
Decentralized Double Stochastic Averaging Gradient
Aryan Mokhtari and Alejandro Ribeiro

Department of Electrical and Systems Engineering, University of Pennsylvania

Abstract—This paper considers convex optimization problems
where nodes of a network have access to summands of a global
objective function. Each of these local objectives is further assumed
to be an average of a finite set of functions. The motivation for
this setup is to solve large scale machine learning problems where
elements of the training set are distributed to multiple computational
elements. The decentralized double stochastic averaging gradient
(DSA) algorithm is proposed as a solution alternative that relies on:
(i) The use of local stochastic averaging gradients instead of local
full gradients. (ii) Determination of descent steps as differences of
consecutive stochastic averaging gradients. The algorithm is shown
to approach the optimal argument at a linear rate. This is in contrast
to all other available methods for distributed stochastic optimization
that converge at sublinear rates. Numerical experiments verify linear
convergence of DSA and illustrate its advantages relative to these
other alternatives.

I. INTRODUCTION

Consider a variable x ∈ Rp and a connected network of size
N where each node n has access to a local objective function
fn : Rp → R. The local objective function fn(x) is defined as the
average of qn functions fn,i(x) that can be individually evaluated
at node n. Agents cooperate to solve the global optimization

x̃∗ := argmin
x

N∑
n=1

fn(x) = argmin
x

N∑
n=1

1

qn

qn∑
i=1

fn,i(x). (1)

The formulation in (1) models large scale machine learning
problems where elements of the training set are distributed to
multiple computational elements and x̃∗ represents an optimal
classifier [1], [2]. Analogous formulations are also of interest in
decentralized control [3], [4] and sensor networks [5]–[7].

Our interest here is in solving (1) with a method that is dis-
tributed – nodes operate on their local functions and communicate
with neighbors – and stochastic – nodes utilize only one out of
the qn functions fn,i to determine a descent direction. Distributed
methods germane to this paper are decentralized gradient descent
(DGD) and its variants [8]–[11], as well as the exact first order
algorithm (EXTRA) [12]. An issue with the former that is solved
by the latter is the lack of linear convergence rate guarantees that
EXTRA achieves by using iterations that rely on information of
two consecutive steps. Stochastic optimization methods related to
the proposal in this paper are stochastic gradient descent [13]–
[16] and stochastic averaging gradient methods [17], [18]. As in
the case of distributed optimization, the former have sublinear
convergence rates but the latter have linear convergence rates.
They achieve these linear rates by using incremental gradients
to reduce the stochastic gradient noise. This reduction follows
from a memory trade that permits maintaining an average of past
gradients in which only one term is updated per iteration.

The contribution of this paper is to develop the decentralized
double stochastic averaging gradient (DSA) method, a novel
decentralized stochastic algorithm for solving (1). The method
exploits a new interpretation of EXTRA as a saddle point method

(Section II) and uses stochastic averaging gradients in lieu of
gradients (Section III). The proposed method converges linearly
to the optimal argument in expectation (Section IV). This is in
contrast to all other distributed stochastic methods to solve (1)
that converge at sublinear rates. Numerical results verify that
DSA is the only stochastic decentralized algorithm with linear
convergence rate (Section V). Proofs of results in this paper are
available in [19].

II. DECENTRALIZED DOUBLE GRADIENT DESCENT

Consider a connected network that contains N nodes such that
each node n can only communicate with nodes in its neighborhood
Nn. Define xn ∈ Rp as a local copy of the variable x that
is kept at node n. In decentralized optimization, nodes try to
minimize their local functions fn(xn) while ensuring that their
local variables xn coincide with the variables xm of all neighbors
m ∈ Nn – which, given that the network is connected, ensures that
the variables xn of all nodes are the same and renders the problem
equivalent to (1). DGD is a well known method for decentralized
optimization that relies on the introduction of nonnegative weights
wij ≥ 0 that are not null if and only if m = n or if m ∈ Nn.
Letting t ∈ N be a discrete time index and α a given stepsize,
DGD is defined by the recursion

xt+1
n =

N∑
m=1

wnmxtm − α∇fn(xtn), n = 1, . . . , N. (2)

Since wnm = 0 when m 6= n and m /∈ Nn, it follows from (2) that
node n updates xn by performing an average over the variables
xtm of its neighbors m ∈ Nn and its own xtn, followed by descent
through the negative local gradient −∇fn(xtn). If a constant
stepsize is used, DGD iterates xtn approach a neighborhood of
the optimal argument x̃∗ of (1) but don’t converge exactly. To
achieve exact convergence diminishing stepsizes are used but the
resulting convergence rate is sublinear [8].

