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Abstract

We consider learning problems over training sets in which both, the number of
training examples and the dimension of the feature vectors, are large. To solve
these problems we propose the random parallel stochastic algorithm (RAPSA).
We call the algorithm random parallel because it utilizes multiple processors to
operate in a randomly chosen subset of blocks of the feature vector. We call the
algorithm parallel stochastic because processors choose elements of the training
set randomly and independently. Algorithms that are parallel in either of these
dimensions exist, but RAPSA is the first attempt at a methodology that is parallel
in both, the selection of blocks and the selection of elements of the training set. In
RAPSA, processors utilize the randomly chosen functions to compute the stochas-
tic gradient component associated with a randomly chosen block. The technical
contribution of this paper is to show that this minimally coordinated algorithm
converges to the optimal classifier when the training objective is convex. In par-
ticular, we show that: (i) When using decreasing stepsizes, RAPSA converges
almost surely over the random choice of blocks and functions. (ii) When using
constant stepsizes, convergence is to a neighborhood of optimality with a rate that
is linear in expectation. Acelerated (A)RAPSA is further proposed by leveraging
ideas of stochastic quasi-Newton optimization. Both, RAPSA and ARAPSA, are
numerically evaluated on the MNIST digit recognition problem.

1 Introduction

Learning is often formulated as an optimization problem that finds a classifier x∗ ∈ Rp that mini-
mizes the average of a loss function across the elements of a training set. For a precise definition
consider a training set with N elements and let fn : Rp → R be a convex loss function associated
with the nth element of the training set. The optimal classifier x∗ ∈ Rp is defined as the minimizer
of the average cost F (x) := (1/N)

∑N
n=1 fn(x),

x∗ := argmin
x

F (x) := argmin
x

1

N

N∑
n=1

fn(x). (1)

Problems such as support vector machines, logistic regression, and matrix completion can be put
in the form of problem (1). In this paper we are interested in large scale problems where both, the
number of features p and the number of elements N in the training set are very large – which arise,
e.g., in text [1], image [2], and genomic [3] processing.

When N and p are large, the parallel processing architecture in Figure 1 becomes of interest. In
this architecture, features are divided in B blocks each of which contains pb � p features and a set
of I � B processors work in paralell on randomly chosen feature blocks while using a stocahstic
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Figure 1: Random parallel stochastic algorithm (RAPSA). At each iteration, processor Pi picks
a random block from the set {x1, . . . ,xB} and a random set of functions from the training set
{f1, . . . , fN}. The functions drawn are used to evaluate a stochastic gradient component associated
with the chosen block. RAPSA is shown here to converge to the optimal argument x∗ of (1).

subset of elements of the training set. In the schematic shown, Processor 1 fetches functions f1
and fn to operate on block xb and Processor i fetches functions fn′ and fn′′ to operate on block
xb′ . Other processors select other elements of the training set and other blocks with the majority of
blocks remaining unchanged and the majority of functions remaining unused. The blocks chosen
for update and the functions fetched for determination of block updates are selected independently
at random in subsequent slots.

Problems that operate on blocks of the feature vectors or subsets of the training set, but not on
both, blocks and subsets, exist. Block coordinate descent (BCD) is the generic name for methods in
which the variable space is divided in blocks that are processed separately. Early versions operate
by cyclically updating all coordinates at each step [4, 5], while more recent parallelized versions
of coordinate descent have been developed to accelerate convergence of BCD [6–8]. Closer to the
architecture in Figure 1, methods in which subsets of blocks are selected at random have also been
proposed [9]. BCD, serial, parallel, or random, can handle cases where the parameter dimension p
is large but requires access to all training samples at each iteration.

Methods that utilize a subset of functions are known by the generic name of stochastic approximation
and rely on the use of stochastic gradients. In plain stochastic gradient descent (SGD), the gradient
of the aggregate function is estimated by the gradient of a randomly chosen function fn [10]. Since
convergence of SGD is slow more often that not, various recent developments have been aimed at
accelerating convergence. These attempts include methodologies to reduce the variance of stochastic
gradients [?, SAG, SAGA, SVRG] and the use of ideas from quasi-Newton optimization to handle
difficult curvature profiles [11,12]. More pertinent to the work considered here are the use of cyclic
block SGD updates [13] and the exploitation of sparsity properties of feature vectors to allow for
parallel updates [14]. These methods are suitable when the number of elements in the training set N
is large but don’t allow for parallel feature processing unless parallelism is inherent to the problem’s
structure.

The random parallel stochastic algorithm (RAPSA) proposed in this paper represents the first effort
at implementing the architecture in Figure 1 that randomizes over both, features and sample func-
tions. In RAPSA, the functions fetched by a processor are used to compute the stochastic gradient
component associated with a randomly chosen block (Section 2). The processors do not coordinate
in either choice except to avoid selection of the same block. Our main technical contribution is to
show that RAPSA iterates converge to the optimal classifier x∗ when using a sequence of decreas-
ing stepsizes and to a neighborhood of the optimal classifier when using constant stepsizes (Section
2.1). In the latter case, we further show that the rate of convergence to this optimality neighborhood
is linear in expectation. These results are interesting because only a subset of features are updated
per iteration and the functions used to update different blocks are, in general, different. We further
propose an acceleration of RAPSA in which processors also update and exploit a curvature estima-
tion matrix associated with each block (Section 3). This accelerated (A)RAPSA algorithm leverages
ideas of stochastic quasi-Newton methods [11, 12] and results in faster convergence. Both, RAPSA
and ARAPSA, are numerically evaluated on the MNIST digit recognition problem (Section 4).
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2 Random Parallel Stochastic Algorithm (RAPSA)

We consider a more general formulation of (1) in which the number N of functions fn is not neces-
sarily finite. Introduce then a random variable θ ∈ Θ ⊂ Rq that determine the choice of the random
smooth convex function f(·,θ) : Rp → R. We consider the problem of minimizing the expectation
of the random functions F (x) := Eθ[f(x,θ)],

x∗ := argmin
x

F (x) := argmin
x

Eθ [f(x,θ)] . (2)

Problem (1) is a particular case of (2) in which each of the functions fn is drawn with probability
1/N . We refer to f(·,θ) as instantaneous functions and to F (x) as the average function.

