
1

Online Learning of Optimal Strategies in
Unknown Environments

Santiago Paternain and Alejandro Ribeiro

Abstract—Define an environment as a set of convex constraint
functions that vary arbitrarily over time and consider a cost
function that is also convex and arbitrarily varying. Agents that
operate in this environment intend to select actions that are
feasible for all times while minimizing the cost’s time average.
Such action is said optimal and can be computed offline if the
cost and the environment are known a priori. An online policy
is one that depends causally on the cost and the environment.
To compare online policies to the optimal offline action define
the fit of a trajectory as a vector that integrates the constraint
violations over time and its regret as the cost difference with the
optimal action accumulated over time. Fit measures the extent
to which an online policy succeeds in learning feasible actions
while regret measures its success in learning optimal actions.
This paper proposes the use of online policies computed from a
saddle point controller. It is shown that this controller produces
policies with bounded regret and fit that grows at a sublinear
rate. These properties provide an indication that the controller
finds trajectories that are feasible and optimal in a relaxed
sense. Concepts are illustrated throughout with the problem
of a shepherd that wants to stay close to all sheep in a herd.
Numerical experiments show that the saddle point controller
allows the shepherd to do so.

I. INTRODUCTION

A shepherd wants to stay close to a herd of sheep while
also staying as close as possible to a preferred sheep. The
movements of the sheep, are unknown a priori and arbitrary,
perhaps strategic. However, their time varying positions are
such that it is possible for the shepherd to stay within a
prescribed distance of all of them. The shepherd observes
the sheep movements and responds to this online information
through a causal dynamical system. This paper shows that
an online version of the saddle point algorithm of Arrow and
Hurwicz [1] succeeds in keeping the shepherd close to all
sheep while maintaining a distance to the preferred sheep
that is not much worse that the distance he would maintain
had he known the sheep’s paths a priori. More generically,
we consider an agent that operates in an environment that we
define as a set of time varying functions of the agent’s actions
– the distance between the sheep and the shepherd – as well
as a cost function that is also time varying and dependent on
the agent’s actions – the distance to the preferred sheep.

The problem of operating in unknown convex environ-
ments with unknown costs generalizes operation in known

Work in this paper is supported by NSF CCF-0952867 and ONR N00014-
12-1-0997. The authors are with the Department of Electrical and Systems
Engineering, University of Pennsylvania, 200 South 33rd Street, Philadel-
phia, PA 19104. Email: {spater, aribeiro}@seas.upenn.edu.

environments with known costs, which in turn generalizes
plain cost minimization. The latter is a canonical problem that
can be solved with gradient descent controllers; see e.g., [2].
These algorithms converge to local minima and to the global
minimum if the cost is convex. These costs can represent
natural constraints or artificial potentials and are common
methodologies to solve, e.g., navigation problems [3]–[5].

The novelty of this work is to consider constraints and
costs that are unknown a priori and can change arbitrarily
over time. In this case, cost minimization can be formulated
in the language of regret [6], [7] whereby agents operate
online by selecting plays that incur a cost selected by nature.
The cost functions are revealed to the agent ex post and used
to adapt subsequent plays. It is a remarkable fact that online
gradient descent is able to find plays whose regret grows
at a sublinear rate when the cost is a convex function [8],
[9] – therefore suggesting vanishing per-play penalties of
online plays with respect to the clairvoyant play. Our main
contribution is to show that an online saddle point algorithm
that observes costs and constraints ex post succeeds in finding
policies with regret and fit that, at worst, grow at a sublinear
rate – and stay bounded with more stringent hypotheses.

The online learning of strategies that are feasible is for-
mulated in the language of fit, defined as the accumulation
of the constraint violation over time (Section II). In the main
part of the paper we propose to control fit and regret growth
with the use of an online saddle point controller that moves
along a linear combination of the negative gradients of the
constraints and the objective function. The coefficients of
these linear combinations are adapted dynamically by the
constraint functions as well (Section III). This online saddle
point controller is a generalization of (offline) saddle point in
the same sense that an online gradient controller generalizes
(offline) gradient descent. We show that the online saddle
point controller achieves bounded regret and the fit grows sub
linearly with the time horizon (Theorem 1). Throughout the
paper we illustrate concepts with the problem of a shepherd
that has to follow a herd of sheep (Section II-B). A numerical
analysis of this problem closes the paper (Section IV).

