
AN APPROXIMATE NEWTON METHOD FOR DISTRIBUTED OPTIMIZATION

Aryan Mokhtari† Qing Ling? Alejandro Ribeiro†

†Dept. of Electrical and Systems Engineering, University of Pennsylvania
?Dept. of Automation, University of Science and Technology of China

ABSTRACT

Agents of a network have access to strongly convex local functions fi and
attempt to minimize the aggregate function f(x) =

∑n
i=1 fi(x) while

relying on variable exchanges with neighboring nodes. Various methods
to solve this distributed optimization problem exist but they all rely on
first order information. This paper introduces Network Newton, a method
that incorporates second order information via distributed evaluation of
approximations to Newton steps. The method is shown to converge lin-
early and to do so while exhibiting a quadratic phase. Numerical analyses
show substantial reductions in convergence times relative to existing (first
order) alternatives.

Index Terms— Multi-agent network, distributed optimization, New-
ton method

1. INTRODUCTION

Consider a variable x ∈ Rp and a connected network containing n agents
each of which has access to a local function fi : Rp → R. The agents
cooperate in minimizing the aggregate cost function f : Rp → R taking
values f(x) :=

∑n
i=1 fi(x). I.e., agents cooperate in solving the global

optimization problem

x∗ := argmin
x

f(x) = argmin
x

n∑
i=1

fi(x). (1)

Problems of this form arise often in, e.g., decentralized control systems
[1–3], sensor networks [4–6], and large scale machine learning [7–9]. In
this paper we assume that the local costs fi are strongly convex which
implies strong convexity of the global cost f . Our goal is to develop an
approximate Newton method to solve (1) in distributed settings where
agents have access to their local functions only and exchange variables
with neighboring agents.

There are different algorithms to solve (1) in a distributed manner.
The most popular alternatives are decentralized gradient descent (DGD)
[10–13], distributed implementations of the alternating direction method
of multipliers [4,14,15], and decentralized dual averaging (DDA) [16,17].
Although there are substantial differences between them, these methods
can be generically abstracted as combinations of local descent steps fol-
lowed by variable exchanges and averaging of information among neigh-
bors. A feature common to these algorithms is that they operate on first
order information only. This fact restricts their practical applicability to
problems with uncomplicated curvature profiles. Second order methods
are not available in general because distributed approximations of New-
ton steps are difficult to devise. In the particular case of flow optimization
problems, these approximations are possible when operating in the dual
domain [18–21]. As would be expected, they result in large reductions of
convergence times.

The contribution of this paper is to develop Network Newton, a
method that relies on distributed approximations of Newton steps to
accelerate convergence of the DGD algorithm. The method builds on
a reinterpretation of DGD as a linear penalty method to solve (1) (Sec-
tion 2) – and a Taylor series expansion of the resulting Hessian inverse
(Section 3). The method is shown to converge linearly (Section 4) and

Supported by NSF CAREER CCF-0952867 and ONR N00014-12-1-0997.

to do so while exhibiting a quadratic phase (Theorem 2). Numerical
analyses show substantial reductions in convergence times relative to
DGD (Section 5).

2. DECENTRALIZED GRADIENT DESCENT

The network that connects the agents is assumed symmetric and specified
by the neighborhoods Ni that contain the list of nodes than can commu-
nicate with i for i = 1, . . . , n. DGD is an established distributed method
to solve (1) which relies on the introduction of local variables xi ∈ Rp
and nonnegative weights wij ≥ 0 that are not null if and only if j = i or
if j ∈ Ni. Letting t ∈ N be a discrete time index and α a given stepsize,
DGD is defined by the recursion

xi,t+1 =

n∑
j=1

wijxj,t − α∇fi(xi,t), i = 1, . . . , n. (2)

Since wij = 0 when j 6= i and j /∈ Ni, it follows from (2) that each
agent i updates its estimate xi of the optimal vector x∗ by perform-
ing an average over the estimates xj,t of its neighbors j ∈ Ni and its
own estimate xi,t, and descending through the negative local gradient
−∇fi(xi,t). DGD is a distributed method because to implement (2),
node i exchanges variables with neighboring nodes only.

