
Online Learning of Feasible Strategies in Unknown Environments

Santiago Paternain and Alejandro Ribeiro

Abstract— An environment is defined as a set of constraint
functions that vary arbitrarily over time. An agent wants to
select feasible actions that keep all the constraints negative, but
must do so causally. I.e., the dynamical system that determines
actions is such that only their time derivatives can depend on
the current constraints. An environment is said viable if there
exists an action that can satisfy the constraints for all times.
The fit of a trajectory is defined as a vector that integrates
the constraint violations over time and is used to measure the
extent to which a policy succeeds in learning feasible actions.
An online saddle point controller is proposed to control fit
and shown to do so under minimal technical conditions. The
online saddle point controller pushes actions along a linear
combination of the constraint negative gradients and dynami-
cally adapts the coefficients of this linear combination to find
appropriate weightings. Concepts are illustrated throughout
with the problem of a shepherd that wants to stay close to all
sheep in a herd. Numerical experiments show that the controller
allows the shepherd to do so.

I. INTRODUCTION

A shepherd wants to stay close to a herd of sheep. The
movement of the sheep is unknown a priori and arbitrary,
perhaps strategic. However, they stay in a configuration
at which it is possible for the shepherd to stay within a
prescribed distance of all of them. The shepherd observes
the sheep movement and responds to this online information
through a causal dynamical system. This paper shows that
an online version of the saddle point algorithm of Arrow and
Hurwicz [1] succeeds in keeping the shepherd close to all
sheep. More generically, we consider an agent that operates
in an environment that we define as a time varying function
of the agents actions – the distance between the sheep and
the shepherd. We further define a viable environment as one
in which the constraints are satisfiable over time – whatever
the sheep do, the shepherd can position himself close to all
of them – and the fit as the accumulation of the constraint
violation over time – the integrals of the distance of the
shepherd to each sheep. The online saddle point controller
that we introduce here achieves bounded fit. The agent learns
a feasible trajectory even if constraint functions are unknown
ex ante but revealed ex post.

Designing a controller to let an agent satisfy a number
of convex constraints is related to the problem of letting
the agent minimize a convex cost. The latter is a canonical
problem that can be solved with a gradient descent controller
that pushes the agent along the negative gradient of the cost

Work in this paper is supported by NSF CCF-1017454, NSF CCF-
0952867 and ONR N00014-12-1-0997. The authors are with the De-
partment of Electrical and Systems Engineering, University of Pennsyl-
vania, 200 South 33rd Street, Philadelphia, PA 19104. Email: {spater,
aribeiro}@seas.upenn.edu.

function; see e.g., [2]. These costs can represent natural
constraints or artificial potentials, can be even allowed to
be stochastic [3]–[5], and are common methodologies to
solve, e.g., navigation problems [6], [7]. The problem of
satisfying a number of constraints can be formally posed as
the determination of a saddle point of a Lagrangian function
which can be found with the saddle point algorithm of Arrow
and Hurwicz [1]. This algorithm interprets each constraint
as a separate potential and descends on a linear combination
of their negative gradients. The coefficients of these linear
combinations are multipliers that adapt dynamically so as to
push the agent to a region where all constraints are satisfied.
Saddle point algorithms and variations are popular in several
application domains, see e.g., [8].

The novelty of this work is to consider constraints that are
unknown a priori and can change arbitrarily over time. This
is related to the minimization of unknown convex costs that
vary arbitrarily over time, in which case the problem can be
formulated in the language of regret [9], [10]. In regret for-
mulations, agents operate online by selecting plays that incur
a cost selected by nature. The cost functions are revealed
to the agent ex post and used to adapt subsequent plays.
Regret is defined as the accumulation over time of the loss
difference between the online learner and a offline learner
to which cost functions have been revealed beforehand. It is
remarkable that an online version of gradient descent is able
to find plays whose regret grows at a sublinear rate [11], [12]
– therefore suggesting vanishing per-play penalties of online
plays with respect to the clairvoyant play.

We formulate online learning of strategies that are feasible
with respect to an unknown and arbitrarily varying environ-
ment in the language of fit, which we define as a vector
that accumulates the violation of each constraint over time
(Section II). We propose to control fit growth with the use of
an online saddle point controller that moves along a linear
combination of the negative gradients of the instantaneous
constraints. The coefficients of these linear combinations
are adapted dynamically as per the instantaneous constraint
functions as well (Section III). This online saddle point
controller is a generalization of (offline) saddle point in the
same sense that an online gradient controller generalizes
(offline) gradient descent. We show that if there exists a
viable strategy that can satisfy the environmental constraints
at all times, the online saddle point controller achieves
bounded fit (Theorem 1). Throughout the paper we illustrate
concepts with the problem of a shepherd that has to stay close
to a herd of sheep (Section II-B). A numerical analysis of
this problem closes the paper (Section IV).

Notation. A multivalued function f : Rn → Rm
is defined by stacking the components functions, i.e.,
f := [f1, . . . , fm]T . The notation

∫
f(x)dx :=

[
∫
f1(x)dx, . . . ,

∫
fm(x)dx]T represents a vector stacking

each individual integral. An inequality x ≤ y between
vectors of equal dimension x, y ∈ Rn is interpreted com-
ponentwise. An inequality x ≤ c between a vector x =
[x1, . . . , xn]TRn and a scalar c ∈ R means that xi ≤ c for
all components of x.