Notation. A multivalued function f : Rn → Rm is defined by
stacking the components functions, i.e., f := [f1, . . . , fm]T .
The notation

∫
f(x)dx := [

∫
f1(x)dx, . . . ,

∫
fm(x)dx]T

represents a vector stacking each individual integral. An in-
equality x ≤ y between vectors of equal dimension x, y ∈ Rn
is interpreted componentwise.

2

II. VIABILITY, FEASIBILITY AND OPTIMALITY

We consider a continuous time environment in which an
agent selects an action that results in a time varying set of
penalties. Use t to denote time and let X ⊆ Rn be a closed
convex set from which the agent selects action x ∈ X . The
penalties incurred at time t for selected action x are given by
the value f(t, x) of the vector function f : R×Rn → Rm. We
interpret f as a definition of the environment. We consider
situations where the agent is faced with an environment f
and must choose a actions x ∈ X that guarantees nonpositive
penalties f(t, x(t)) ≤ 0 for all times t not exceeding a time
horizon T . Since the existence of this trajectory depends on
the specific environment we define a viable environment as
one in which it is possible to select an action with nonpositive
penalty for times 0 ≤ t ≤ T as we formally specify next.

Definition 1 (Viable environment). We say that a given
environment f : R × Rn → Rm is viable over the time
horizon T for an agent that selects actions x ∈ X if there
exists an action x† ∈ X such that

f(t, x†) ≤ 0, for all t ∈ [0, T]. (1)

An action x† satisfying (1) is said feasible and the set X† :=
{x† ∈ X : f(t, x†) ≤ 0, for all t ∈ [0, T]} is termed the
feasible set of actions.

For such environments it is possible to have multiple
feasible actions, thus it is desirable to select one that is
optimal with respect to some criterion of interest. Introduce
then the objective function f0 : R × Rn → R, where for a
given time t ∈ [0, T] and action x ∈ X the agent suffers
a loss f0(t, x). The optimal action is defined as the one
that minimizes the accumulated loss

∫ T
0
f0(t, x) dt among

all viable actions, i.e.,

x∗ := argmin
x∈X

∫ T

0

f0(t, x) dt (2)

s.t. f(t, x) ≤ 0, for all t ∈ [0, T].

For the definition in (2) to be valid the function f0(t, x) has
to be integrable with respect to t. In subsequent analyses
we also require integrability of the environment f as well as
convexity with respect to x as we formally state next.

Assumption 1. The functions f(t, x) and f0(t, x) are inte-
grable with respect to t in the interval [0, T].

Assumption 2. The functions f(t, x) and f0(t, x) are convex
with respect to x for all times t ∈ [0, T].

We further require the objective function to be lower
bounded. Since the function f0(t, x) is convex, a lower bound
exists if the action space X is bounded, as is the case in most
applications of practical interest.

Assumption 3. The objective functions f0(t, x) are lower
bounded on the action space X . I.e., there is a finite constant
K independent of the time horizon T such that

K ≥ f0(t, x)−min
x∈X

f0(t, x). (3)

If the environment f and function f0 are known, finding
the action in a viable environment that minimizes the aggre-
gate cost is equivalent to solve (2). A number of algorithms
are known to solve this problem. Here, we consider the
problem of adapting a strategy x(t) when the functions
f(t, x) and f0(t, x) are arbitrary and revealed causally. I.e.,
we want to choose the action x(t) using observations of
viability f(t, x) and cost f0(t, x) in the open interval [0, t).
This implies that f(t, x(t)) and f0(t, x(t)) are not observed
before choosing x(t).