EXTRA resolves either of these issues by mixing two consec-
utive DGD iterations with different weight matrices and opposite
signs. To be precise, introduce a second set of weights w̃nm
with the same properties as the weights wnm and define EXTRA
through the recursion

xt+1
n = xtn +

N∑
m=1

wnmxtm −
N∑
m=1

w̃nmxt−1m (3)

− α
[
∇fn(xtn)−∇fn(xt−1n )

]
, n = 1, . . . , N.

Observe that (3) is well defined for t > 0. For t = 0 we utilize the
regular DGD iteration in (2). In the nomenclature of this paper
we say that EXTRA performs a decentralized double gradient
descent step because it operates in decentralized manner while
utilizing a difference of two gradients as descent direction. Minor
modification as it is, the use of this gradient difference in lieu of



simple gradients endows extra with exact linear convergence to
the optimal argument x̃∗ [12].

To understand the rationality behind the EXTRA update, we
define matrices and vectors to rewrite updates in (3) for different
nodes as a single equation. To do so, define the vector x :=
[x1; . . . ;xN ] ∈ RNp which concatenates the local iterates, and
the aggregate function f : RNp → R as

f (x) = f(x1, . . . ,xN ) :=

N∑
n=1

fn(xn). (4)

Moreover, Consider the matrices W ∈ RN×N and W̃ ∈ RN×N
formed by components [wnm] and [w̃nm], respectively. Define the
matrices Z := W ⊗ I ∈ RNp×Np and Z̃ := W̃ ⊗ I ∈ RNp×Np
as the Kronecker products of the weight matrices W ∈ RN×N
and W̃ ∈ RN×N by the identity matrix I ∈ Rp×p, respectively.
Considering these definitions, we can rewrite the EXTRA’s update
for t > 0 in (3) as

xt+1 = (I + Z)xt − Z̃xt−1 − α[∇f(xt)−∇f(xt−1)], (5)

and the initial step as

x1 = Zx0 − α∇f(x0). (6)

By summing up the updates in (5) and (6) from step 0 to t and
using the telescopic cancellation we obtain that

xt+1 = Z̃xt − α∇f(xt)−
t∑

s=0

(Z̃− Z)xs. (7)

We introduce a primal-dual interpretation of the update in (7) by
defining the sequence of vectors vt =

∑t
s=0(Z̃−Z)1/2xs as the

accumulation of variables dissimilarities in different nodes over
time. Note that if components of the vector xs are equal to each
other, i.e., xs1 = · · · = xsN , the corresponding term of the sum
in the definition of vector vt is null, i.e. (Z̃ − Z)1/2xs = 0.
Considering the definition of vt we can rewrite (7) as

xt+1 = xt − α
[
∇f(xt) +

1

α
(I−Z̃)xt +

1

α
(Z̃−Z)1/2vt

]
. (8)

Further, based on the definition of sequence vt =
∑t
s=0(Z̃ −

Z)1/2xs we can write vt+1 as

vt+1 = vt + α

[
1

α
(Z̃− Z)1/2xt+1

]
. (9)

Consider x as the primal variable and v as the dual variable.
Then, the EXTRA update is equivalent to a saddle point method
with stepsize α for solving the Lagrangian

L(x,v) = f(x) +
1

α
vT (Z̃− Z)1/2x +

1

2α
xT (I− Z̃)x, (10)

where the the actual Lagrangian is augmented by the quadratic
term (1/2α)xT (I− Z̃)x. Observe that the optimization problem
with the augmented Lagrangian in (10) is

min
x

f(x) s.t.
1

α
(Z̃− Z)1/2x = 0. (11)

Observing that null((Z̃−Z)1/2) = null(Z̃− Z) = span{1N⊗Ip},
the constraint in (11) is equivalent to x1 = · · · = xN . Moreover,
the definition of function f(x) in (4) shows that the objectives
of problems (11) and (1) are also identical. Hence, EXTRA is
a saddle point method that solves (11) which is equivalent to
(1). Considering the exact and linear convergence of saddle point
methods, the convergence properties of EXTRA are justified.