RAPSA utilizes I processors to update a random subset of blocks of the variable x, with each of
the blocks relying on a subset of randomly and independently chosen elements of the training set;
see Figure 1. Formally, decompose the variable x into B blocks to write x = [x1; . . . ;xB ], where
block b has length pb so that we have xb ∈ Rpb . At iteration t, processor i selects a random index bti
for updating and a random subset Θt

i of L instantaneous functions. It then uses these instantaneous
functions to determine stochastic gradient components for the subset of variables xb = xbti as an
average of the components of the gradients of the functions f(xt,θ) for θ ∈ Θt

i,

∇xb
f(xt,Θt

i) =
1

L

∑
θ∈Θt

i

∇xb
f(xt,θ), b = bti. (3)

The stochastic gradient block in (3) is then modulated by a possibly time varying stepsize γt and
used by processor i to update the block xb = xbti

xt+1
b = xtb − γt∇xb

f(xt,Θt
i) b = bti. (4)

RAPSA is defined by the joint implementation of (3) and (4) across all I processors. The selection
of blocks is coordinated so that no processors operate in the same block. The selection of elements
of the training set is uncoordinated across processors. The fact that at any point in time a random
subset of blocks is being updated utilizing a random subset of elements of the training set means
that RAPSA requires almost no coordination between processors. The contribution of this paper
is to show that this very lean algorithm converges to the optimal argument x∗ as we show in the
following section.

2.1 Convergence Analysis

We show in this section that the sequence of objective function values F (xt) generated by RAPSA
approaches the optimal objective function value F (x∗). In establishing this result we define the set
St containing the blocks that are updated at step t with associated indices It ⊂ {1, . . . , B}. Note
that components of the set St are chosen uniformly at random from the set of blocks {x1, . . . ,xB}.
The definition of St is such that the time evolution of RAPSA iterates can be written as, [cf. (4)],

xt+1
i = xti − γt ∇xif(x

t,Θt
i) for all xi ∈ St, (5)

while the rest of the blocks remain unchanged, i.e., xt+1
i = xti for xi /∈ St. Since the number of

updated blocks is equal to the number of processors, the ratio of updated blocks is r := |It|/B =
I/B.

To prove convergence of RAPSA, we require the following assumptions
Assumption 1. The instantaneous objective functions fi(x) are differentiable and the average func-
tion F (x) is strongly convex with parameter m > 0.
Assumption 2. The average objective function gradients ∇F (x) are Lipschitz continuous with
respect to the Euclidian norm with parameter M . I.e., for all x, x̂ ∈ Rp, it holds

‖∇F (x)−∇F (x̂)‖ ≤ M ‖x− x̂‖. (6)

Assumption 3. The second moment of the norm of the stochastic gradient is bounded for all x, i.e.,
there exists a constant K such that for all variables x, it holds

Eθ

[
‖∇f(xt,θt)‖2

∣∣xt] ≤ K. (7)
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Notice that Assumption 1 only enforces strong convexity of the average function F , while the instan-
taneous functions fi may not be even convex. Further, notice that since the instantaneous functions
fi are differentiable the average function F is also differentiable. The Lipschitz continuity of the
average function gradients ∇F is customary in proving objective function convergence for descent
algorithms. The restriction imposed by Assumption 3 is a standard condition in stochastic approxi-
mation literature [10], its intent being to limit the variance of the stochastic gradients [15].

Our first result comes in the form of a expected descent lemma that relates the expected difference
of subsequent iterates to the gradient of the average function.
Lemma 1. Consider the random parallel stochastic algorithm defined in (3)-(5). Recall the defini-
tions of the set of updated blocks It which are randomly chosen from the total B blocks. Define F t
as a sigma algebra that measures the history of the system up until time t. Then, the expected value
of the difference xt+1 − xt with respect to the random set It given F t is

EIt
[
xt+1 − xt | F t

]
= −rγt ∇f(xt,Θt). (8)

Moreover, the expected value of the squared norm ‖xt+1 − xt‖2 with respect to the random set St
given F t can be simplified as

EIt
[
‖xt+1 − xt‖2 | F t

]
= r(γt)2

∥∥∇f(xt,Θt)
∥∥2 . (9)

Notice that in the regular stochastic gradient descent method the difference of two consecutive iter-
ates xt+1 − xt is equal to the stochastic gradient ∇f(xt,Θt) times the stepsize γt. According to
the first result in Lemma 1, the expected value of stochastic gradients with respect to the random set
of blocks It is the same as the one for SGD except that it is multiplied by the fraction of updated
blocks r. Expression in (9) shows the same relation for the expected value of the squared differ-
ence ‖xt+1 − xt‖2. These relationships confirm that in expectation RAPSA behaves as SGD which
allows us to establish the global convergence of RAPSA.
Proposition 1. Consider the random parallel stochastic algorithm defined in (3)- (5). If Assump-
tions 1-3 hold true, then the objective function error sequence F (xt)− F (x∗) satisfies

E
[
F (xt+1)− F (x∗) | F t

]
≤
(
1− 2mrγt

) (
F (xt)− F (x∗)

)
+
rMK(γt)2

2
. (10)