It is illuminating to define matrices and vectors so as to rewrite (2)
as a single equation. To do so define the vector y := [x1; . . . ;xn] ∈
Rnp concatenating the local vectors xi, as well the vector h(y) :=
[∇f1(x1); . . . ;∇fn(xn)] ∈ Rnp concatenating the gradients of the
local functions fi taken with respect to the local variable xi. Further
define the matrix W with entries wij . It is customary to assume that
the weights of a given node sum up to 1 for all i, i.e.,

∑n
j=1 wij = 1

and that the weights are symmetric, i.e. wij =wji. If the weights sums
up to 1 we must have W1 = 1 which implies that I −W is rank
deficient. It is also customary to require the rank of I −W to be n − 1
so that null(I−W) = span(1). If the two assumptions WT = W and
null(I −W) = 1 are true, it is possible to show that (2) approaches the
solution of (1) in the sense that xi,t ≈ x∗ for all i and large t, [10].

To rewrite (2) define the matrix Z := W ⊗ I ∈ Rnp×np as the
Kronecker product of weight matrix W ∈ Rn×n and the identity matrix
I ∈ Rp×p. It is then ready to see that (2) is equivalent to

yt+1 = Zyt − αh(yt) = yt −
[
(I− Z)yt + αh(yt)

]
, (3)

where in the second equality we added and subtracted yt and regrouped
terms. Inspection of (3) reveals that the DGD update formula at step t is
equivalent to a (regular) gradient descent algorithm being used to solve
the program

y∗ := argmin F (y) := min
1

2
yT (I− Z) y + α

n∑
i=1

fi(xi). (4)

Indeed, just observe that it is possible to write the gradient of F (y) as

gt := ∇F (yt) = (I− Z)yt + αh(yt), (5)

in order to write (3) as yt+1 = yt−gt and conclude that DGD descends
along the negative gradient of F (y) with unit stepsize. The expression

in (2) is just a local implementation of (5) where node i implements the
descent xi,t+1 = xi,t − gi,t where gi,t is the ith element of the gradient
gt = [gi,t; . . . ;gi,t]. Node i can compute the local gradient gi,t =
(1 − wii)xi,t −

∑
j∈Ni

wijxj,t + α∇fi(xi,t) [cf. (2) and (5)] using
local information and the xj,t iterates of its neighbors j ∈ Ni.

Is it a good idea to descend on F (y) to solve (1)? To some extent.
Since we know that the null space of I−W is null(I−W) = span(1)
and that Z = W ⊗ I we know that the span of I − Z is null(I − Z) =
span(1 ⊗ I). Thus, we have that (I − Z)y = 0 holds if and only if
x1 = · · · = xn. Since the matrix I−Z is positive semidefinite – because
it is stochastic and symmetric –, the same is true of the square root matrix
(I− Z)1/2. Therefore, we have that the optimization problem in (1) is
equivalent to the optimization problem

ỹ∗ := argmin
x

n∑
i=1

fi(xi), s.t. (I− Z)1/2y = 0. (6)

Indeed, for y = [x1; . . . ;xn] to be feasible in (6) we must have x1 =

· · · = xn because null[(I − Z)1/2] = span(1 ⊗ I) as already argued.
When restricted to this feasible set the objective

∑n
i=1 fi(xi) of (6) is

the same as the objective of (1) from where it follows that a solution
ỹ∗ = [x̃∗1; . . . ; x̃∗n] of (6) is such that x̃∗i = x̃∗ for all i. The uncon-
strained minimization in (4) is a penalty version of (6). The penalty func-
tion associated with the constraint (I− Z)1/2y = 0 is the squared norm
(1/2)‖(I− Z)1/2y‖2 and the corresponding penalty coefficient is 1/α.
Inasmuch as the penalty coefficient 1/α is sufficiently large, the optimal
arguments y∗ and ỹ∗ are not too far apart.