III. DECENTRALIZED DOUBLE STOCHASTIC AVERAGING
GRADIENT

Recall the definitions of the local functions fn(xn) and the
instantaneous local functions fn,i(xn) available at node n. To im-
plement EXTRA as in (3) each node computes the full gradient of
its local objective function ∇fn(xn) = (1/qn)

∑qn
i=1∇fn,i(xn)

which is computationally expensive when the number of instan-
taneous functions qn is extremely large. To resolve this issue the
local objective gradients can be substituted by their stochastic ap-
proximations. The simplest approach for approximating the local
objective functions gradient ∇fn(xn) = (1/qn)

∑qn
i=1∇fn,i(xn)

is choosing an instantaneous function fn,i(xn) randomly and us-
ing its gradient ∇fn,i(xn) as an unbiased estimate of the gradient
∇fn(xn) = (1/qn)

∑qn
i=1∇fn,i(xn). To be more precise, define

vector θ = [θ1 : . . . ; θN ] ∈ {1, . . . , q1} × · · · × {1, . . . , qN}
as a random vector where each component θn ∈ {1, . . . , qn}
determines the associated instantaneous function fn,θn(xn) that
node n uses for gradient approximation. To be more precise,
node n in lieu of computing the local function gradient ∇fn(x)
for updating the variable xn, approximates it by ∇fn,θn(xn).
However, stochastic gradients lead to an algorithm with lower
computation complexity, the noise of gradient approximation
avoids exact convergence with constant stepsize as shown for
stochastic gradient descent in centralized optimization. We study
this observation in Section V.

To overcome the noise of gradient approximation we use the
idea of unbiased stochastic averaging gradient as introduced in
[18]. We introduce the auxiliary vectors φn,i ∈ Rp corresponding
to i-th instantaneous function of node n which keeps track of the
iterate xn for the last step that i-th instantaneous function fn,i is
chosen at node n. To be more precise, if the index identifier at
time t for node n is θtn = i then the corresponding auxiliary vector
φtn,i is updated as φt+1

n,i = xtn and its corresponding instantaneous
function gradient ∇fn,i(φtn,i) which is stored in a memory is
replaced by ∇fn,i(xtn). All the other auxiliary vectors φtn,j for
j 6= i and their corresponding instantaneous gradients remain
unchanged, i.e. φt+1

n,j = φtn,j and ∇fn,j(φt+1
n,j ) = ∇fn,j(φtn,j).

By storing the auxiliary variables gradients ∇fn,i(φtn,i), we can
define an unbiased estimate of the local gradient ∇fn(xtn) as

ĝtn := ∇fn,θtn(xtn)−∇fn,θtn(φtn,θtn)+
1

qn

qn∑
i=1

∇fn,i(φtn,i). (12)

Notice that the stochastic approximation ĝtn is an unbiased esti-
mate of the local gradient ∇fn(xtn), i.e., E [ĝtn | F t] = ∇fn(xtn).

The proposed stochastic averaging gradient in (12) vanishes
the noise of gradient approximation. To be more precise, as
time progresses the auxiliary variables φtn,i approach to a neigh-
borhood of the optimal variable x̃∗, since they all get updated
over time with a high probability. Therefore, roughly speaking
we can write φtn,i ≈ xtn ≈ x̃∗. This property implies that
the stochastic gradient in (12) can be approximated by ĝtn ≈
(1/qn)

∑qn
i=1∇fn,i(φ

t
n,i) ≈ ∇fn(xtn). Therefore, the advantage

of using stochastic approximation in (12) is the fact that the noise
of stochastic gradients is diminishing when the sequence is close
to convergence, while for the naive approximation ∇fn,θtn(xtn)
the noise of stochastic approximation never vanishes.

We introduce Decentralized Double stochastic averaging gradi-
ent (DSA) as a stochastic version of EXTRA that approximates
the local gradients by their stochastic averaging approximations



Algorithm 1 DSA algorithm at node n
Require: Vector x0

n and stored gradients ∇fn,i(φ0
n,i) with φ0

n,i = x0
n.