Proposition 1 leads to a supermartingale relationship for the sequence of objective function errors
F (xt)−F (x∗). In the following theorem we show that if the sequence of stepsize satisfies standard
stochastic approximation diminishing step-size rules (non-summable and squared summable), the
sequence of objective function errors F (xt) − F (x∗) converges to null almost surely. Considering
the strong convexity assumption this result implies almost sure convergence of the sequence ‖xt −
x∗‖2 to null.
Theorem 1. Consider the random parallel stochastic algorithm defined in (3)-(5). If Assumptions
1-3 hold true and the sequence of stepsizes are non-summable

∑∞
t=0 γ

t =∞ and square summable∑∞
t=0(γ

t)2 < ∞, then sequence of the variables xt generated by RAPSA converges almost surely
to the optimal argument x∗,

lim
t→∞

‖xt − x∗‖2 = 0 a.s. (11)

Moreover, if stepsize is defined as γt := γ0T 0/(t+T 0) and the stepsize parameters are chosen such
that 2mrγ0T 0 > 1, then the expected average function error E [F (xt)− F (x∗)] converges to null
at least with a sublinear convergence rate of order O(1/t),

E
[
F (xt)− F (x∗)

]
≤ C

t+ T 0
, (12)

where the constant C is defined as

C = max

{
rMK(γ0T 0)2

4mrγ0T 0 − 2
, T 0(F (x0)− F (x∗))

}
. (13)

The result in Theorem 1 shows that when the sequence of stepsize is diminishing as γt = γ0T 0/(t+
T 0), the average objective function value F (xt) sequence converges to the optimal objective value
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F (x∗) with probability 1.1 Further, the rate of convergence in expectation is at least in the order of
O(1/t). Diminishing stepsizes are useful when exact convergence is required, however, for the case
that we are interested in a specific accuracy ε the more efficient choice is using a constant stepsize.
In the following theorem we study the convergence properties of RAPSA for a constant stepsize
γt = γ.
Theorem 2. Consider the random parallel stochastic algorithm defined in (3) and (5). If Assump-
tions 1-3 hold true and the stepsize is constant γt = γ, then the sequence of the variables xt

generated by RAPSA converges almost surely to a neighborhood of the optimal argument x∗ as

lim inf
t→∞

F (xt)− F (x∗) ≤ γMK

4m
a.s. (14)

Moreover, if the constant stepsize γ is chosen such that 2mrγ < 1 then the expected average function
value error E [F (xt)− F (x∗)] converges linearly to an error bound as

E
[
F (xt)− F (x∗)

]
≤ (1− 2mγr)

t
(F (x0)− F (x∗)) + γMK

4m
. (15)

Notice that according to the result in (15) there exits a trade-off between accuracy and speed of con-
vergence. Decreasing the constant stepsize γ leads to a smaller error bound γMK/4m and a more
accurate convergence, while the linear convergence constant (1− 2mγr) increases and the conver-
gence rate becomes slower. Further, note that the error of convergence γMK/4m is independent
of the ratio of updated blocks r, while the constant of linear convergence 1 − 2mγr depends on r.
Therefore, updating a fraction of the blocks at each iteration decreases the speed of convergence for
RAPSA relative to SGD that updates all of the blocks, however, both of the algorithms reach the
same accuracy.

To achieve accuracy ε the sum of two terms in the right hand side of (15) should be smaller than ε.
Let’s consider φ as a positive constant that is strictly smaller than 1, i.e., 0 < φ < 1. Then, we want
to have

γMK

4m
≤ φε , (1− 2mγr)

t
(F (x0)− F (x∗)) ≤ (1− φ)ε. (16)

Therefore, to satisfy the first condition in (16) we set the stepsize as γ = 4mφε/MK. Apply this
substitution into the second inequality in (16) and consider the inequality a + ln(1 − a) < 0 for
0 < a < 1, to obtain that

t ≥ MK

8m2rφε
ln

(
F (x0)− F (x∗)

(1− φ)ε

)
. (17)

The lower bound in (17) shows the minimum number of required iterations for RAPSA to achieve
accuracy ε.

3 Accelerated Random Parallel Stochastic Algorithm (ARAPSA)

As we mentioned in Section 2, RAPSA operates on first-order information which may lead to slow
convergence in ill-conditioned problems. We introduce Accelerated RAPSA (ARAPSA) as a par-
allel doubly stochastic algorithm that incorporates second-order information of the objective by
separately approximating the function curvature for different blocks. We do this by implementing
the oLBFGS algorithm for different blocks of the variable x. Define B̂t

i as an approximation for the
Hessian inverse of the objective function that corresponds to the block xi. The update of ARAPSA
is defined as multiplication of the descent direction of RAPSA by B̂t

i, i.e.

xt+1
i = xti − γt B̂t

i ∇xi
f(xt,Θt

i) for all xi ∈ St. (18)

We next detail how to properly specify the block approximate Hessian B̂t
i so that it behaves in a

manner comparable to the true Hessian. To do so, define for each block coordinate xi at step t the
variable variation vti and the stochastic gradient variation r̂ti as

vti = xt+1
i − xti, r̂ti = ∇xi

f(xt+1,Θt
i)−∇xi

f(xt,Θt
i). (19)

1The expectation on the left hand side of (12), and throughout the subsequent convergence rate analysis, is
taken with respect to the algorithm history F0, which contains all randomness in both Θt and It for all t ≥ 0.
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Observe that the stochastic gradient variation r̂ti is defined as the difference of stochastic gradients
at times t + 1 and t corresponding to the block xi for a common set of realizations Θt

i. The term
∇xi

f(xt,Θt
i) is the same as the stochastic gradient used at time t in (18), while ∇xi

f(xt+1,Θt
i)

is computed only to determine the stochastic gradient variation r̂ti. An alternative and perhaps
more natural definition for the stochastic gradient variation is ∇xi

f(xt+1,Θt+1
i )−∇xi

f(xt,Θt
i).