II. VIABILITY AND FEASIBILITY

We consider a continuous time environment in which an
agent selects an action that results in a time varying set of
penalties. Using t to denote time and x ∈ X ⊆ Rn to denote
the agent’s action, the penalties incurred at time t are given
by the value f(t, x) of the vector function f : R×Rn → Rm.
We interpret the vector penalty function f as a definition of
the environment. Our interest in this paper is in situations
where the agent is faced with an environment f and must
choose an action x ∈ X – or perhaps a trajectory x(t) – that
guarantees nonpositive penalties f(t, x(t)) ≤ 0 for all times
t not exceeding a time horizon T . Since the existence of this
trajectory depends on the specific environment, we start by
defining a viable environment as one in which it is possible
for the agent to select an action with nonpositive penalty for
times 0 ≤ t ≤ T as we formally specify next.

Definition 1 (Viable environment). We say that a given
environment f : R × Rn → Rm is viable over the time
horizon T for an agent that selects actions x ∈ X if there
exists an action x† ∈ X such that

f(t, x†) ≤ 0, for all t ∈ [0, T]. (1)

An action x† satisfying (1) is said feasible and the set X† :=
{x† : f(t, x†) ≤ 0, for all t ∈ [0, T]} is termed the feasible
set of actions.

In subsequent definitions and analyses we require integra-
bility of the environment f as well as convexity with respect
to x as we formally state next.

Assumption 1. The function f(t, x) is integrable with re-
spect to t in the interval [0, T].

Assumption 2. The function f(t, x) is convex with respect
to x for all times t ∈ [0, T].

If the environment f is known beforehand, the question
of finding an action in a viable environment that gives
non positive penalties reduces to finding a solution to the
following constrained convex optimization program:

min
x∈X

0

s.t. f(t, x) ≤ 0, for all t ∈ [0, T]. (2)

A number of algorithms are known to solve this problem.
Here, we consider the problem of adapting a strategy x(t)
when the function f(t, x) is arbitrary and revealed causally.
I.e., we want to choose the action x(t) using observations
of viability f(t, x) in the open interval [0, t). This implies

that f(t, x(t)) is not observed before choosing x(t). The
action x(t) is chosen ex ante and the corresponding viability
f(t, x(t)) is incurred ex post.

A. Fit

We evaluate the performance of trajectories x(t) through
the concept of fit. We define the fit of the trajectory x(t)
as the accumulated value of the penalties f(t, x(t)) incurred
for times t ∈ [0, T],

FT :=

∫ T

0

f(t, x(t)) dt. (3)

The fit FT can be interpreted as a performance loss asso-
ciated with online causal operation as opposed to offline
clairvoyant operation. In the latter, since the function f
is known, an action that entails a non positive cumulative
penalty can always be selected for a viable environment.
If the fit FT is positive in a viable environment we are in
a situation in which, had the environment f be known a
priori, we could had selected an action x† with f(t, x†) ≤ 0.
The fit measures how far the trajectory x(t) comes from
achieving that goal. This observation motivates the definition
of strongly feasible trajectories.

Definition 2 (Strong Feasibility). Given an environment
f : R × Rn → Rm and a trajectory x(t) we say that the
trajectory x(t) is strongly feasible in the environment if the
fit FT is bounded for all T . I.e., if there exists a constant
vector C such that for all times T it holds,

FT :=

∫ T

0

f(t, x(t)) dt ≤ C. (4)

Remark 1 (Not every trajectory is strongly feasible).
Notice that in definition (4) we are considering the integral of
a measurable function in a finite interval, hence the integral
will always be bounded by a constant. Yet the constant could
be dependent on the time horizon T , in which case the
trajectory is not strongly feasible because the bound is not
independent of T .

Having the fit satisfy FT ≤ C irrespectively of T is an
indication that that x(t) approaches the feasible set of actions
X†, so that the integral stops growing. This need not be true
as it is possible to achieve bounded fit by having f(t, x(t))
oscillate around 0. In general, the possibility of having small
fit by a trajectory that does not approach X† is a limitation of
the concept of fit. Alternatively, we can think of the feasible
offline policy x† as fixing a budget for the accumulated cost
across time

∫ T
0
f(t, x(t)) dt ≤ 0. A strongly feasible online

policy meets that budget within a constant factor C – perhaps
by overspending at some times and underspending at some
other times.

In section III we provide an algorithm for solving the
problem of finding strongly feasible trajectories according
to Definition 2. Before that, we clarify concepts with the
introduction of an example.

B. The shepherd problem

Consider a target tracking problem in which an agent –
the shepherd – follows a group of m targets – the sheep.
Specifically, let z(t) = [z1(t), z2(t)]T ∈ R2 denote the
position of the shepherd at time t. To model smooth paths
for the shepherd introduce a polynomial parameterization so
that each of the position components zk(t) can be written as

zk(t) =

n−1∑
j=0

xkjpj(t), (5)

where pj(t) are polynomials that parameterize the
space of possible trajectories. The action space
of the shepherd is then given by the vector
x = [x10, . . . , x1,n−1, x20, . . . , x2,n−1]T ∈ R2n that
stacks the coefficients of the parameterization in (5).