1: for t = 0, 1, 2, . . . do
2: Exchange variable xtn with neighboring nodes m ∈ Nn.
3: Choose θtn uniformly random from the set {1, . . . , qn}.
4: Compute and store stochastic averaging gradient

ĝtn = ∇fn,θtn(x
t
n)−∇fn,θtn(φ

t
n,θtn

) +
1

qn

qn∑
i=1

∇fn,i(φtn,i)

5: Set φt+1
n,θtn

= xtn and store gradient ∇fn,θtn(φ
t+1
n,θtn

) in the
table replacing ∇fn,θtn(φ

t
n,θtn

). Other vectors of the table remain
unchanged, i.e. ∇fn,j(φt+1

n,j ) = ∇fn,j(φ
t
n,j) for j 6= θtn.

6: Update primal variable xtn as
7: if t = 0 then

8: xt+1
n =

N∑
n=1

wnmxt+1
n − αĝtn.

9: else

10: xt+1
n = xtn +

N∑
n=1

wnmxtn −
N∑
n=1

ŵnmxt−1
n − α

[
ĝtn − ĝt−1

n

]
.

11: end if
12: end for

as introduced in (12). The DSA update for t > 0 is given by

xt+1
n = xtn +

N∑
m=1

wnmxtm −
N∑
m=1

w̃nmxt−1m − α
[
ĝtn − ĝt−1n

]
,

(13)
and the initial step is defined as

x1
n =

N∑
m=1

wnmx0
m − α ĝ0

n. (14)

To write the DSA update for all the nodes in one equation, define
the vector ĝt := [ĝt1; . . . ; ĝtN ] ∈ RNp which contains all the local
stochastic averaging gradients at step t. Considering this definition
the updates for steps t > 0 in (13) can be simplified as

xt+1 = (I + Z)xt − Z̃xt−1 − α
[
ĝt − ĝt−1

]
, (15)

and the initial updates in (14) are equivalent to

x1 = Zx0 − α ĝ0. (16)

Comparing the DSA updates in (15) and (16) with EXTRA steps
in (5) and (6) shows that DSA is different from EXTRA in using
stochastic averaging gradients ĝt in lieu of full gradients ∇f(xt).
Recall that EXTRA is a saddle point method for solving (11).
Therefore, DSA is a stochastic saddle point method that solves
problem (11) where the primal variable xt is updated as

xt+1 = xt − αĝt − (I− Z̃)xt − (Z̃− Z)1/2vt, (17)

and the dual variable vt is updated as

vt+1 = vt + (Z̃− Z)1/2xt+1. (18)

Notice that the initial primal variable x0 ∈ RNp is an arbitrary
vector, while according to the definition vt =

∑t
s=0(Z̃−Z)1/2xs

the initial dual vector is set as v0 = (Z̃−Z)1/2x0. To implement
DSA we use the update in (15) instead of using the primal-dual
updates in (17) and (18). The latter requires exchange of the
both primal xtn and dual vtn variables, while for the former only
exchange of the primal variables xtn is required.

The DSA algorithm is summarized in Algorithm 1. The update
of DSA for t = 0 and t > 0 are implemented in Steps 8 and 10,
respectively. Steps 8 and 10 require access to the local iterates xtm

of the neighboring nodes m ∈ Nn which are collected in Step
2. Further, implementation of the DSA update requires stochastic
gradients ĝt−1n and ĝtn which are computed in Step 5 of iterations
t−1 and t, respectively. In Step 3 the index θtn is chosen randomly
to distinguish the instantaneous function fn,θtn that we use its
gradients at points xtn and φtn,θtn for computing the stochastic
averaging gradient in Step 4. The table of auxiliary variables
gradients is updated in Step 5 by replacing ∇fn,θtn(φtn,θtn) by
∇fn,θtn(xtn), while the other vectors remain unchanged.

IV. CONVERGENCE ANALYSIS

Our goal here is to show that as time progresses the sequence
of iterates xt approaches the optimal argument x∗. In proving this
result for the DSA algorithm we make the following assumptions.

Assumption 1. The wight matrices W and W̃ satisfy

(a) If m 6= n and m /∈ Nn, then wnm = w̃nm = 0.
(b) W = WT and W̃ = W̃T .
(c) null{W̃ −W} = span{1} and null{I− W̃} ⊇ span{1}.
(d) 0 ≺ W̃ and W � W̃ � (I + W)/2.