However, as pointed out in [11], this formulation is insufficient for establishing the convergence
of stochastic quasi-Newton methods. We proceed to developing a block-coordinate quasi-Newton
method by first noting an important property of the true Hessian, and design our approximate scheme
to satisfy this property. In particular, observe that the true Hessian inverse (Ht

i)
−1 corresponding to

block xi satisfies the block secant condition, stated as (Ht
i)
−1vti = r̂ti when the iterates xti and xt+1

i
are close to each other. The secant condition may be interpreted as stating that the stochastic gradi-
ent of a quadratic approximation of the objective function evaluated at the next iteration agrees with
the stochastic gradient at the current iteration. We select a Hessian inverse approximation matrix
associated with block xi such that it satisfies the secant condition B̂t+1

i vti = r̂ti, and thus behaves in
a comparable manner to the true block Hessian.

The oLBFGS Hessian inverse update rule maintains the secant condition at each iteration by using
information of the last τ ≥ 1 pairs of variable and stochastic gradient variations {vui , r̂ui }

t−1
u=t−τ .

To state the update rule of oLBFGS for revising the Hessian inverse approximation matrices of the
blocks, define a matrix as B̂t,0

i := ηtiI for each block i and t, where the constant ηti for t > 0 is
given by

ηti :=
(vt−1i )T r̂t−1i

‖r̂t−1i ‖2
, (20)

while the initial value is ηti = 1. The matrix B̂t,0
i is the initial approximate for the Hessian inverse

associated with block xi. The approximate matrix B̂t
i is computed by updating the initial matrix B̂t,0

i

using the last τ pairs of curvature information {vui , r̂ui }
t−1
u=t−τ . We define the approximate Hessian

inverse B̂t
i = B̂t,τ

i corresponding to block xi at step t as the outcome of τ recursive applications of
the update

B̂t,u+1
i = (Ẑt−τ+ui )T B̂t,u

i (Ẑt−τ+ui ) + ρ̂t−τ+ui (vt−τ+ui )(vt−τ+ui )T , (21)

where the matrices Ẑt−τ+ui and the constants ρ̂t−τ+ui in (21) for u = 0, . . . , τ − 1 are defined as

ρ̂t−τ+ui =
1

(vt−τ+ui )T r̂t−τ+ui

and Ẑt−τ+ui = I− ρ̂t−τ+ui r̂t−τ+ui (vt−τ+ui )T . (22)

The computation cost of B̂t
i in (21) is in the order of O(p2i ), however, for the update in (18) the

descent direction d̂ti := B̂t
i∇xif(x

t,Θt
i) is required. [16] introduces an efficient implementation of

product B̂t
i∇xif(x

t,Θt
i) that requires computation complexity of order O(τpi). We use the same

idea for computing the descent direction of ARAPSA for each block – more details are provided
in supplementary materials. Therefore, the computation complexity of updating each block for
ARAPSA is in the order of O(τpi), while RAPSA requires O(pi) operations. On the other hand,
ARAPSA accelerates the convergence of RAPSA by incorporating the second order information of
the objective function for the block updates, as may be observed in the numerical analyses provided
in Section 4.

4 Numerical analysis

In this section we study the practical performance of the doubly stochastic approximation algorithms
developed in Sections 2 and 3 by considering the problem of developing an automated decision
system to distinguish between distinct hand-written digits. For that purpose, let z ∈ Rp be a feature
vector encoding pixel intensities of an image, and let y ∈ {−1, 1} be an indicator variable of whether
the image contains the digit 0 or 8, in which case the binary indicator is respectively y = −1 or
y = 1. We model the task of learning a hand-written digit detector as a logistic regression problem,
where one aims to train a classifier x ∈ Rp to determine the relationship between feature vectors
zn ∈ Rp and their associated labels yn ∈ {−1, 1} for n = 1, . . . , N . The instantaneous functions
fn in (1) may be written as the log-likelihood of a generalized linear model of the odds ratio of
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(a) Empirical risk F (xt)− F (x∗) vs. iteration p̃t
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(b) Classification accuracy vs. iteration p̃t

Figure 2: RAPSA on MNIST data with constant step-size γ = 10−1, with no mini-batching L = 1.
Algorithm performance is comparable across different numbers of decision variable coordinates
updated per iteration. RAPSA is I times faster than SGD and achieves comparable performance. In
some cases, updating fewer variables per iteration improves accuracy.

whether the label is yn = 1 or yn = −1. The empirical risk minimization associated with training
set T = {(zn, yn)}Nn=1 is to find x∗ as the maximum likelihood estimate,

x∗ := argmin
x∈Rp

F (x) =
λ

2
‖x‖2 + 1

N

N∑
n=1

log(1 + exp(−ynxT zn)) . (23)

We use the MNIST dataset [17], in which feature vectors zn ∈ Rp are p = 28 × 28 pixel images
whose values are recorded as intensities, or elements of the unit interval [0, 1]. Considered here is
the subset associated with digits 0 and 8, a training set T = {zn, yn}Nn=1 with N = 1.76 × 104

sample points. Further, the optimal classifier x∗ in (23) is computed using Liblinear [18].

We run RAPSA on this training subset for the case thatB = [p/4] = 196, where [·] denotes rounding
a number to its nearest integer. Moreover, we uniformly allocate feature vectors into blocks of size
pi = 4 for i = 1, . . . , B. To determine the advantages of incomplete randomized parallel processing,
we vary |It| = I , the number of blocks updated at each iteration, set to the number of processors for
simplicity, as I = B, I = [B/2] = 98, I = [B/4] = 49, I = [B/8] = 25. When I = B, RAPSA is
parallel stochastic gradient descent. In the subsequent experiment, we set L = 1 (no mini-batching).