Further define yi(t) = [yi1(t), yi2(t)]T as the position of
the ith sheep at time t for i = 1, . . . ,m and introduce a
maximum allowable distance ri between the shepherd and
each of the sheep . The goal of the shepherd is to find a path
z(t) that is within distance ri of sheep i for all sheep. This
can be captured by defining an m-dimensional environment
f with each component function fi defined as

fi(t, x) = ‖z(t)− yi(t)‖2 − r2
i for all i = 1..m. (6)

That the environment defined by (6) is viable means that
it is possible to select a vector of coefficients x so that
the shepherd’s trajectory generated by (5) stays close to
all sheep for all times. To the extent that (5) is a loose
parameterization – we can approximate arbitrary functions
with sufficiently large index n –, this simply means that the
sheep are sufficiently close to each other at all times. E.g.,
if ri = r for all times, viability is equivalent to having a
maximum separation between sheep smaller than 2r.

Trajectories x(t) differ from actions in that they are
allowed to change over time, i.e., the constant values xkj in
(5) are replaced by the time varying values xkj(t). A feasible
trajectory x(t) means that the shepherd is repositioning to
stay close to all sheep. In this case we apply the usual
caveat that small fit may be achieved with stretches of
underachievement following stretches of overachievement.

III. SADDLE POINT CONTROLLER

Given an environment f(t, x) verifying assumptions 1 and
2 we set our attention towards the problem of designing
a controller that gives origin to feasible trajectories. As
already noted, when the environment is known beforehand
the problem of finding such trajectories is a constrained
convex optimization problem, which we can solve using the
saddle point algorithm of Arrow and Hurwicz [1]. Following
this idea, let λ ∈ Λ = Rm+ , be a multiplier and define the
time-varying Lagrangian associated with the online problem
as

L(t, x, λ) = λT f(t, x). (7)

Saddle point methods rely on the fact that for a constrained
convex optimization problem, a pair is a primal-dual optimal

solution if and only if the pair is a saddle point of the
Lagrangean associated with the problem; see e.g. [13]. Since
optimality is not of interest for us, any point in the feasible
set is an optimal solution of the convex optimization prob-
lem. Hence, finding a saddle point is the equivalent of finding
a feasible point. The main idea of the algorithm is then to
generate trajectories that descend in the opposite direction
of the gradient of the Lagrangian with respect to x and that
ascend in the direction of the gradient with respect to λ. To
avoid restricting attention to functions that are differentiable
with respect to x, we introduce the notion of subgradient that
we formally define next.

Definition 3 (Subgradient). Let g : X → R, be a convex
function where X ⊂ Rn. Then gx is a subgradient of g at a
point x ∈ X if:

g(y) ≥ g(y) + gx(x)T (y − x) for all y ∈ X (8)

Subgradients are defined at all points for convex functions.
At the points where the function f is differentiable the
subgradient and the gradient coincide. For vector functions
f : Rn → Rm we group the subgradients of each component
into a subgradient matrix fx(x) ∈ Rn×m that we define as

fx(x) =
[
f1,x(x) f2,x(x) · · · fm,x(x)

]
(9)

where f2,x(x) is a subgradient of fi(x) as per Definition
3. Since the Lagrangian is differentiable with respect to λ,
we denote by Lλ(t, x, λ) = f(t, x) the derivative of the
Lagrangian with respect to λ. On the other hand, since the
function f(·, x) is convex the subgradient with respect to x
always exist, let then denote by Lx(t, x, λ) the subgradient
of the Lagrangian with respect to x. Since the action must
always be selected from the set X and the multipliers must be
in the non negative orthant, we need to project the solutions
over those sets. With this goal in mind, we define a projected
dynamical system over a closed set; see [14], [15].

Definition 4 (Projected dynamical system). Let X ∈ Rn
be a closed convex set:

Projection of a point. For any z ∈ Rn, there exits a unique
element in X , denoted PX(z) such that:

PX(z) = arg inf
y∈X
‖y − z‖. (10)

Projection of a vector at a point. Let x ∈ X and v ∈ Rn,
we define the projection of v over the set X at the point x,
ΠX(x, v) as:

ΠX(x, v) = lim
δ→0+

(PX(x+ δv)− x)/δ. (11)

The projection of a vector at a point over a set is equivalent
to project the vector over the smallest cone containing the
set X with vertex at the point x.

Projected dynamical system. Given a closed convex set X
and a vector field F (t, x) which takes elements from X into
Rn the projected differential equation associated with X and
F is defined to be:

ẋ(t) = ΠX(x, F (t, x)). (12)

If the point x is in the interior of X then the pro-
jection is not different from the original vector field i.e.
ΠX(x, F (t, x)) = F (t, x). If the point x is in the border
of X and the vector field is pointing outside the set, then the
projection is just the component of the vector field that is
tangential to the set X at the point x. Let’s consider for
instance the case where the set X is a box in Rn. Let
X = [a1, b1] × ... × [an, bn] where a1..an and b1...bn are
real numbers. Then for each component of the vector field
we have:

ΠX(x, F (t, x))i =

 0 if xi = ai and F (t, x)i < 0,
0 if xi = bi and F (t, x)i > 0,
F (t, x)i otherwise.