The reinterpretation of (2) as a penalty method demonstrates that
DGD is an algorithm that finds the optimal solution of (4), not (6) or
its equivalent (1). To solve (6) we need to introduce a rule to progres-
sively decrease α. Using a fixed α the distance between y∗ and ỹ∗ is
of order O(α), [12]. In this paper we exploit the reinterpretation of (3)
as a method to minimize (4) to propose an approximate Newton algo-
rithm that can be implemented in a distributed manner. We explain this
algorithm in the following section.

3. NETWORK NEWTON

Instead of solving (4) with a gradient descent algorithm as in DGD, we
can solve (4) using Newton’s method. To implement Newton’s method
we need to compute the Hessian Ht := ∇2F (yt) of F evaluated at yt so
as to determine the Newton step dt := H−1

t gt. Start by differentiating
twice in (4) in order to write Ht as

Ht := ∇2F (yt) = I− Z + αGt, (7)

where the matrix Gt ∈ Rnp×np is a block diagonal matrix formed by
blocks Gii,t ∈ Rp×p containing the Hessian of the ith local function,

Gii,t = ∇2fi(xi,t). (8)

It follows from (7) and (8) that the Hessian Ht is block sparse with blocks
Hij,t ∈ Rp×p having the sparsity pattern of Z, which is the sparsity
pattern of the graph. The diagonal blocks are of the form Hii,t = (1 −
wii)I + α∇2fi(xi,t) and the off diagonal blocks are not null only when
j ∈ Ni in which case Hij,t = wijI.

While the Hessian Ht is sparse, the inverse Ht is not. It is the latter
that we need to compute the Newton step dt := H−1

t gt. To overcome
this problem we split the diagonal and off diagonal blocks of Ht and rely
on a Taylor’s expansion of the inverse. To be precise, write Ht = Dt−B
where the matrix Dt is defined as

Dt := αGt + 2 (I− diag(Z)) := αGt + 2 (I− Zd), (9)

In the second equality we defined Zd := diag(Z) for future reference.
Since the diagonal weights must bewii < 1, the matrix I−Zd is positive

definite. The same is true of the block diagonal matrix Gt because the
local functions are assumed strongly convex. Therefore, the matrix Dt is
block diagonal and positive definite. The ith diagonal block Dii,t ∈ Rp
of Dt can be computed and stored by node i as Dii,t = α∇2fi(xi,t) +
2(1 − wii)I. To have Ht = Dt − B we must define B := Dt −Ht.
Considering the definitions of Ht and Dt in (7) and (9), it follows that

B = I− 2Zd + Z. (10)

Observe that B is independent of time and depends on the weight matrix
Z only. As in the case of the Hessian Ht, the matrix B is block sparse
with with blocks Bij ∈ Rp×p having the sparsity pattern of Z, which is
the sparsity pattern of the graph. Node i can compute the diagonal blocks
Bii = (1−wii)I and the off diagonal blocks Bij = wijI using the local
information about its own weights only.

Proceed now to factor D1/2
t from both sides of the splitting relation-

ship to write Ht = D
1/2
t (I−D

1/2
t BD

1/2
t)−1D

1/2
t . When we consider

the Hessian inverse H−1, we can use the Taylor series (I − X)−1 =∑∞
j=0 X

j with X = D
−1/2
t BD

−1/2
t to write

H−1
t = D

−1/2
t

∞∑
k=0

(
D
−1/2
t BD

−1/2
t

)k
D
−1/2
t . (11)

Network Newton (NN) is defined as a family of algorithms that rely on
truncations of the series in (11). The Kth member of this family, NN-K
considers the first K + 1 terms of the series to define the approximate
Hessian inverse

Ĥ
(K)−1

t := D
−1/2
t

K∑
k=0

(
D
−1/2
t BD

−1/2
t

)k
D
−1/2
t . (12)

NN-K uses the approximate Hessian Ĥ
(K)−1

t as a curvature correction
matrix that is used in lieu of the exact Hessian inverse H−1 to estimate
the Newton step. I.e., instead of descending along the Newton step dt :=

H−1
t gt we descend along the NN-K step d

(K)
t := Ĥ

(K)−1

t gt, which
we intend as an approximation of dt. Using the explicit expression for
Ĥ

