) up to an error term which is dependent on the discrete-time
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Fig. 1. Sample trajectories of the object to be tracked (dashed) and the
trajectories generated by the different algorithms (continuous). All algorithms track
the optimum effectively, yet AGT and ANT track x*(¢) closer than RG. Note
that exact path-following is not the objective, as the robot aims to remain close to
base b = [100, 100], yielding unexpected behavior of ANT near time ¢t = 300.

sampling interval. All proofs may be found in [16]. To do so,
some technical conditions are required which we state below.

(A1) The solution trajectory a*(t) of (1) is contained in the
interior of a convex set X < R"™ for each t.

(A2) The function f(x;t) is twice differentiable and m-strongly
convex in € X and uniformly in ¢. Le.,

Veof(x;t) =ml, YxelX,t (11)

(A3) The function f(x;t) has bounded second and third deriva-
tives w.r.t. ® € X and ¢, Vo € X and V¢, with constants

|Vaef(@: )| <L [Via f(2; 1) | < Co, | Vaza f ()| < C1
Ve f(x:t)| < C2,  |[Vuaf(x:1)[<C5. (12)

Assumption (Al) is satisfied for X = R”, implying existence
of a solution for (1) at each time ¢. Assumption (A2) ensures
that Problem (1) has a unique solution for each time instance and
that the Hessian of the objective f(x;t) is invertible, a commonly
required condition in time-varying settings [20]-[23]. Assump-
tion (A3) gives to the time-varying problem the boundedness
required to ensure solution tracking. With unbounded derivatives,
little may be said and tracking becomes intractable.

Under Assumptions (Al) - (A3), one may establish that the
solution mapping t — x*(t) is one-to-one and does not vary
arbitrarily in time, as presented in [24, Theorem 2F.10], which
allows AGT and ANT to converge to a neighborhood of the
optimal solution. We present the convergence properties of the
AGT method for different step-sizes in the following theorem.

Theorem 1: Denote the approximate gradient tracking algo-
rithm generated by Algorithm 1 as {x)}. Let Assumptions (Al)
- (A3) hold and define the constants p and o as p = (1 +~2L? —
ym)/2 and o = 1 + h(CoCy/m? + Co/m).

i) For any sampling increment h, if the stepsize satisfies v <

m/L?, the sequence {x}} converges to x*(t;,) Q-linearly up
to a bounded error as

i — @*(t)] < o™ @0 — @ ()] + O()  (13)

ii) If the sampling increment & and the step-size v > 0 are
chosen such p”o < 1, then the sequence {x}} converges to

x*(ty,) Q-linearly up to a bounded error as,
s —2* (1) < (p70) w0 — 2*(t0)| + O(h%)  (14)

Theorem 1 states the convergence properties of the AGT algorithm
for different choices of the parameters. In both cases, the linear

Tracking Error [|x(tx) — x* ()|

107 1 ‘2

Sampling time tj.

Fig. 2. Error ||@(tx) — «*(¢x)| versus sampling time ¢, for h = 1. Observe
that AGT outperforms RG but achieves comparable performance across differing
numbers of correction steps 7. Moreover, ANT experiences superior error bounds
relative to the first-order methods.

convergence to a neighborhood is shown with convergence accu-
racy depending on the sampling increment h, the step-size vy, and
the number of projected gradient descent steps 7. Moreover, for
particular step-size selections depending on smoothness properties
of the objective, the asymptotic error bound converges up to either
O(h) or O(h?). The proof may be found in [16].

AGT wuses only first-order information of the objective
f(x;tr41) to correct the predicted variable x|, while ANT
uses Newton’s method in the correction step. Similar to the
advantages of Newton’s method relative to gradient descent, we
achieve faster convergence and more accurate estimation for ANT
relative to AGT in the following theorem.

Theorem 2: Let {x)} be the Approximate Newton Tracking
algorithm generated by Algorithm 2, define ¢ as in Theorem 1,
and suppose Assumptions (A1) - (A3) hold. Define the cumulative
approximation error

p-p |9, G
2m?2 m

Assume that the initial optimality gap |xo—x* (¢o)|| can be written
as |xo — x*(tg)|| = BD where S > 0 is a constant. Further,
assume that the sampling increment h is small enough that the
upper bound for the cumulative approximation error D is bounded
above by 1.

i) If the condition C1D/2m < B/(of + 1)? is satisfied, then
the sequence {x;} generated by ANT converges as

(15)

ek — 2 (t)] < BD = O(h?); (16)
ii) Further, if C1/2m < 3/(0f + 1)2, then {x}} satisfies
|y — z*(ty)]| < BD? = O(h%). (17)

Theorem 2 establishes that ANT tracks the optimal trajectory
x*(t1) up to an error bound of order O(h?), which is comparable
to the convergence result of AGT in (14). Moreover, when
C1/2m < B/(oB + 1)2, ANT achieves an error bound of order
O(h*), as a result of the quadratic phase of Newton’s method.
See [16] for the proof.