(13)
Using the notions of subgradient and projected dynamical
system we can present the online saddle point controller.
For that matter introduce the gain ε and define a controller
that descends in the direction of the Lagrangian subgradient
with respect to the action x,

ẋ = ΠX (x,−εLx(xt, λt)) = ΠX (x,−εfx(t, x)λ) , (14)

and that ascends in the direction of the Lagrangian gradient
with respect to the multiplier λ

λ̇ = ΠΛ (εLλ(t, x, λ)) . = ΠΛ (λ, εf(t, x)) . (15)

An important observation regarding (14) - (15) is that the
environment is observed locally in space and causally in
time. The values of the environment constraints and its
subgradients are observed at the current trajectory position
x(t) and the values of f(t, x(t)) and fx(t, x(t)) affect the
derivatives of x(t) and λ(t) only.

A block diagram for the controller in (14) - (15) is
shown in Figure 1. The controller operates in an environment
to which it inputs at time t an action x(t) that results
in a penalty f(t, x(t)). The value of this penalty and its
subgradient fx(t, x(t)) are observed and fed to the multiplier
and action feedback loops, respectively. The action feedback
loop behaves like a weighted gradient descent controller. We
move in the the direction given by a linear combination of the
different constraint subgradients fi(t, x(t)) weighted by their
corresponding multipliers λi(t). Intuitively, this pushes x(t)
towards satisfying the constraints. However, the question re-
mains of how much weight to give to each constraint. This is
the task of the multiplier feedback loop. When constraint i is
violated we have fi(t, x(t)) > 0. This pushes the multiplier
λi(t) up, thereby increasing the force λi(t)fi(t, x(t)) push-
ing x(t) towards satisfying the constraint. If the constraint
is satisfied, we have fi(t, x(t)) < 0, the multiplier λi(t)
being decreased, and the corresponding force decreasing. The
more that constraint i is violated, the faster we increase the
multiplier, and the more we increase the force that pushes
x(t) towards satisfying fi(t, x(t)) < 0. If the constraint is
satisfied, the force is decreased and may eventually vanish
altogether if we reach the point of making λi(t) = 0.

Gradient descent on actions

Gradient ascent on multipliers

Environment

ΠX (x(t),−εfx(t, x(t))λ(t))

ΠΛ (λ(t), εf(t, x(t)))

∫

∫

f(t, x(t)), fx(t, x(t))

ẋ(t)

λ̇(t)

x(t)

λ(t)

Fig. 1: Block diagram of the saddle point controller. The main
structure is composed by two interconnected feedback loops. Once,
that action x is selected at time t, we measure the corresponding
values of f(t, x) and fx(t, x).

A. Strongly feasible trajectories

This section presents a bound on the fit of the trajectories
x(t) generated by the saddle point controller defined by (14)
and (15). This bounds ensures that the trajectories x(t) are
strongly feasible in the sense of Definition 2. To state the
result consider an arbitrary fixed action x̄ ∈ X and an
arbitrary multiplier λ̄ ∈ Λ and define the energy function

Vx̄,λ̄(x, λ) =
1

2

(
||x− x̄||2 + ||λ− λ̄||2

)
. (16)

We can then bound fit in terms of the initial value
Vx̄,λ̄(x(0), λ(0)) of the energy function for properly chosen
x̄ and λ̄ as we formally state next.

Theorem 1. Let f : R ×X → Rm, satisfying assumptions
1 and 2, where X ⊆ Rn is a closed convex set. If the
environment is viable, then the controller defined by (14) and
(15) gives origin to feasible trajectories x(t) for all T > 0.
Furthermore the fit is bounded by:

FT,i ≤
(
Vx†,ei(x(0), λ(0))

)
/ε, (17)

where x† belongs to the feasible set X†, and ei with i = 1..m
are the vectors of the canonical base of Rm.

Proof. See Appendix.

Theorem 1 assures that if an environment is viable for an
agent that selects actions over a set X , the controller defined
by (14) and (15) gives origin to a trajectory x(t) that is
strongly feasible in the sense of Definition 2. This result is
not trivial, since the function f that defines the environment
is observed causally and can change arbitrarily over time.
In particular, the agent could be faced with an adversarial
environment that changes the function f in a way that makes
the value of f(t, x(t)) larger. The caveat is that the choice
of the function f must respect the viability condition that

there exists a feasible action x† such that f(t, x†) ≤ 0
for all t ∈ [0, T]. This restriction still leaves significant
leeway for strategic behavior. E.g., in the shepherd problem
of Section II-B we can allow for strategic sheep that observe
the shepherd’s movement and respond separating as much as
possible. The strategic action of the sheep are restricted by
the condition that the environment remains viable, which in
this case reduces to the not so stringent condition that the
sheep stay in a ball of radius 2r if all ri = r.

Since the initial value of the energy function
Vx†,ei(x(0), λ(0)) is the square of the distance between
x(0) and x† plus a term that depends on the distance of
the initial value of the multiplier with the multiplier ei,
the fit bound in (14) shows that the closer we start to the
feasible set the smaller the accumulated constraint violation
becomes. Likewise, the larger the gain ε, the smaller the fit
bound is. Theoretically, increasing ε can make the fit bound
arbitrarily small. This is not possible in practice because
larger ε entails trajectories with larger derivatives which
cannot be implemented in systems with physical constraints.
In the example of Section II-B the derivatives of the state
x(t) control speed and acceleration. The physical limits of
these quantities along with an upper bound on the gradient
fx(t, x) and an upper bound on the multiplier values of
λ(t) can be used to estimate the largest allowable gain ε.
An upper bound in λ(t) has not been provided but can be
obtained as a direct consequence of Theorem 1.