(K)−1

t in (12) we write the NN-K step as

d
(K)
t = −D

−1/2
t

K∑
k=0

(
D
−1/2
t BD

−1/2
t

)k
D
−1/2
t gt, (13)

where, we recall, the vector gt is the gradient of objective function F (y)
defined in (5). The NN-K update formula can then be written as

yt+1 = yt + ε d
(K)
t . (14)

The algorithm defined by recursive application of (14) can be imple-
mented in a distributed manner because the truncated series in (12) has a
local structure controlled by the parameter K. To explain this statement
better define the components d

(K)
i,t ∈ Rp of the NN-K step d

(K)
t =

[d
(K)
1,t ; . . . ;d

(K)
n,t]. A distributed implementation of (14) requires that

node i computes d
(K)
i,t so as to implement the local descent xi,t+1 =

xi,t + εd
(K)
i,t . The step components d(K)

i,t can be computed through local
computations. To see that this is true first note that considering the defi-
nition of the NN-K descent direction in (13) the sequence of NN descent
directions satisfies

d
(k+1)
t = D−1

t Bd
(k)
t −D−1

t gt = D−1
t

(
Bd

(k)
t − gt

)
. (15)

Then observe that since the matrix B̂ has the sparsity pattern of the graph,
this recursion can be decomposed into local components

d
(k+1)
i,t = D−1

ii,t

(∑
j∈Ni,j=i

Bijd
(k)
t,j − gi,t

)
, (16)

Algorithm 1 Network Newton-K method at node i
Require: Initial iterate xi,0.

1: for t = 0, 1, 2, . . . do
2: Exchange iterates xi,t with neighbors j ∈ Ni.
3: Gradient: gi,t = (1− wii)xi,t −

∑
j∈Ni

wijxj,t + α∇fi(xi,t).

4: Compute NN-0 descent direction d
(0)
i,t = −D−1

ii,tgi,t
5: for k = 0, . . . ,K − 1 do
6: Exchange local elements d(k)

i,t of the NN-k step with neighbors

7: NN-(k+1) step: d(k+1)
i,t = D−1

ii,t

(∑
j∈Ni,j=i

Bijd
(k)
t,j − gi,t

)
.

8: end for
9: Update local iterate: xi,t+1 = xi,t + ε d

(K)
i,t .

10: end for

The matrix Dii,t = α∇2fi(xi,t)+2(1−wii)I is stored and computed at
node i. The gradient component gi,t = (1−wii)xi,t−

∑
j∈Ni

wijxj,t+

α∇fi(xi,t) is also stored and computed at i. Node i can also evaluate the
values of the matrix blocks Bij = wijI. Thus, if the NN-k step compo-
nents d(k)

t,j are available at neighboring nodes j, node i can then determine

the NN-(k + 1) step component d(k+1)
i,t upon being communicated that

information.
The expression in (16) represents an iterative computation embedded

inside the NN-K recursion in (14). For each time index t, we compute the
local component of the NN-0 step d

(0)
i,t = −D−1

ii,tgi,t. Upon exchang-
ing this information with neighbors we use (16) to determine the NN-1
step components d

(1)
i,t . These can be exchanged and plugged in (16) to

compute d
(2)
i,t . Repeating this procedure K times, nodes ends up having

determined their NN-K step component d(K)
i,t .

The NN-K method is summarized in Algorithm 1. The descent it-
eration in (14) is implemented in Step 9. Implementation of this descent
requires access to the NN-K descent direction d

(K)
i,t which is computed

by the loop in steps 4-8. Step 4 initializes the loop by computing the
NN-0 step d

(0)
i,t = −D−1

ii,tgi,t. The core of the loop is in Step 7 which
corresponds to the recursion in (16). Step 6 stands for the variable ex-
change that is necessary to implement Step 7. After K iterations through
this loop the NN-K descent direction d

(K)
i,t is computed and can be used

in Step 9. Both, steps 4 and 9, require access to the local gradient com-
ponent gi,t. This is evaluated in Step 3 after receiving the prerequisite
information in Step 2.