Assumption 2. The instantaneous local functions fn,i(xn) are
differentiable and strongly convex with parameter µ.

Assumption 3. The instantaneous local functions gradients ∇fn,i
are Lipschitz continuous with parameter L,

‖∇fn,i(a)−∇fn,i(b)‖ ≤ L ‖a− b‖ a,b ∈ Rp. (19)

The conditions imposed by Assumption 1(a) on the entries of
the weight matrices W and W̃ imply that nodes only have access
to the local and neighboring information. Further, we assume
the assigned weights are symmetric for both weight matrices W̃
and W as mentioned in Assumption 1(b). Conditions on the
spectral properties of matrices W and W̃ in Assumptions 1(c)
and 1(d) imply that null{I −W} = span{1} – see Proposition
2.1 [12]. Assumption 2 implies that the local functions fn(xn)
and the global cost function f(x) =

∑N
n=1 fn(xn) are strongly

convex with parameter µ. Likewise, the Lipschitz continuity of
the local instantaneous gradients ∇fn,i(xn) enforces Lipschitz
continuity of the local functions gradients ∇fn(xn) and the
aggregate function gradients ∇f(x).

Define 0 < γ and Γ < ∞ as the smallest and largest
eigenvalues of Z̃, respectively. Likewise, define γ̃ as the smallest
non-zero eigenvalue of the matrix Z̃ − Z and Γ̃ as the largest
eigenvalue of Z̃ − Z. Further, define vectors u∗,ut ∈ R2Np and
matrix G ∈ R2Np×2Np as

u∗ :=

[
x∗

v∗

]
, ut :=

[
xt

vt

]
, G =

[
Z̃ 0
0 I

]
. (20)

The vector u∗ ∈ R2Np concatenates the optimal primal and
dual variables and the vector ut ∈ R2Np contains primal and
dual iterates at step t. Further, G ∈ R2Np×2Np is a block
diagonal positive definite matrix. We study the convergence prop-
erties of the weighted norm ‖ut − u∗‖2G which is equivalent to
(ut − u∗)TG(ut − u∗). Our goal is to show that the sequence
‖ut−u∗‖2G converges linearly to null. To do this we show linear
convergence of a Lyapunov function of the sequence ‖ut−u∗‖2G.



The Lyapunov function is defined as ‖ut − u∗‖2G + cpt where

pt :=

N∑
n=1

[
1

qn

qn∑
i=1

fn,i(φ
t
n,i)−fn(x̃∗)

− 1

qn

qn∑
i=1

∇fn,i(x̃∗)T (φtn,i − x̃∗)

]
, (21)

and c > 0 is a positive constant. Notice that based on the strong
convexity of the local instantaneous functions fn,i, each term
fn,i(φ

t
n,i) − fn,i(x̃

∗) − ∇fn,i(x̃∗)T (φtn,i − x̃∗) is positive and
as a result the sequence pt defined in (21) is always positive.

To prove linear convergence of the sequence ‖ut − u∗‖2G +
cpt we first show an upper bound for the expected error
E
[
‖ut+1 − u∗‖2G | F t

]
in terms of ‖ut − u∗‖2G and some pa-

rameters that capture the optimality gap.

Lemma 1. Consider the DSA algorithm as defined in (12)-(18).
Further, recall the definitions of pt in (21) and ut, u∗, and G in
(20). If Assumptions 1-3 hold true, then for any positive constants
η, ρ > 0 we can write

E
[
‖ut+1 − u∗‖2G | F t

]
≤ ‖ut − u∗‖2G (22)

− E
[
‖xt+1−xt‖2

Z̃−α(η+ρ)I |F
t
]
−2E

[
‖xt+1−x∗‖2

I+Z−2Z̃ |F
t
]

− E
[
‖vt+1 − vt‖2 | F t

]
+

4αL

ρ
pt − αC0

∥∥xt − x∗
∥∥2 ,

where C0 = (2µ2/L)− (L2/η)− (2(L2 − µ2))/ρ.