A. Regret and fit

We evaluate the performance of trajectories x(t) through
the concepts of regret and fit. To define regret we compare
the accumulated cost

∫ T
0
f0(t, x(t)) dt incurred by x(t) with

the cost that would had been incurred by the optimal action
x∗ defined in (2),

RT :=

∫ T

0

f0(t, x(t)) dt−
∫ T

0

f0(t, x∗) dt. (4)

Analogously, we define the fit of the trajectory x(t) as the
accumulated penalties f(t, x(t)) incurred for times t ∈ [0, T],

FT :=

∫ T

0

f(t, x(t)) dt. (5)

The regret RT and fit FT can be interpreted as performance
losses associated with online causal operation as opposed to
offline clairvoyant operation. If the fit FT is positive in a
viable environment we are in a situation in which, had the
environment f be known, we could have selected an action
x† with f(t, x†) ≤ 0. The fit measures how far the trajectory
x(t) comes from achieving that goal. Likewise, if the regret
RT is positive having prior knowledge of environment and
cost would had resulted in the selection of a better action
x∗ – and in that sense RT indicates how much we regret
not having had that information available. A good learning
strategy is one in which x(t) approaches x∗. In that case, the
regret and fit grow for small T but eventually stabilize or, at
worst, grow at a sublinear rate. Considering regret RT and
fit FT separately, this observation motivates the definitions
of feasible trajectories and strong optimal trajectories that we
formally state next.

Definition 2. Given an environment f : R × Rn → Rm, a
cost f0 : R× Rn → R, and a trajectory x(t) we say that

Feasibility. The trajectory x(t) is feasible in the environment
if the fit FT grows sublinearly with T . I.e., if there exist a
function h(T) with lim supT→∞ h(T)/T = 0 and a constant
vector C such that for all times T it holds,

FT :=

∫ T

0

f(t, x(t)) dt ≤ Ch(T). (6)

Strong optimality. The trajectory x(t) is strongly optimal in
the environment if the regret RT is bounded for all T . I.e., if
there exists a constant C such that for all times T it holds,

RT :=

∫ T

0

f0(t, x(t)) dt−
∫ T

0

f0(t, x∗) dt ≤ C. (7)

3

In this work we solve the problem of finding feasible,
strongly optimal trajectories. We develop this solutions in
section III. Before that, we clarify concepts with the intro-
duction of an example.

B. The shepherd problem
Consider a target tracking problem in which an agent –

the shepherd – follows m targets – the sheep. Specifically,
let z(t) = [z1(t), z2(t)]T ∈ R2 denote the position of
the shepherd at time t. To model smooth paths write each
position component zk(t) as

zk(t) =

n−1∑
j=0

xkjpj(t), (8)

where pj(t) are time polynomials that parameterize the space
of possible trajectories. The action space is then given by the
vector x = [x10, . . . , x1,n−1, x20, . . . , x2,n−1]T ∈ R2n that
stacks the coefficients of the parameterization in (8).

Further define yi(t) = [yi1(t), yi2(t)]T as the position of
the ith sheep at time t for i = 1, . . . ,m and introduce a
maximum allowable distance ri between the shepherd and
each of the sheep . The goal of the shepherd is to find a path
z(t) that is within distance ri of sheep i for all sheep. This
can be captured by defining an m-dimensional environment
f with each component function fi defined as

fi(t, x) = ‖z(t)− yi(t)‖2 − r2
i for all i = 1..m. (9)

That the environment defined by (9) is viable means that
it is possible to select a vector of coefficients x so that
the shepherd’s trajectory generated by (8) stays close to
all sheep for all times. To the extent that (8) is a loose
parameterization – we can approximate arbitrary functions
with sufficiently large index n –, this simply means that the
sheep are sufficiently close to each other at all times.

Say that the first target – the black sheep – is preferred
in that the shepherd wants to stay as close as possible to it.
Introduce then the objective function

f0(t, x) = ‖z(t)− y1(t)‖2. (10)

Alternatively, we can require the shepherd to minimize the
work required to follow the sheep. This behavior can be
induced by minimizing the integral of the acceleration which
in turn can be accomplished by defining the optimality
criterion [cf. (2)],

f0(t, x) =
∥∥z̈(t)∥∥ =

∥∥∥∥∥
[n−1∑
j=0

x1j p̈j(t),

n−1∑
j=0

x2j p̈j(t)

]∥∥∥∥∥.
(11)

Trajectories x(t) differ from actions in that they are allowed
to change over time, i.e., the constant values xkj in (8)
are replaced by the time varying values xkj(t). A feasible
trajectory x(t) means that the shepherd is repositioning to
stay close to all sheep. An optimal trajectory with respect
to (10) is one in which he does so while staying as close
as possible to the black sheep. An optimal trajectory with
respect to (11) is one in which the work required to follow
the sheep is minimized.