4. CONVERGENCE ANALYSIS

In this section we show that as time progresses the sequence of objective
function F (yt) defined in (4) approaches the optimal objective function
value F (y∗). In proving this claim we make the following assumptions.

Assumption 1 The local objective functions fi(x) are twice differen-
tiable and the Hessians∇2fi(x) have bounded eigenvalues,

mI � ∇2fi(x) �MI. (17)

Assumption 2 There exists constants 0 ≤ δ < ∆ < 1 that lower and
upper bound the diagonal weights for all i,

0 ≤ δ ≤ wii ≤ ∆ < 1 i = 1, . . . , n. (18)

Assumption 3 The local objective function Hessians∇2fi(x) are Lips-
chitz continuous with parameter L with respect to Euclidian norm, i.e.

‖∇2fi(x)−∇2fi(x̂)‖ ≤ L ‖x− x̂‖. (19)

For the expansion in (11) to be valid the eigenvalues of matrix
D
−1/2
t BD

−1/2
t must be nonnegative and strictly smaller than 1. The

following proposition states that this is true for all t – see [22] for this
and other proofs.

Proposition 1 Consider the NN-K method as defined in (9)-(14). If
Assumptions 1 and 2 hold true, the matrix D

−1/2
t BD

−1/2
t is positive

semidefinite and the eigenvalues are bounded above by a constant ρ < 1,

0 � D
−1/2
t BD

−1/2
t � ρI :=

2(1− δ)
2(1− δ) + αm

I. (20)

Furthermore, if we define the error of the Hessian inverse approximation

as E
(K)
t = I − Ĥ

(K)−1/2

t HtĤ
(K)−1/2

t , the eigenvalues of the error
matrix E

(K)
t are bounded as

0 � E
(K)
t � ρK+1I. (21)

The eigenvalue upper bound in (20) guarantees that the series in (11)
converges. Proposition 1 further asserts that the error in the approxima-
tion of the Hessian inverse – thereby on the approximation of the Newton
step – is bounded by ρK+1. This result corroborates the intuition that
the larger K is, the closer that d(K)

i,t approximates the Newton step. This
closer approximation comes at the cost of increasing the communication
cost of each descent iteration. The decrease of this error being propor-
tional to ρK+1 hints that using N = 1 or N = 2 should provide good
enough approximations. This is true in practice – see Section 5. To de-
crease ρ we can increase δ or α. Increasing δ calls for assigning substan-
tial weight to wii. Increasing α comes at the cost of moving the solution
of (4) away from the solution of (6) and its equivalent (1).

The bounds in Proposition 1 guarantee that the step d
(K)
t in (13) is a

descent direction. In turn, this guarantees that with appropriate selection
of the stepsize ε the sequence of objective function values F (yt) gener-
ated by NN-K converges to the optimal objective function F (y∗). This
is stated in the following theorem.

Theorem 1 Consider the NN-K method as defined in (9)-(14) and the
objective function F (y) as introduced in (4). If the step-size ε satisfies

ε=min

1,

[
3m(2(1−∆) + αm)3

L(K + 1)3(2 + αM)
5
2 (F (y0)− F (y∗))

1
2

] 1
2

 (22)

and Assumptions 1, 2, and 3 hold true, the sequence F (yt) converges to
the optimal argument F (y∗) at least linearly with constant 1− ζ. I.e.,

F (yt)− F (y∗) ≤ (1− ζ)t(F (y0)− F (y∗)), (23)

where the constant 0 < ζ < 1 is explicitly given by

ζ :=
(2− ε)εαm

2(1−δ) + αM
− ε

3αL(K + 1)3(2 + αM)
3
2 (F (y0)−F (y∗))

1
2

6(2(1−∆) + αm)3
.