Corollary 1. Under the hypothesis of Theorem 1, from the
controller (14), (15) arises multipliers λ that are bounded
for all time. In particular, for each i = 1..m, it holds

0 ≤ λi(t) ≤ λi(0) +
(
Vx†,ei(x(0), λ(0))

)
/ε. (18)

Proof. See Appendix.

The bound in Corollary 1 ensures that action derivatives
ẋ(t) remain bounded if the subgradients are. Further observe
that increasing the gain ε decreases the multiplier bound in
(18). This means that action derivatives increase, at most,
linearly with ε and is not compounded by an increase in the
values of the multipliers.

IV. NUMERICAL EXPERIMENTS

We evaluate performance of the saddle point algorithm
defined by (14)-(15) in the solution of the shepherd problem
introduced in Section II-B.We determine sheep paths using
a perturbed polynomial characterization akin to the one in
(5). Specifically, letting pj(t) be elements of a polynomial
basis, the path yi(t) = [yi1(t), yik(t)]T followed by the ith
sheep is given by the expression

yik(t) =

ni−1∑
j=0

yikjpj(t) + wik(t), (19)

where k = 1, 2 denotes different path components, ni
the total number of polynomials that parameterize the path
followed by sheep i, and yikj represent the corresponding ni
coefficients. The noise terms wik(t) are Gaussian white with

zero mean, standard deviation σ, and chosen independently
across components and sheep. Their purpose is to obtain
more erratic paths.

To determine yikj we make wik(t) = 0 in (19) and require
all sheep to start at position yi(0) = [0, 0]T and finish at
position yi(T) = [1, 1]T . A total of L random points {ỹl}Ll=1

are then drawn independently and uniformly at random in the
unit box [0, 1]2. Sheep i = 1 is required to pass trough points
ỹl at times lT/(L+1), i.e., y1(lT/(L+1)) = ỹl. For each of
the other sheep i 6= 1 we draw L random offsets {∆ỹil}Ll=1

uniformly at random from the box [−∆,∆]2 and require the
ith sheep path to satisfy yi(lT/(L+ 1)) = ỹl + ∆ỹil. Paths
yi(t) are then chosen as those that minimize the path integral
of the acceleration squared subject to the constraints of each
individual path, i.e.,

y∗i (t) = argmin

∫ T

0

‖ÿi(t)‖2dt,

s.t. yi(0) = [0, 0]T , yi(T) = [1, 1]T ,

yi(lT/(L+ 1)) = ỹl + ∆ỹil, (20)

where, by construction ∆ỹil = 0 for i = 1. The paths in (20)
can be computed as solutions of a quadratic program [16].
We obtain the paths yik(t) by adding wik(t) to y∗ik(t).

In subsequent numerical experiments we consider m = 5
sheep, a time horizon T = 1, and set the proximity constraint
in (6) to ri = 0.3. We use the standard polynomial basis
pj(t) = tj in both, (5) and (19). The number of basis
elements in both cases is set to n = ni = 30. To generate
sheep paths we consider a total of L = 3 randomly chosen
intermediate points, set the variation parameter to ∆ = 0.1,
and the perturbation standard deviation to σ = 0.1. These
problem parameters are such that the environment is most
likely viable in the sense of Definition 1. We check that
this is true by solving the offline feasibility problem. If
the environment is not viable a new one is drawn before
proceeding to the implementation of (14)-(15).

We emphasize that even if the complete trajectory of the
sheep is known to us, the information is not used by the
controller. The controller is only fed information of the
position of the sheep at the current time, which it uses to
evaluate the environment functions fi(t, x) in (6) and their
gradients fix(t, x).

The system’s behavior is illustrated in Figure 2 when the
gain is set to ε = 50. A qualitative examination of the
sheep and shepherd paths shows that the shepherd succeeds
in following the herd. A more quantitative evaluation is
presented in Figure 3 where we plot the instantaneous
constraint violation fi(t, x(t)) with respect to each sheep
for the trajectories x(t) obtained from (14)-(15). Observe
the oscillatory behavior that has the constraint violations
fi(t, x(t)) hovering at around fi(t, x(t)) = 0. When the
constraints are violated, i.e., when fi(t, x(t)) > 0, the saddle
point controller drives the shepherd towards a position that
makes him stay within ri of all sheep. When a constraint is
satisfied we have fi(t, x(t)) < 0. This drives the multiplier
λi(t) towards 0 and removes the force that pushes the

0 0.2 0.4 0.6 0.8 1 1.2

−0.5

0

0.5

1

1.5

x (m)

y
(m

)

Sheep 1

Sheep 2

Sheep 3

Sheep 4

Sheep 5

Shepherd

Fig. 2: Path of the sheep and the shepherd. The value of the gain
of the saddle point controller is set to be ε = 50. We observe how
the shepherd –in red – path is close to the path of all sheep. He
succes to follow the herd.

shepherd towards the sheep (c.f. Figure 3). The absence of
this force makes the constraint violation grow and eventually
surpass the maximum tolerance fi(t, x(t)) = 0. At this point
the multipliers start to grow and, as a consequence, to push
the shepherd back towards proximity with the sheep.