Comparing algorithm performance over iteration t across varying numbers of blocks updates |It|
is unfair. If RAPSA is run on a problem for which |It| = B/2, then at iteration t it has only
processed half the data that parallel SGD has processed by the same iteration. Instead we consider
the algorithm performance as compared with the amount of features processed up to the current time
p̃t. Observe that for a feature vector of length p, tp features have been processed by iteration t when
all decision variable coordinates are updated at each iteration, as in the case of SGD where r = 1.
When r < 1, p̃t must be scaled by the proportion of coordinates updated per iteration, which since
blocks are uniformly sized, is prt. Moreover, when the mini-batch size L > 1, p̃t = prtL.

In Figure 2 we show the result of running RAPSA with constant step-size γt = 10−1. In Figure
2(a), we plot F (xt) − F (x∗) versus the number of features processed p̃t. As in Theorem 2, we
observe in Figure 2(a) that the empirical risk F (xt)− F (x∗) converges to a small positive constant
of approximately 10−1 and the convergence rate difference to a neighborhood of the optimum is
negligible. In Figure 2(b) we plot the empirical average classification accuracy on a test set of size
Ñ = 5.88 × 104. Note that RAPSA with fewer blocks updated (processors) per iteration achieves
improved classification accuracy, i.e. I = B, I = [B/2], I = [B/4], I = [B/8] respectively
achieve accuracies of 78%, 87%, 91%, 92%.

We now run Accelerated RAPSA, or ARAPSA as stated in Section 3 for this problem setting for the
entire MNIST binary training subset associated with digits 0 and 8, with mini-batch size L = 10 and
the level of curvature information set as τ = 10. We select decreasing step-size γt = γ0T 0/(t+T 0)

with annealing rate T 0 = [2N/p] = 45, regularizer λ = 1/
√
N = 7.5× 10−3, and γ0 = 2/(λT 2

0 ).

As before, we study the advantages of incomplete randomized parallel processing by varying
I = |It|, the number of blocks updated at per iteration, as I ∈ {B, [B/2], [B/4], [B/8]}. Fig-
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(a) Empirical risk F (xt)− F (x∗) vs. iteration p̃t
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(b) Classification accuracy vs. iteration p̃t

Figure 3: ARAPSA on MNIST data with regularizer λ = 1/
√
N = 7.5 × 10−3, mini-batch size

L = 10, curvature information level τ = 10, and diminishing step-size γt = γ0T 0/(t + T 0) with
annealing rate T 0 = [2N/p] = 45. ARAPSA convergence properties hold in practice.
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Ŷ
u
=

Y
u
)
,
A
v
e
r
a
g
e
A
c
c
u
r
a
c
y

 

 

RAPSA
ARAPSA

(b) Classification accuracy vs. iteration p̃t

Figure 4: RAPSA and ARAPSA algorithms on MNIST data with mini-batch size L = 10, the level
of curvature information set to τ = 10, and constant step-size γ = 10−1. ARAPSA successfully
accelerates the convergence of RAPSA, and achieves higher accuracy per features processed p̃t.

ure 3(a) shows the error F (xt) − F (x∗) versus the number of features processed p̃t. Observe that
the algorithm achieves convergence across the differing numbers of parallel computing nodes |It|,
with improved convergence with smaller |It|, i.e. for |It| = B, |It| = [B/2], |It| = [B/4],
|It| = [B/8], the algorithm respectively achieves F (xt) − F (x∗) ≤ 1 by p̃t = 170, p̃t = 40,
p̃t = 185, and p̃t = 77. Moreover, in Figure 3(b) we observe ARAPSA achieves comparable
accuracy across the different levels of block variables updated per iteration, surpassing 90%.

We study the effect of incorporating second-order information into the block-updates. To do so,
we fix mini-batch size as L = 10 and run ARAPSA and RAPSA for this problem instance with
constant step-size γ = 10−1. Moreover, only a quarter of the blocks per iteration are updated per
iteration |It| = [B/4]. The results of this experiment are given in Figure 4. In Figure 4(a) we plot
F (xt)−F (x∗) versus the number of features processed p̃t. Observe that ARAPSA converges more
quickly and to a point closer to the optimum than RAPSA, i.e. for the benchmark F (xt)−F (x∗) ≤
1, ARAPSA requires p̃t = 185 while RAPSA requires p̃t = 575 features. This accelerated behavior
is also apparent in Figure 4(b) where ARAPSA achieves an accuracy of 80% by p̃t = 130, whereas
RAPSA requires p̃t = 650 features for the same benchmark.

The comparable performance of RAPSA to SGD in Figure 2(a), and ARAPSA to oLBFGS in Figure
3, demonstrates the practical utility of the proposed method. Because RAPSA may be implemented
in parallel, it may achieve the same empirical result as SGD but at a rate of I times faster than
SGD. Moreover, in some cases RAPSA achieves superior classification accuracy with fewer blocks
updated per iteration. A natural question, given the speedup made possible by parallel computing,
is why to select I < B. For situations where p is very large, this would require a large number of
computing nodes, which may or may not be available.
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A Proof of Lemma 1

Recall that the components of vector xt+1 are equal to the components of xt for the coordinates
that are not updated at step t, i.e., i /∈ It. For the updated coordinates i ∈ It we know that
xt+1
i = xti−γt∇xt

i
f(xt,θt). Therefore,B−I blocks of the vector xt+1−xt are 0 and the remaining

I randomly chosen blocks are given by −γt∇xt
i
f(xt,θt). Notice that there are

(
B
I

)
different ways

for picking I blocks out of the whole B blocks. Therefore, the probability of each combination of
blocks is 1/

(
B
I

)
. Further, each block appears in

(
B−1
I−1
)

of the combinations. Therefore, the expected
value can be written as

EIt
[
xt+1 − xt | F t

]
=

(
B−1
I−1
)(

m
I

) (
−γt∇f(xt,Θt)

)
(24)

Observe that simplifying the ratio in the right hand sides of (24) leads to(
B−1
I−1
)(

B
I

) =

(B−1)!
(I−1)!×(B−I)!

p!
I!×(B−I)!