(24)

Theorem 1 shows that the objective function error sequence F (yt)−
F (y∗) asymptoticly converges to zero and that the rate of convergence
is at least linear. Note that according to the definition of the convergence
parameter ζ in Theorem 1, increasing α leads to faster convergence. This
observation verifies existence of a tradeoff between rate and accuracy of
convergence. For large values of α the sequence generated by Network
Newton converges faster to the optimal solution of (4), while the accu-
racy of convergence is low since the penalty factor α is large. Smaller α
implies smaller gap between the optimal solutions of (4) and (1), but the
convergence rate of NN-K is slower.

Given that NN-K tries to approximate the Newton step, we expect
to observe some form of superlinear convergence. The following lemma
shows that convergence properties of NN-K are similar to those of New-
ton with constant stepsize. The difference is the appearance of a term that
corresponds to the error of the Hessian inverse approximation.

0 500 1000 1500

10
−2

10
−1

10
0

Number of local information exchanges

e
rr
o
r
=

1 n

∑
n i

‖
x
i−

x
∗
‖
2

‖
x
∗
‖
2

DGD

NN-0

NN-1

NN-2

Fig. 1. Convergence of DGD, NN-0, NN-1, and NN-2. NN methods
require less information exchanges than DGD.

Lemma 1 Consider the Network Newton-K method as defined in (9)-
(14). If Assumptions 1, 2, and 3 hold true, then

‖D−1/2
t gt+1‖ ≤ (1− ε+ ερK+1)

[
1 + Γ1(1− ζ)(t−1)/4

] ∥∥∥D−1/2
t−1 gt

∥∥∥
+ ε2Γ2

∥∥∥D−1/2
t−1 gt

∥∥∥2 , (25)

where Γ1 and Γ2 are defined as

Γ1 :=

√
αεL(K + 1)(2 + αM)

(2(1−∆) + αm)3
,Γ2 :=

αL(K + 1)2(2 + αM)

2(2(1−∆) + αm)
5
2

. (26)

As per Lemma 1 the weighted gradient norm ‖D−1/2
t gt+1‖ is up-

per bounded by terms that are linear and quadratic on the weighted norm
‖D−1/2

t−1 gt‖ associated with the previous iterate. This is akin to the gra-
dient norm decrease of Newton’s method. Further note that for all except
the first few iterations Γ1(1− ζ)(t−1)/4 ≈ 0. In that case the coefficient
in the linear term reduces to (1− ε+ ερK+1). This term can be reduced
by making ε = 1 and letting K grow, implying that there must be inter-
vals in which the quadratic term dominates and NN-K exhibits quadratic
convergence. We state this fact formally in the following theorem.

Theorem 2 Consider the NN-K method as introduced in (9)-(14) and
define the sequence ηt := [(1 − ε + ερK+1)(1 + Γ1(1 − ζ)(t−1)/4)].
Further, define t0 as the first time that sequence ηt is smaller than 1, i.e.
t0 := argmint{t | ηt < 1}. If Assumptions 1, 2, and 3 hold true, then
for all t ≥ t0 when the sequence ‖D−1/2

t−1 gt‖ satisfies

√
ηt(1−

√
ηt)

ε2Γ2
< ‖D−1/2

t−1 gt‖ <
1−√ηt
ε2Γ2

, (27)

the rate of convergence is quadratic in the sense that

‖D−1/2
t gt+1‖ ≤

ε2Γ2

1−√ηt
‖D−1/2

t−1 gt‖
2
. (28)

Theorem 2 shows that the sequence of weighted gradients ‖D−1/2
t−1 gt‖

generated by NN-K decays quadratically in the specified interval. That
interval is not empty, since for t ≥ t0 we have

√
ηt < 1.

5. NUMERICAL ANALYSIS

We compare the number of information exchanges needed by DGD and
different versions of NN to minimize a quadratic objective. In particular,

3000 4000 5000 6000
0

0.05

0.1

0.15

0.2

Number of information exchanges

E
m
p
ir
ic
a
l
d
is
tr
ib
u
ti
o
n

300 350 400 450 500 550
0

0.05

0.1

0.15

0.2

Number of information exchanges

E
m
p
ir
ic
a
l
d
is
tr
ib
u
ti
o
n

250 300 350 400 450 500
0

0.05

0.1

0.15

0.2

Number of information exchanges

E
m
p
ir
ic
a
l
d
is
tr
ib
u
ti
o
n

250 300 350 400 450 500
0

0.05

0.1

0.15

0.2

Number of information exchanges

E
m
p
ir
ic
a
l
d
is
tr
ib
u
ti
o
n

NN-0DGD

NN-1 NN-2

Fig. 2. Histograms of local information exchanges until achieving accu-
racy e = 10−2. The required number of information exchanges for NN
methods are significantly smaller than DGD.