The behavior observed in Figure 3 does not contradict the
result in Theorem 1 which gives us a guarantee on fit, not on
instantaneous constraint violations. The components of the fit
are shown in Figure 4a and they are indeed bounded. Thus,
the trajectory is strongly feasible in the sense of Definition
2, even if the constraints are being violated at specific time
instances. Further note that the regret is not only bounded
but actually becomes negative. This is a consequence of
the relatively large gain ε = 50 which helps the shepherd
to respond quickly to the sheep movements. The fit for a
second experiment in which the gain is reduced to ε = 5
is shown in Figure 4b. In this case the fit stabilizes at a
positive value. This behavior is expected because reducing
ε decreases the speed with which the shepherd can adapt to
changes in the sheep paths. More to the point, the fit bound
in Theorem 1 is inversely proportional to the gain ε. The
paths and instantaneous constraints violations for ε = 5 are
qualitatively similar to the ones shown for ε = 50 in figures
2 and 3.

V. CONCLUSION

Throughout this work we have consider a continuous time
environment in which an agent must select actions in order to
satisfy the constraints imposed by the environment. A saddle
point controller was designed and we showed that for a viable
environment the trajectories that arise from it are strongly
feasible. Furthermore, we showed that the controller gives
origin to bounded action derivatives. In the last section we
show how saddle points algorithms can be used in a tracking
problem, in which we want to follow several targets. In this
case the environment is given by the distance between the

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

−0.1

−0.05

0

0.05

0.1

Time (s)

C
on

st
ra

in
t v

io
la

tio
n

(m
2)

Sheep 1
Sheep 2
Sheep 3
Sheep 4
Sheep 5

(a) Instantaneous constraint value.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−0.05

0

0.05

0.1

0.15

0.2

Time (s)

M
ul

tip
lie

rs
 (

m
2 s)

Multiplier Sheep 1

Multiplier Sheep 2

Multiplier Sheep 3

Multiplier Sheep 4

Multiplier Sheep 5

(b) Temporal evolution of the multipliers.

Fig. 3: Relation between instantaneous constraint value and multi-
pliers λ. At the times in which the value of a constraint is positive,
the corresponding multiplier increases. The latter entails a decrease
of the value of the constraint function. Once the constraint function
is negative the corresponding multiplier decreases.

agent and the targets to track. The results obtained are in
concordance with what was proved in Theorem 1.

APPENDIX

In order to develop proofs we need to define the concept
of tangent cone and to state Lemmas 1 and 2.

Definition 5 (Tangent cone). Let X ⊂ Rn be a closed
convex set. We define the tangent cone to X at x0 as:

TX(x0) = ∪θ>0,x∈X(x− x0)θ (21)

The above union is over all the points of the set X and
over all the positive reals θ. Notice that the ∪θ>0(x− x0)θ
is the ray from x0 and intersecting the point x. Thus, the
tangent cone is then the closure of the cone formed by all
rays emanating from x0 and intersecting at least one point
x ∈ X different from x0.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−0.05

−0.04

−0.03

−0.02

−0.01

0

0.01

Time (s)

F
it

(m
2 s)

Sheep 1
Sheep 2
Sheep 3
Sheep 4
Sheep 5

(a) The gain in the saddle point controller is set to be ε = 50.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.02

0.04

0.06

0.08

0.1

0.12

Time (s)

F
it

(m
2 s)

Sheep 1

Sheep 2

Sheep 3

Sheep 4

Sheep 5

(b) The gain in the saddle point controller is set to be ε = 5.

Fig. 4: Fit FT for two different controller gains. Notice that both results are in concordance with Theorem 1. First of all the fit is bounded
in the two experiments. Moreover, the larger the value of the gain ε the smaller the fit of the trajectory generated.

Lemma 1. For arbitrary δ and v the projection over the set
X can be written as:

PX(x0 + δv) = x0 + δPTX(x0)(v) +O(δ) (22)

where O(δ) is a function such that limδ→0O(δ)/δ = 0

Proof. See [15] Lemma 4.6 page 300.

Corollary 2. Let X ∈ Rn be a closed convex set, let x0 ∈ X
and let v ∈ Rn. Then the projection of v over the set X at
x0 defined in (10) is:

ΠX(x0, v) = PTX(x0)(v) (23)

Proof. The proof is trivial from lemma 1

Lemma 2. Let X be a closed convex set and x0 ∈ X and
x ∈ X . Then:

(x0 − x)TΠX(x0, v) ≤ (x0 − x)T v. (24)

Proof of Lemma 2. Let’s first consider the case in which
x0 ∈ int(X). Then, for any v there exits a small enough
δ > 0 such that x0 +δv ∈ X . Hence PX(x0 +δv) = x0 +δv,
and then we have that PX(x0 + δv) − x0 = vδ. Thus
ΠX(x, v) = v and then we have trivially that:

(x0 − x)TΠX(x0, v) = (x0 − x)T v (25)