=
I

B
= r. (25)

Substituting the simplification in (25) into (24) follows the claim in (8). To prove the claim in (9)
we can use the same argument that we used in proving (8) to show that

EIt
[
‖xt+1 − xt‖2 | F t

]
=

(
B−1
I−1
)(

B
I

) (γt)2
∥∥∇f(xt,Θt)

∥∥2 . (26)

By substituting the simplification in (25) into (26) the claim in (9) follows.

B Proof of Proposition 1

By considering the Taylor’s expansion of F (xt+1) near the point xt and observing the Lipschitz
continuity of gradients∇F with constant M we obtain that the average objective function F (xt+1)
is bounded above by

F (xt+1) ≤ F (xt) +∇F (xt)T (xt+1 − xt) +
M

2
‖xt+1 − xt‖2. (27)

Compute the expectation of the both sides of (27) with respect to the random set It given the
observed set of information F t. Substitute EIt

[
xt+1 − xt | F t

]
and EIt

[
‖xt+1 − xt‖2 | F t

]
with

their simplifications in (8) and (9), respectively, to write

EIt
[
F (xt+1) | F t

]
≤ F (xt)− rγt ∇F (xt)T∇f(xt,Θt) +

rM(γt)2

2

∥∥∇f(xt,Θt)
∥∥2 . (28)

Notice that the stochastic gradient∇f(xt,Θt) is an unbiased estimate of the average function gradi-
ent ∇F (xt). Therefore, we obtain EΘt

[
∇f(xt,Θt) | F t

]
= ∇F (xt). Observing this relation and

considering the assumption in (7), the expected value of (28) with respect to the set of realizations
Θt can be written as

EIt,Θt

[
F (xt+1) | F t

]
≤ F (xt)− rγt

∥∥∇F (xt)∥∥2 + rM(γt)2K

2
. (29)

Subtracting the optimal objective function value F (x∗) form the both sides of (29) implies that

EIt,Θt

[
F (xt+1)− F (x∗) | F t

]
≤ F (xt)− F (x∗)− rγt

∥∥∇F (xt)∥∥2 + rM(γt)2K

2
. (30)

We proceed to find a lower bound for the gradient norm ‖∇F (xt)‖ in terms of the objective value
error F (xt)− F (x∗). Assumption 1 states that the average objective function F is strongly convex
with constant m > 0. Therefore, for any y, z ∈ Rp we can write

F (y) ≥ F (z) +∇F (z)T (y − z) +
m

2
‖y − z‖2. (31)
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For fixed z, the right hand side of (31) is a quadratic function of y whose minimum argument we can
find by setting its gradient to zero. Doing this yields the minimizing argument ŷ = z−(1/m)∇F (z)
implying that for all y we must have

F (y) ≥ F (w) +∇F (z)T (ŷ − z) +
m

2
‖ŷ − z‖2

= F (z)− 1

2m
‖∇F (z)‖2. (32)

Observe that the bound in (32) holds true for all y and z. Setting values y = x∗ and z = xt in (32)
and rearranging the terms yields a lower bound for the squared gradient norm ‖∇F (xt)‖2 as

‖∇F (xt)‖2 ≥ 2m(F (xt)− F (x∗)) (33)

Substituting the lower bound in (33) by the norm of gradient square ‖∇F (xt)‖2 in (30) follows the
claim in (10).

C Proof of Theorem 1

We use the relationship in (10) to build a supermartingale sequence. To do so, define the stochastic
process αt as

αt := F (xt)− F (x∗) + rMK

2

∞∑
u=t

(γu)2. (34)

Note that αt is well-defined because
∑∞
u=t(γ

u)2 ≤
∑∞
u=0(γ

u)2 <∞ is summable. Further define
the sequence βt with values

βt := 2mγtr(F (xt)− F (x∗)). (35)

The definitions of sequences αt and βt in (34) and (35), respectively, and the inequality in (10)
imply that the expected value αt+1 given F t can be written as

E
[
αt+1

∣∣F t] ≤ αt − βt. (36)

Since the sequences αt and βt are nonnegative it follows from (36) that they satisfy the conditions of
the supermartingale convergence theorem. Therefore, we obtain that: (i) The sequence αt converges
almost surely to a limit. (ii) The sum

∑∞
t=0 β

t <∞ is almost surely finite. The latter result yields

∞∑
t=0

2mγtr(F (xt)− F (x∗)) <∞. a.s. (37)

Since the sequence of step sizes is non-summable there exits a subsequence of sequence F (xt) −
F (x∗) which is converging to null. This observation is equivalent to almost sure convergence of
lim inf F (xt)− F (x∗) to null

lim inf
t→∞

F (xt)− F (x∗) = 0. a.s. (38)

Based on the martingale convergence theorem for the sequences αt and βt in relation (36), the se-
quence αt almost surely converges to a limit. Consider the definition of αt in (34). Observe that the
sum

∑∞
u=t(γ

u)2 is deterministic and its limit is null. Therefore, the sequence of the objective func-
tion value error F (xt) − F (x∗) almost surely converges to a limit. This observation in association
with the result in (38) implies that the whole sequence of F (xt) − F (x∗) converges almost surely
to null,

lim
t→∞

F (xt)− F (x∗) = 0. a.s. (39)

The last step is to prove almost sure convergence of the sequence ‖xt − x∗‖2 to null, as a result of
the limit in (39). To do so, we follow by proving a lower bound for the objective function value error
F (xt) − F (x∗) in terms of the squared norm error ‖xt − x∗‖2. According to the strong convexity
assumption, we can write the following inequality

F (xt) ≥ F (x∗) +∇F (x∗)T (xt − x∗) +
m

2
‖xt − x∗‖2 (40)
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Observe that the gradient of the optimal point is the null vector, i.e.,∇F (x∗) = 0. This observation
and rearranging the terms in (40) imply that

F (xt)− F (x∗) ≥ m

2
‖xt − x∗‖2. (41)

The upper bound in (41) for the squared norm ‖xt − x∗‖2 in association with the fact that the
sequence F (xt)− F (x∗) almost surely converges to null, leads to the conclusion that the sequence
‖xt − x∗‖2 almost surely converges to zero. Hence, the claim in (11) is valid.