for each agent i we consider a positive definite diagonal matrix Ai ∈
S++
p and a vector bi ∈ Rp to define the local object function fi(x) :=

(1/2)xTAix + bTi x. Therefore, the global cost function f(x) is

f(x) :=

n∑
i=1

1

2
xTAix + bTi x . (29)

We pick bi uniformly at random from the box [0, 1]p. To set a large
condition number we generate matrices Ai as diagonal with elements
aii where the first half of the components are uniformly drawn from
the discrete set {1, . . . , 10−ξ} and the second half of them from the set
{1, . . . , 10ξ}. This choice of Ai yields a matrix

∑n
i=1 Ai that has eigen-

values in the interval [n10−ξ, n10ξ]. By setting larger ξ we can expect
larger condition number for optimization problem (29). In all of our ex-
periments we make the condition number constant ξ = 2, set the penalty
coefficient to α = 0.01, and for the NN step-size among powers of 10
we pick the one that performs better. The network size is n = 100 and
the dimension of decision vectors is p = 4. We define relative error as
the normalized average squared distance between decision vectors xi and
the optimal decision vector x∗,

e :=
1

n

n∑
i=1

‖xi − x∗‖2

‖x∗‖2 . (30)

The graph of network in the experiments is d-regular, i.e., the degree of
each node is d. The diagonal weights are set to wii = 1/2 + 1/2(d+ 1)
and the off diagonal weights to wij = 1/2(d + 1) when j ∈ Ni. This
implies that all diagonal weights satisfy 1/2 = δ < wii. We choose d
uniformly at random from the integer values in the interval [4, 10].

Fig. 1 illustrates the convergence path of DGD, NN-0, NN-1, and
NN-2 by measuring the relative error e in (30) with respect to the total
number of communication exchanges per node. For DGD this number
coincides with the iteration index t. For NN-K the number of communi-
cation exchanges per node is (K + 1)t. Fig. 1 shows that NN-0, NN-1,
and NN-2 achieve accuracy e = 10−2 after 3.7 × 102, 3.1 × 102, and
3.4× 102 communications, respectively, while DGD after 1.5× 103 in-
formation exchanges achieves accuracy e = 1.9×10−1. Fig. 2 shows the
empirical distributions of the number of local communications between
agents to achieve accuracy e = 10−2 using 1000 realizations. According
to Fig. 2 the average of local information exchanges for DGD is 4.3×103,
while for NN-0, NN-1, and NN-2 the average of local communications
are 4.0 × 102, 3.5 × 102, and 3.7 × 102, respectively. These numbers
show the advantage of NN methods over DGD. Moreover, the optimal
choice among different versions of NN-K is K = 1.

6. REFERENCES

[1] F. Bullo, J. Cortes, and S. Martinez, “Distributed control of robotic
networks,” Princeton University Press, 2009.

[2] Y. Cao, W. Yu, W. Ren, and G. Chen, “An overview of recent
progress in the study of distributed multi-agent coordination,” IEEE
Transactions on Industrial Informatics, vol. 9, pp. 427–438, 2013.

[3] C. G. Lopes and A. H. Sayed, “Diffusion least-mean squares over
adaptive networks: Formulation and performance analysis,” IEEE
Transactions on Signal Processing, vol. 56, no. 7, pp. 3122–3136,
July 2008.

[4] I. Schizas, A. Ribeiro, and G. Giannakis, “Consensus in ad hoc wsns
with noisy links - part i: Distributed estimation of deterministic sig-
nals,” IEEE Transactions on Signal Processing, vol. 56, pp. 350–
364, 2008.