Likewise, we provide an upper bound for the other part of the
Lyapunov function at time t + 1 which is pt+1 in terms of pt

and some parameters that capture optimality gap. This bound is
studied in the following lemma.

Lemma 2. Consider the DSA algorithm as defined in (12)-(18)
and the definition of pt in (21). Further, define qmin and qmax

as the smallest and largest values for the size of instantaneous
functions at a node, respectively. If Assumptions 1-3 hold true,
then for all t > 0

E
[
pt+1 | F t

]
≤
(

1− 1

qmax

)
pt +

L

2qmin

∥∥xt − x∗
∥∥2 . (23)

Combining the results in Lemmata 1 and 2 we can show that the
expected Lyapunov function E

[
‖ut+1 − u∗‖2G + c pt+1 | F t

]
is

strictly smaller than its previous value ‖ut − u∗‖2G + c pt.

Theorem 1. Consider the DSA algorithm as defined in (12)-
(18). Further, recall the definitions of pt in (21) and ut, u∗, and
G in (20). Moreover, consider the results in (22) and (23). If
Assumptions 1-3 hold true and the stepsize α and the parameter
c are chosen properly then there exits 0 < δ < 1 such that

E
[
‖ut+1 − u∗‖2G + c pt+1 | F t

]
≤ (1−δ)

(
‖ut − u∗‖2G + c pt

)
.

(24)

The conditions on α and c, and the explicit expression of
δ are provided in [19]. The inequality in (24) shows that the
expected value of the sequence ‖ut+1−u∗‖2G + c pt+1 given the
observations until step t is strictly smaller than the previous iterate
‖ut−u∗‖2G+cpt. By taking the expected value with respect to the
initial field E

[
. | F0

]
= E [.] and applying the implied inequality

recursively we obtain that

E
[
‖ut − u∗‖2G + c pt

]
≤ (1− δ)t

(
‖u0 − u∗‖2G + c p0

)
. (25)

According to (25), the sequence ‖ut − u∗‖2G + c pt converges
linearly to null in expectation. Notice that the norm ‖ut − u∗‖2G
is equal to ‖xt−x∗‖2

Z̃
+‖vt−v∗‖2. Hence, the inequality ‖xt−

x∗‖2
Z̃
≤ ‖ut − u∗‖2G holds. Moreover, the sequence pt is always

non-negative. Considering these two observations the inequality
‖xt − x∗‖2

Z̃
≤ ‖ut − u∗‖2G + c pt holds true. Considering this

inequality and the expression in (25), and observing that the term
‖xt − x∗‖2

Z̃
is lower bounded by γ‖xt − x∗‖2, we can write the

following corollary.

Corollary 1. Consider the DSA algorithm as defined in (12)-(18).
Recall the definitions of pt in (21) and ut, u∗, and G in (20).
Further, recall γ as the smallest eigenvalue of Z̃. If Assumptions
1-3 hold true, then there exits a constant 0 < δ < 1 such that

E
[
‖xt − x∗‖2

]
≤ (1− δ)t

(
‖u0 − u∗‖2G + c p0

)
.

γ
(26)

Corollary 1 states that E
[
‖xt − x∗‖2

]
linearly converges to

null. Note that the sequence E
[
‖xt − x∗‖2

]
is not necessarily

decreasing as the sequence E
[
‖ut − u∗‖2G + c pt

]
is.

V. NUMERICAL ANALYSIS

We numerically study the performance of the DSA algorithm
for solving a logistic regression problem. Consider q =

∑N
n=1 qn

training points where each node n has access to qn of them.
The training points at node n are denoted by sni ∈ Rp for
i = 1, . . . , qn with the associated labels lni ∈ {−1, 1}. The goal
is to solve the logistic regression problem

x̃∗ := argmin
x∈Rp

λ

2
‖x‖2 +

N∑
n=1

qn∑
i=1

log
[
1 + exp(−lnisTnix)

]
, (27)

where the regularization term (λ/2)‖x‖2 is added to avoid over-
fitting the training model. The problem in (27) can be written in
the form of (1) by defining the local objective functions fn as

fn(x) =
λ

2N
‖x‖2 +

qn∑
i=1

log
[
1 + exp(−lnisTnix)