Let’s now consider the case in which x0 is in the border of
X , here two case are possible: either x0 + δv ∈ TX(x0) for
small enough δ > 0 or x0 + δv /∈ TX(x0) for all δ > 0.
Because of this distinction is that the result of Corollary 2
is important. In the first case we trivially have that:

ΠX(x0, v) = PTX(x0)(v) = v (26)

And therefore (25) holds in this case as well. Finally, we are
going to consider the case in which x0 ∈ ∂X and x0 + δv /∈
TX(x0). Because X is a convex set there exists a vector

a ∈ Rn with ‖a‖ = 1 defining the supporting hyperplane
H = {x ∈ Rn : aT (x − x0) = 0} at x0. Since it is a
supporting hyperplane, for all x ∈ X we have that:

aT (x− x0) ≤ 0 (27)

If the set is smooth at x0 then the border of the tangent cone
at the point x0 is contained in the hyperplane H, therefore
ΠX(x0, v) ⊂ H. Thus, aTΠX(x0, v) = 0. In this case we
have as well that aT v ≥ 0, otherwise there must exists a
δ > 0 such that x0+δv ∈ TX(x0). On the other hand if there
is a corner at x0 there are infinite supporting hyperplanes.
One of them verifies that aT v ≥ 0 and contains the border
of the tangent cone, thus aTΠX(x0, v) = 0. Finally, since
ΠX(x0, v) is the projection of v over the tangent cone, we
have that: ΠX(x0, v) = PTX(x0)(v) = (aT⊥v)a⊥, where
a⊥ ∈ Rn and verifies that aTa⊥ = 0 and ‖a⊥‖ = 1.
Projecting the vectors x0−x and v over a and a⊥, we have:

(x0 − x)T v = (x0 − x)TavTa+ (x0 − x)Ta⊥v
Ta⊥ (28)

Because of the above previous discussion (28) reduces to:

(x0− x)T v = (x0− x)TavTa+ (x0− x)TΠX(x0, v) (29)

Finally using the fact that a is the vector director of a
supporting hyperplane (27) and using the fact that vTa ≥ 0
the following inequality holds:

(x0 − x)T v ≥ (x0 − x)TΠX(x0, v) (30)

Hence we have proved the lemma for all possible cases.

Proof of Theorem 1. Consider action trajectories x(t) and
multiplier trajectories λ(t) and the corresponding energy
function Vx̄,λ̄(x(t), λ(t)) in (16) for arbitrary given action
x̄ ∈ X and multiplier λ̄ ∈ Λ. The derivative V̇x̄,λ̄(x(t), λ(t))
of the energy with respect to time is then given by

V̇x̄,λ̄(x(t), λ(t)) = (x(t)− x̄)T ẋ(t)+(λ(t)− λ̄)T λ̇(t). (31)

If the trajectories x(t) and λ(t) follow from the saddle point
dynamical system given by (14) and (15) we can substitute
the action and multiplier derivatives by their corresponding
values and reduce(31) to

V̇x̄,λ̄(x(t), λ(t)) =(x(t)− x̄)TΠX (x,−εfx(t, x(t))λ(t))

+(λ(t)− λ̄)TΠΛ (x, εf(t, x(t)))). (32)

Then, using the result of Lemma 2 for both X and Λ, the
following inequality holds:

V̇x̄,λ̄(x(t), λ(t)) ≤ε(x̄− x(t))T fx(t, x(t))λ(t)

+ε(λ(t)− λ̄)T f(t, x(t)). (33)

Notice that f(t, x)Tλ(t) is a convex function with respect to
the action, therefore we can upper bound the inner product
(x̄ − x(t))T fx(t, x(t))λ(t) by the quantity f(t, x̄)Tλ(t) −
f(t, x(t))Tλ(t) and transform (33) into:

V̇x̄,λ̄(x(t), λ(t)) ≤ε(f(t, x̄)− f(t, x(t)))Tλ(t)

+ε(λ(t)− λ̄)T f(t, x(t)). (34)

Notice that in the above equation the second and the third
term are opposite. Thus, the above equation reduces to:

V̇x̄,λ̄(x(t), λ(t)) ≤ ε[λT (t)f(t, x
¯
)− λ̄T f(t, x(t))]. (35)

Rewriting the above expression and then integrating both
sides with respect to the time from t = 0 to t = T yields:

ε

∫ T

0

λ̄T f(t, x(t))−λT (t)f(t, x̄)dt ≤ −
∫ T

0

V̇x̄,λ̄(x(t), λ(t))dt.

(36)
Integrating the right side of the above equation we obtain:

−
∫ T

0

V̇x̄,λ̄(x(t), λ(t))dt = Vx̄,λ̄(x(0), λ(0))−Vx̄,λ̄(x(T), λ(T)),

(37)
and then using the fact that Vx̄,λ̄(x(t)), λ(t)) ≥ 0 for all t
we have that:

−
∫ T

0

V̇x̄,λ̄(x(t), λ(t))dt ≤ Vx̄,λ̄(x(0), λ(0)). (38)

Then, combining (36) and (38), we have that∫ T

0

λ̄T f(t, x(t))−λT (t)f(t, x̄)dt ≤
(
Vx†,λ̄(x(0), λ(0))

)
/ε.