III. SADDLE POINT ALGORITHM

Given an environment f(t, x) and an objective function
f0(t, x) verifying assumptions 1 and 2 we set our attention
towards two different problems: design a controller that gives
origin to strongly feasible trajectories and a controller that
gives origin to feasible and strongly optimal trajectories. As
already noted, when the environment is known beforehand
the problem of finding such trajectories is a constrained
convex optimization problem, which we can solve using the
saddle point algorithm of Arrow and Hurwicz [1]. Following
this idea, let λ ∈ Λ = Rm+ , be a multiplier and define the
time-varying Lagrangian associated with the online problem
as

L(t, x, λ) = f0(t, x) + λT f(t, x). (12)

Saddle point methods rely on the fact that for a constrained
convex optimization problem, a pair is a primal-dual optimal
solution if and only if the pair is a saddle point of the
Lagrangian associated with the problem; see e.g. [10]. The
main idea of the algorithm is then to generate trajectories
that descend in the opposite direction of the gradient of the
Lagrangian with respect to x and that ascend in the direction
of the gradient with respect to λ. To avoid restricting attention
to functions that are differentiable with respect to x, we
introduce the notion of subgradient.

Definition 3 (Subgradient). Let g : X → R, be a convex
function where X ⊂ Rn. Then gx is a subgradient of g at a
point x ∈ X if

g(y) ≥ g(x) + gx(x)T (y − x) for all y ∈ X (13)

In general, subgradients are defined at all points for all
convex functions. At the points where the function f is
differentiable the subgradient and the gradient coincide. In
the case of vector functions f : Rn → Rm we group the
subgradients of each component into a subgradient matrix
fx(x) ∈ Rn×m that we define as

fx(x) =
[
f1,x(x) f2,x(x) · · · fm,x(x)

]
(14)

where fi,x(x) is a subgradient of fi(x) as per Definition 3. In
addition, since the action must always be selected from the
set X and the multipliers have to be in the positive orhtant
we define the controller in a way that the actions and the
multipliers are the solution of a projected dynamical system
over the set X × Λ. The solution has been studied in [11],
[12] and we define the notion as follow.

Definition 4 (Projected dynamical system). Let X be a
closed convex set.

Projection of a point. For any z ∈ Rn, there exits a unique
element in X , denoted PX(z) such that

PX(z) = arg inf
y∈X
‖y − z‖. (15)

Projection of a vector at a point. Let x ∈ X and v a
vector, we define the projection of v over the set X at the
point x, ΠX(x, v) as

ΠX(x, v) = lim
δ→0+

(PX(x+ δv)− x) /δ. (16)

4

Projected dynamical system. Given a closed convex set X
and a vector field F (t, x) which takes elements from R×X
into Rn the projected differential equation associated with
X and F is defined to be

ẋ(t) = ΠX (x, F (t, x)) . (17)

In the above projection if the point x is in the interior of
X then the projection is equal to the original vector field i.e.
ΠX(x, F (t, x)) = F (t, x). On the other hand if x is in the
border of X , then the projection is just the component of the
vector field that is tangential to the set X at the point x.

Since the Lagrangian is differentiable with respect to λ,
we denote by Lλ(t, x, λ) = f(t, x) the derivative of the
Lagrangian with respect to λ. On the other hand, since the
functions f0(·, x) and f(·, x) are convex, the Lagrangian is
also convex with respect to x. Thus, its subgradient with
respect to x always exist, let us denote it by Lx(t, x, λ). Let
ε be the gain of the controller, then following the ideas in
[1] we define a controller that descends in the direction of
the subgradient with respect to the action x

ẋ = ΠX (x,−εLx(t, x, λ))

= ΠX (x,−ε(f0,x(t, x) + fx(t, x)λ)) , (18)

and that ascends in the direction of the subgradient with
respect to the multiplier λ