]
, (28)

and the instantaneous local functions fn,i as

fn,i(x) =
λ

2N
‖x‖2 + qn log

(
1 + exp

(
−lnisTnix

))
, (29)

for all i = 1, . . . , qn. In our experiments we use a synthetic dataset
where components of the feature vectors sni with label lni = 1 are
generated from a normal distribution with mean µ and standard
deviation σ+, while the distribution of the sample points with label
lni = −1 is normal with mean −µ and standard deviation σ−. The
edges between nodes are generated randomly with probability pc.
The weight matrix W is generated using the Laplacian matrix L
of the network as W = I−L/τ , where τ > (1/2)λmax(L). The
convergence error is defined and computed as et = ‖xt − x∗‖2.
We set the total number of sample points q = 500, feature vectors
dimension p = 2, regularization parameter λ = 10−4, probability
of existence of an edge pc = 0.3, and τ = (2/3)λmax(L). To
make the dataset not linearly separable we set the mean value as
µ = 2 and the standard deviations as σ+ = σ− = 2.

We provide a comparison of DSA with respect to DGD, EX-
TRA, stochastic EXTRA, and decentralized SAGA. The stochas-
tic EXTRA is a stochastic version of EXTRA that uses naive
stochastic gradients instead of gradients. DSA is different form
stochastic EXTRA since it uses stochastic averaging gradients.
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Fig. 1. Convergence paths of DSA, EXTRA, DGD, Stochastic EXTRA, and
Decentralized SAGA with constant stepsizes. Relative distance to optimality
et = ‖xt − x∗‖2 is shown with respect to the number iterations t. DSA and
EXTRA converge linearly to the optimum, while DGD, Stochastic EXTRA, and
Decentralized SAGA converge to a neighborhood of the optimal solution. Smaller
choice of stepsize leads to more accurate convergence for these algorithms.

The decentralized SAGA method is a stochastic version of DGD
algorithm that uses stochastic averaging gradients instead of
gradients which is a naive approach for developing a decentralized
version of the SAGA algorithm. In our experiments we use
W̃ = (I + W)/2 for EXTRA, stochastic EXTRA, and DSA.

Fig. 1 illustrates the convergence paths of DSA, EXTRA,
DGD, Stochastic EXTRA, and Decentralized SAGA with constant
step sizes for N = 20 nodes. For EXTRA and DSA different
stepsize are chosen and the best performance for EXTRA and
DSA are achieved by α = 5 × 10−2 and α = 5 × 10−3,
respectively. As shown in Fig. 1, DSA is the only stochastic
algorithm that achieves linear convergence. Decentralized SAGA
after couple of iterations achieves the performance of DGD and
they both can not achieve exact convergence. By choosing smaller
stepsize α = 10−3 they reach more accurate convergence relative
to stepsize α = 10−2, however, the speed of convergence is
slower for the smaller stepsize. Stochastic EXTRA also suffers
from inexact convergence, but for a different reason. DGD and
decentralized SAGA have inexact convergence since they solve
a penalty version of (1), while stochastic EXTRA can not reach
the optimal solution since the noise of stochastic gradient is not
vanishing. DSA resolves both issues by combining the idea of
stochastic averaging gradients to control the noise of stochastic
gradients and using the double decentralized descent idea to
solve the correct optimization problem. The convergence rate of
EXTRA is faster than the one for DSA in terms of number of
iterations, however, the complexity of EXTRA is higher than
DSA. Hence, we also compare performances of these algorithms
in terms of number of processed feature vectors. For instance,
DSA requires 400 iterations or equivalently 400 feature vectors
to achieve error et = 10−7, while to achieve the same accuracy
EXTRA requires 60 iterations which is equivalent to processing
60 × 25 = 1440 feature vectors. The difference can be more
significant by increasing the number of instantaneous functions.

We also study the performance of DSA in different network
topologies. We keep the parameters in Fig. 1 except we change
the size of network to N = 100 which implies each node has
qi = 5 sample points. The linear convergence of DSA for random
networks, complete graph, cycle, line and star are shown in Fig. 2.
As we expect for the topologies that the graph is more connected
and the diameter is smaller DSA converges faster.
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Fig. 2. Convergence paths of DSA for different network topologies. Relative
distance to optimality et = ‖xt − x∗‖2 is shown with respect to the number
iterations t. DSA converges faster as the network connectivity increases.
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