The next step is to study the convergence rate of RAPSA in expectation. In this step we assume that
the diminishing stepsize is defined as γt = γ0T 0/(t+ T 0). Recall the inequality in (10). Substitute
γt by γ0T 0/(t+ T 0) and compute the expected value of (10) given F0 to obtain

E
[
F (xt+1)− F (x∗)

]
≤
(
1− 2mrγ0T 0

(t+ T 0)

)
E
[
F (xt)− F (x∗)

]
+
rMK(γ0T 0)2

2(t+ T 0)2
. (42)

We use the following lemma to show that the result in (42) implies sublinear convergence of the
sequence of expected objective value error E [F (xt)− F (x∗)].
Lemma 2. Let c > 1, b > 0 and t0 > 0 be given constants and ut ≥ 0 be a nonnegative sequence
that satisfies the inequality

ut+1 ≤
(
1− c

t+ t0

)
ut +

b

(t+ t0)
2 , (43)

for all times t ≥ 0. The sequence ut is then bounded as

ut ≤ Q

t+ t0
, (44)

for all times t ≥ 0, where the constant Q is defined as Q := max{b/(c− 1), t0u0} .

Proof: See ..... �

Lemma 2 shows that if a sequence ut satisfies the condition in (43) then the sequence ut converges
to null at least with the rate of O(1/t). By assigning values t0 = T 0, ut = E [F (xt)− F (x∗)],
c = 2mrγ0T 0, and b = rMK(γ0T 0)2/2, the relation in (42) implies that the inequality in (43) is
satisfied for the case that 2mrγ0T 0 > 1. Therefore, the result in (44) holds and we can conclude
that

E
[
F (xt)− F (x∗)

]
≤ C

t+ T 0
, (45)

where the constant C is defined as

C = max

{
rMK(γ0T 0)2

4rmγ0T 0 − 2
, T 0(F (x0)− F (x∗))

}
(46)

D Proof of Theorem 2

To prove the claim in (14) we use the relationship in (10) to construct a supermartingale. Define the
stochastic process αt with values

αt =
(
F (xt)− F (x∗)

)
× 1

(
min
u≤t

F (xu)− F (x∗) > γMK

4m

)
(47)

The process αt tracks the optimality gap F (xt) − F (x∗) until the gap becomes smaller than
γMK/2m for the first time at which point it becomes αt = 0. Notice that the stochastic process αt
is always non-negative, i.e., αt ≥ 0. Likewise, we define the stochastic process βt as

βt = 2γmr

(
F (xt)− F (x∗)− γMK

4m

)
× 1

(
min
u≤t

F (xu)− F (x∗) > γMK

4m

)
, (48)

which follows 2γmr (F (xt)− F (x∗)− γMK/4m) until the time that the optimality gap F (xt)−
F (x∗) becomes smaller than γMK/2m for the first time. After this moment the stochastic process

12
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βt becomes null. According to the definition of βt in (48), the stochastic process satisfies βt ≥ 0
for all t ≥ 0. Based on the relationship (10) and the definitions of stochastic processes αt and βt in
(47) and (48) we obtain that for all times t ≥ 0

E
[
αt+1 | F t

]
≤ αt − βt. (49)

To check the validity of (49) we first consider the case that minu≤t F (x
u)− F (x∗) > γMK/4m

holds. In this scenario we can simply the stochastic processes in (47) and (48) as αt = F (xt) −
F (x∗) and βt = 2γmr (F (xt)− F (x∗)− γMK/4m). Therefore, according to the inequality in
(10) the result in (49) is valid. The second scenario that we check is minu≤t F (x

u) − F (x∗) ≤
γMK/4m. Based on the definitions of stochastic processes αt and βt, both of these two sequences
are equal to 0. Further, notice that when αt = 0, it follows that αt+1 = 0. Hence, the relationship
in (49) is true.

Given the relation in (49) and non-negativity of stochastic processes αt and βt we obtain that αt is
a supermartingale. The supermartingale convergence theorem yields: i) The sequence αt converges
to a limit almost surely. ii) The sum

∑∞
t=1 β

t is finite almost surely. The latter result implies that
the sequence βt is converging to null almost surely. I.e.,

lim
t→∞

βt = 0 a.s. (50)

Based on the definition of βt in (48), the limit in (50) is true if one of the follow-
ing events holds: i) The indicator function is null after for large t. ii) The limit
limt→∞ (F (xt)− F (x∗)− γMK/4m) = 0 holds true. From any of these two events we it is
implied that

lim inf
t→∞

F (xt)− F (x∗) ≤ γMK

4m
a.s. (51)

Therefore, the claim in (14) is valid. The result in (51) shows the objective function value sequence
F (xt) almost sure converges to a neighborhood of the optimal objective function value F (x∗).