(39)
Since the environment is viable there exist a fixed action x†

such that f(t, x†) ≤ 0 for all t ≥ 0, then choosing x̄ = x†,
λT (t)f(t, x†) dt ≤ 0 ∀t ∈ [0, T], therefore the left hand side
of (39) can be lower bounded, obtaining:

λ̄T
∫ T

0

f(t, x(t))dt ≤
(
Vx†,λ̄(x(0), λ(0)

)
/ε. (40)

Finally, choosing λ̄ = ei where ei is the i − th element of
the canonical base of Rm, we have that for all i = 1..m:∫ T

0

fi(t, x(t))dt ≤
(
Vx†,ei(x(0), λ(0))

)
/ε. (41)

The left hand side of the above inequality is the i − th
component of the fit. Since the m components of the fit

obtained by the trajectory generated by the saddle point
algorithm are bounded for all T , the trajectory is feasible.
Furthermore, we proved the upper bound of (17).

Proof of Corollary 1. Since the trajectory of the multipliers
is defined by λ̇(t) = ΠΛ(λ(t), f(t, x(t)), it is clear that for
all time t ∈ [0, T], we have that λ(t) ≥ 0. On the other
hand, for all t ∈ [0, T], we have that: ΠΛ(λ(t), f(t, x(t)) ≥
f(t, x(t)). The latter is true because for any f(t, x(t)) the
projection is the same as the original vector unless λi(t) = 0
and fi(t, x(t)) < 0 and in that case the projection is zero.
Therefore we have that:∫ τ

0

λ̇(t)dt =

∫ τ

0

Πλ(λ(t), f(t, x(t)))dt ≤
∫ τ

0

f(t, x(t))dt.

(42)
Notice that the right hand side of the above equation is the
definition of the fit until time τ . Hence we have that:

λ(τ)− λ(0) ≤ Fτ (43)

Since we proved that the fit is bounded for all T it is
also bounded for τ . Furthermore, the bound for the i − th
component is given by (17). Therefore λ(τ) is bounded for
all τ ∈ [0, T] by the expression given in 18.

REFERENCES

[1] K. J. Arrow and L. Hurwicz, Studies in linear and nonlinear program-
ming. CA: Stanford University Press, 1958.

[2] M. W. Hirsch, S. Smale, and R. L. Devaney, Differential equations,
dynamical systems, and an introduction to chaos, vol. 60. Academic
press, 2004.

[3] S.-i. Azuma, M. S. Sakar, and G. J. Pappas, “Nonholonomic source
seeking in switching random fields,” in Decision and Control (CDC),
2010 49th IEEE Conference on, pp. 6337–6342, IEEE, 2010.

[4] S.-i. Azuma, M. S. Sakar, and G. J. Pappas, “Stochastic source seeking
by mobile robots,” Automatic Control, IEEE Transactions on, vol. 57,
no. 9, pp. 2308–2321, 2012.

[5] N. Atanasov, J. Le Ny, N. Michael, and G. J. Pappas, “Stochastic
source seeking in complex environments,” in Robotics and Automation
(ICRA), 2012 IEEE International Conference on, pp. 3013–3018,
IEEE, 2012.

[6] E. Rimon and D. E. Koditschek, “Exact robot navigation using artifi-
cial potential functions,” Robotics and Automation, IEEE Transactions
on, vol. 8, no. 5, pp. 501–518, 1992.

[7] C. W. Warren, “Global path planning using artificial potential fields,”
in Robotics and Automation, 1989. Proceedings., 1989 IEEE Interna-
tional Conference on, pp. 316–321, IEEE, 1989.

[8] A. Chambolle and T. Pock, “A first-order primal-dual algorithm for
convex problems with applications to imaging,” Journal of Mathemat-
ical Imaging and Vision, vol. 40, no. 1, pp. 120–145, 2011.

[9] S. Shalev-Shwartz, “Online learning and online convex optimization,”
Foundations and Trends in Machine Learning, vol. 4, no. 2, pp. 107–
194, 2011.

[10] V. Vapnik, The nature of statistical learning theory. Springer, 2000.
[11] M. Zinkevich, “Online convex programming and generalized infinites-

imal gradient ascent,” in ICML, pp. 928–936, 2003.
[12] E. Hazan, A. Agarwal, and S. Kale, “Logarithmic regret algorithms

for online convex optimization,” Machine Learning, vol. 69, no. 2-3,
pp. 169–192, 2007.

[13] D. P. Bertsekas, Nonlinear Programming. Belmont, MA: Athena
Scientific, 1999.

[14] M.-G. Cojocaru and L. Jonker, “Existence of solutions to projected
differential equations in hilbert spaces,” Proceedings of the American
Mathematical Society, vol. 132, no. 1, pp. 183–193, 2004.

[15] D. Zhang and A. Nagurney, “On the stability of projected dynamical
systems,” J. Optim. Theory Appl., vol. 85, pp. 97–124, Apr. 1995.

[16] D. Mellinger and V. Kumar, “Minimum snap trajectory generation
and control for quadrotors,” in Proceedings of the IEEE International
Conference on Robotics and Automation (ICRA), May 2011.

	Introduction
	Viability and feasibility
	Fit
	The shepherd problem

	Saddle point controller
	Strongly feasible trajectories

	Numerical experiments
	Conclusion
	Appendix
	References