IV. PATH-FOLLOWING EXPERIMENTS

As outlined in Section I, our application of interest is an
autonomous system which is charged with the task of following an
object whose position is varying continuously in time. Denote the
reference trajectory of this object as a curve y(t), i.e. a function
y : R, — R™ and « € R™ be the decision variable of the robot,
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Fig. 3. Worst-case Error max, . [@*(tx) — @ over sampling increment h
for k = 8 x 103. RG experiences a worst-case error comparable to O(h), whereas
AGT and ANT achieve O(h?) and O(h3), respectively, outperforming existing
methods.

in terms of the waypoint it aims to reach next. We aim to solve
tracking problems of the form

min f(a;t) == |2 —y(1)|* + pa exp (p2lz; — b]%),  (18)
The optimal solution x*(t) tracks the reference path y(t) while
remaining close enough to the base b, which may correspond
to a recharging station or a domain constraint associated with
maintaining viable communications.

For the numerical study considered here, we consider a planar
example (n = 2) and fix pu; = 103, pup = 5 x 1073 with
the base located at b = [100;100]. In addition, we suppose
the target trajectory y(t) follows the specified path y(t) =
100[cos(wt), sin(3wt)] where w = 0.01. Moreover, the position
domain is given as X = [—150,150] x [—150, 150]. We select
step-size 7 = 0.05. With these parameters, the target moves
with maximum speed 3.16. This is comparable with the speed of
current quad-rotors (max speed ~10 m/s). In any practical setting,
the actuation capability of an autonomous system is limited, i.e.
we may only achieve some maximum velocity denoted as vp,x.
The choice made for our numerical experiments is vimax = 4, and
thus we threshold the outputs of Algorithms 1 and 2 to account
for this constraint.

We show the result of this experiment in terms of the actual
reference path and trajectories generated by AGT and ANT in
Figure 1 over a truncated time interval 0 < ¢t < 300 for A = 1.
The reference trajectory y(t) is the dotted line, and the optimal
continuous-time trajectory x*(t) associated with solving (18) is
in blue. By running gradient we mean a method which has no
prediction step, and operates only by correction. Observe that
the trajectories generated by the running gradient (RG), AGT,
and ANT successfully track the optimal trajectory x*(¢), and
consequently the reference path y(t) up to a small error.

This trend may be more easily observed in Figure 2 which
shows the magnitude of the difference between the generated
path and the optimal path |x*(t)) — x| The approximate steady
state errors achieved by RG, AGT, and ANT are respectively 10,
107!, and 1075, AGT experiences comparable levels of error
across different values of 7, the number of correction steps,
and ANT far outperforms the other methods. This pattern is
corroborated in Figure 3, which plots the worst-case optimality
gap max,-j |x*(ty) — «k| versus the sampling interval size h
for k = 8 x 103. In particular, we observe that RG experiences an
error comparable to O(h), as it theoretically guarantees, whereas
our proposed methods AGT and ANT achieve a worst-case error
of approximately O(h?) and O(h?), respectively. Moreover, when

—A—RG
—o—AGT
ANT

Worst-case error max .| x(tx) — x*(t4)]|
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Fig. 4. Worst case Error max, - 7, [|&*(t) — x| versus sampling increment h
with fixed control loop latency. The number of correction steps 7 is dynamically
adjusted based on h. For h < 1/4, ANT is infeasible, and in this range AGT
outperforms RG. Moreover, as soon as ANT may be afforded, it achieves superior
performance.

TABLE I
NUMBER OF CORRECTION STEPS T TO KEEP THE SAME FEEDBACK LATENCY
Sampling time A [s] | 1/10 1/4 1/3 1/2 2/3 3/4 1
RG 1 3 4 6 ] 9 12
AGT 1 3 4 6 8 9 12
ANT — 1 1 2 2 3 4

the problem (1) is sampled less often, i.e., when h increases, the
optimality gap increases.

Observe that ANT far outperforms the other methods; however,
this performance gap ignores the increased computational cost
associated with Newton steps. To obtain a more fair comparison,
we consider how the different algorithms perform when the
computation time to complete providing a control input is fixed. In
this simulation setting, the most demanding task is the evaluation
of the gradient and the Hessian, while the actual prediction or
correction step is less critical (less than 1/10 times). In particular,
evaluating the Hessian requires fwice the computational effort
of evaluating the gradient, so a Newton step is three times
slower than a gradient step. Note that since the prediction step
is performed before a new target position is acquired, it may not
be considered in the time latency for generating the next waypoint.
Hence we only consider the delay associated with the correction
step in this numerical experiment.

We now outline how Table 1 is generated. We set at At = h/10
the allowable computational time for the correction step, and we
set the gradient evaluation to require 1/120 s (thus, e.g., the robot
can perform only 7 = 1 gradient correction step for a sampling
time of h = 0.1 s). With this as our basic unit of measurement,
we fill in Table 1 with how many gradient evaluations 7 may be
afforded with increasing the sampling interval h. As previously
noted, ANT requires three times the computation time of AGT,
and consequently experiences too much latency to be used when
h = 0.1 s. Notice that the difference between the computational
costs of AGT and ANT becomes larger by increasing n.

For fixed computation time, i.e., control loop latency, the
number of correction steps 7 must be dynamically adjusted
based on the sampling increment ~. We repeat the path-following
experiment in (18) for different algorithms when the computation
time is fixed in Figure 4. In particular, considering the worst-
case optimality gap versus sampling increment h, we see that if
ANT may be afforded (for large h), it is much preferable to AGT.
However, for small sampling intervals h, i.e., when one requires
very low latencies in the control loop, ANT is infeasible.
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