We proceed to prove the result in (15). Compute the expected value of (10) given F0 and set γt = γ
to obtain

E
[
F (xt+1)− F (x∗)

]
≤ (1− 2mγr)E

[
F (xt)− F (x∗)

]
+
rMKγ2

2
. (52)

Notice that the expression in (52) provides an upper bound for the expected value of objective
function error E

[
F (xt+1)− F (x∗)

]
in terms of its previous value E [F (xt)− F (x∗)] and an error

term. Rewriting the relation in (52) for step t− 1 leads to

E
[
F (xt)− F (x∗)

]
≤ (1− 2mγr)E

[
F (xt−1)− F (x∗)

]
+
rMKγ2

2
. (53)

Substituting the upper bound in (53) for the expectation E [F (xt)− F (x∗)] in (52) follows an upper
bound for the expected error E

[
F (xt+1)− F (x∗)

]
as

E
[
F (xt+1)− F (x∗)

]
≤ (1− 2mγr)

2 E
[
F (xt−1)− F (x∗)

]
+
rMKγ2

2
(1 + (1− 2mrγ)) .

(54)
By recursively applying the steps in (53) and (54) we can bound the expected objective function
error E

[
F (xt+1)− F (x∗)

]
in terms of the initial objective function error F (x0) − F (x∗) and the

accumulation of the errors as

E
[
F (xt+1)− F (x∗)

]
≤ (1− 2mγr)

t+1
(F (x0)− F (x∗)) + rMKγ2

2

t∑
u=0

(1− 2mrγ)
u
. (55)

Substituting t by t− 1 and simplifying the sum in the right hand side of (55) yields

E
[
F (xt)− F (x∗)

]
≤ (1− 2mγr)

t
(F (x0)− F (x∗)) + MKγ

4m

[
1− (1− 2mrγ)

t
]
. (56)

Observing that the term 1− (1− 2mrγ)
t in the right hand side of (56) is strictly smaller than 1 for

the stepsize γ < 1/(2mr), the claim in (15) follows.
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E Implementation of ARAPS

For reference, ARAPSA is also summarized in algorithmic form in Algorithm 2. Steps 2 and 3
are devoted to assigning random blocks to the processors. In Step 2 a subset of available blocks
It is chosen. These blocks are assigned to different processors in Step 3. In Step 5 processors
compute the partial stochastic gradient corresponding to their assigned blocks ∇xif(x

t,Θt
i) using

the acquired samples in Step 4. Steps 6 and 7 are devoted to the computation of the ARAPSA
descent direction d̂ti. In Step 6 the approximate Hessian inverse B̂t,0

i for block xi is initialized as
B̂t,0
i = ηtiI which is a scaled identity matrix using the expression for ηti in (20) for t > 0. The initial

value of ηti is η0i = 1. In Step 7 we use Algorithm 1 for efficient computation of the descent direction
d̂ti = B̂t

i ∇xi
f(xt,Θt

i). The descent direction d̂ti is used to update the block xti with stepsize γt

in Step 8. Step 9 determines the value of the partial stochastic gradient ∇xi
f(xt+1,Θt

i) which is
required for the computation of stochastic gradient variation r̂ti. In Step 10 the variable variation
vti and stochastic gradient variation r̂ti associated with block xi are computed to be used in the next
iteration.

Algorithm 1 Computation of the ARAPSA step d̂ti = B̂t
i∇xi

f(xt,Θt
i) for block xi.

1: function d̂ti = qτ = ARAPSA Step
(
B̂t,0
i , p0 = ∇xi

f(xt,Θt
i), {vui , r̂ui }

t−1
u=t−τ

)
2: for u = 0, 1, . . . , τ − 1 do {Loop to compute constants αu and sequence pu}
3: Compute and store scalar αu = ρ̂t−u−1i (vt−u−1i )Tpu

4: Update sequence vector pu+1 = pu − αur̂t−u−1i .
5: end for
6: Multiply pτ by initial matrix: q0 = B̂t,0

i pτ

7: for u = 0, 1, . . . , τ − 1 do {Loop to compute constants βu and sequence qu}
8: Compute scalar βu = ρ̂t−τ+ui (r̂t−τ+ui )Tqu

9: Update sequence vector qu+1 = qu + (ατ−u−1 − βu)vt−τ+ui

10: end for {return d̂ti = qτ}

Algorithm 2 Accelerated Random Parallel Stochastic Algorithm (ARAPSA) for individual proces-
sors

1: for t = 0, 1, 2, . . . do
2: Choose uniformly at random set It ⊂ {1, . . . , B} of block variables to update
3: Assign block variables St to processors in any manner.
4: Choose a set of realizations Θt

i for the block xi

5: Compute stochastic gradient : ∇xif(x
t,Θt

i) =
1

L

∑
θ∈Θt

i

∇xif(x
t,θ) [cf. (3)]

6: Compute the initial Hessian inverse approximation: B̂t,0
i = ηtiI

7: Compute descent direction: d̂ti = oLBFGS Step
(
B̂t,0
i , ∇xif(x

t,Θt
i), {vui , r̂ui }t−1u=t−τ

)
8: Update the coordinates of the decision variable xt+1

i = xti − γt d̂ti

9: Compute updated stochastic gradient: ∇xif(x
t+1,Θt

i) =
1

L

∑
θ∈Θt

i

∇xif(x
t+1,θ) [cf. (3)]

10: Update variations vti = xt+1
i − xti and r̂ti = ∇xi

f(xt+1,Θt
i)−∇xi

f(xt,Θt
i) [ cf.(19)]

11: end for

14


	Introduction
	Random Parallel Stochastic Algorithm (RAPSA)
	Convergence Analysis

	Accelerated Random Parallel Stochastic Algorithm (ARAPSA)
	Numerical analysis
	Proof of Lemma 1
	Proof of Proposition 1
	Proof of Theorem 1
	Proof of Theorem 2
	Implementation of ARAPS