[5] U. A. Khan, S. Kar, and J. M. Moura, “Diland: An algorithm for
distributed sensor localization with noisy distance measurements,”
IEEE Transactions on Signal Processing, vol. 58, no. 3, pp. 1940–
1947, 2010.

[6] M. Rabbat and R. Nowak, “Distributed optimization in sensor net-
works,” proceedings of the 3rd international symposium on Infor-
mation processing in sensor networks, pp. 20–27, ACM, 2004.

[7] R. Bekkerman, M. Bilenko, and J. Langford, Scaling up machine
learning: Parallel and distributed approaches. Cambridge Uni-
versity Press, 2011.

[8] K. Tsianos, S. Lawlor, and M. Rabbat, “Consensus-based dis-
tributed optimization: Practical issues and applications in large-
scale machine learning,” In: Proceedings of Allerton Conference
on Communication, Control, and Computing, 2012.

[9] V. Cevher, S. Becker, and M. Schmidt, “Convex optimization for
big data: Scalable, randomized, and parallel algorithms for big data
analytics,” IEEE Signal Processing Magazine, vol. 31, pp. 32–43,
2014.

[10] A. Nedic and A. Ozdaglar, “Distributed subgradient methods for
multiagent optimization,” IEEE Transactions on Automatic Control,
vol. 54, pp. 48–61, 2009.

[11] D. Jakovetic, J. Xavier, and J. Moura, “Fast distributed gradient
methods,” IEEE Transactions on Automatic Control, vol. 59, pp.
1131–1146, 2014.

[12] K. Yuan, Q. Ling, and W. Yin, “On the convergence of decentralized
gradient descent,” arXiv preprint arXiv, 1310.7063, 2013.

[13] W. Shi, Q. Ling, G. Wu, and W. Yin, “Extra: An exact first-order
algorithm for decentralized consensus optimization,” arXiv preprint
arXiv, 1404.6264 2014.

[14] Q. Ling and A. Ribeiro, “Decentralized linearized alternating di-
rection method of multipliers,” Proc. Int. Conf. Acoustics Speech
Signal Process., pp. 5447–5451, 2014.

[15] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein, “Distributed
optimization and statistical learning via the alternating direction
method of multipliers,” Foundations and Trends in Machine Learn-
ing, vol. 3, no. 1, pp. 1–122, 2011.

[16] J. Duchi, A. Agarwal, and M. Wainwright, “Dual averaging for dis-
tributed optimization: Convergence analysis and network scaling,”
IEEE Transactions on Automatic Control, vol. 57, pp. 592–606,
2012.

[17] K. I. Tsianos, S. Lawlor, and M. G. Rabbat, “Push-sum distributed
dual averaging for convex optimization,” In CDC, pp. 5453–5458,
2012.

[18] M. Zargham, A. Ribeiro, A. Jadbabaie, and A. Ozdaglar, “Accel-
erated dual descent for network optimization,” IEEE Trans. Autom.
Control, vol. 59, no. 4, pp. 905–920, April 2014.

[19] M. Zargham, A. Ribeiro, and A. Jadbabaie, “Accelerated backpres-
sure algorithm,” arXiv preprint arXiv, 1302.1475, 2013.

[20] E. Wei, A. Ozdaglar, and A. Jadbabaie, “A distributed newton
method for network utility maximization-i: Algorithm,” IEEE
Transactions on Automatic Control, vol. 58, no. 9, pp. 2162–2175,
September 2013.

[21] M. Zargham and A. R. A. Jadbabaie, “Accelerated dual descent for
constrained convex network flow optimization,” IEEE 52nd Annual
Conference on Decision and Control (CDC), pp. 1037–1042, 2013.

[22] A. Mokhtari, Q. Ling, and A. Ribeiro, “Network newton,” 2014,
available at http://www.seas.upenn.edu/∼aryanm/wiki/NN.pdf.

http://www.seas.upenn.edu/~aryanm/wiki/NN.pdf

	 Introduction
	 Decentralized Gradient Descent
	 Network Newton
	 Convergence Analysis
	 Numerical analysis
	 References