λ̇ = ΠΛ (λ, εLλ(t, x, λ)) = ΠΛ (λ, εf(t, x)) . (19)

The projection over the set X in (18) is done to assure
that the trajectory is always in the set of possible actions.
The projection concerning the dual variable λ in (19) is
done to assure that λ(t) ∈ Rm+ for all times t ∈ [0, T].
An important observation regarding (18) and (19) is that
the environment is observed locally in space and causally
in time. The values of the environment constraints and its
subgradients are observed at the current trajectory position
x(t) and the values of f(t, x(t)) and fx(t, x(t)) affect the
derivatives of x(t) and λ(t) only.

A block diagram for the controller in (18) - (19) is shown
in Figure 1. The controller operates in an environment to
which it inputs at time t an action x(t) that results in a
penalty f(t, x(t)) and cost f0(t, x(t)). The value of these
functions and their subgradients fx(t, x(t)) and f0,x(t, x(t))
are observed and fed to the multiplier and action feedback
loops. The action feedback loop behaves like a weighted
gradient descent controller. We move in the direction given
by a linear combination of the the gradient of the objec-
tive function f0,x(t, x(t)) and the constraint subgradients
fi(t, x(t)) weighted by their corresponding multipliers λi(t).
Intuitively, this pushes x(t) towards the minimum of the
objective function in the set where constraints are satisfied.
However, the question remains of how much weight to give
to each constraint. This is the task of the multiplier feedback
loop. When constraint i is violated we have fi(t, x(t)) > 0.
This pushes the multiplier λi(t) up, thereby increasing the
force λi(t)fi(t, x(t)) pushing x(t) towards satisfying the

Gradient descent on actions

Gradient ascent on multipliers

Environment

ΠX

(
x(t),−ε [f0,x(t, x(t)) + fx(t, x(t))λ(t)]

)

ΠΛ

(
λ(t), εf(t, x(t))

)

∫

∫

f(t, x(t)), fx(t, x(t)), f0,x(t, x(t))

ẋ(t)

λ̇(t)

x(t)

λ(t)

Fig. 1: Block diagram of the saddle point controller. Once that
action x(t) is selected at time t, we measure the corresponding
values of f(t, x), fx(t, x) and f0,x(t, x). This information is fed
to the two feedback loops. The action loop defines the descent
direction by computing weighted averages of the subgradients
fx(t, x) and f0,x(t, x). The multiplier loop uses f(t, x) to update
the corresponding weights.

constraint. If the constraint is satisfied, we have fi(t, x(t)) <
0, the multiplier λi(t) being decreased, and the corresponding
force decreasing. The more that constraint i is violated, the
faster the multiplier increases, and the more the force that
pushes x(t) towards satisfying fi(t, x(t)) < 0 is increased.
If the constraint is satisfied, the force is decreased and may
eventually vanish if we reach the point of making λi(t) = 0.

This section presents bounds on the growth of the fit and
the regret of the trajectories x(t) generated by the saddle
point controller defined by (18) and (19). These bounds
ensure that the trajectory is feasible and strongly optimal in
the sense of Definition 2. Those bounds depend on the value
of the following energy function. Consider an arbitrary fixed
action x̄ ∈ X and multiplier λ̄ ∈ Λ and let

Vx̄,λ̄(x, λ) =
1

2

(
‖x− x̄‖2 + ‖λ− λ̄‖2

)
. (20)

Using the constant in (3) and the definition of the energy
function in (20) we can write down regret and fit bounds
for an action trajectory x(t) that follows the saddle point
dynamics defined by (18) and (19). We state these bounds in
the following theorem.

Theorem 1. Let f : R × X → Rm and f0 : R × X → R,
where f and f0 and 3 where X ⊂ Rn is a convex set. If the
environment is viable, then the controller defined by (18) and
(19) produces trajectories x(t) that are feasible and strongly
optimal for all time horizons T > 0. In particular, the fit is
bounded by

FT,i ≤
(

1

ε
V
x∗,[

∫ T
0
f(t,x) dt]

+(x(0), λ(0)) +KT

)1/2

, (21)

and the regret is bounded by

RT ≤
1

ε
Vx∗,0 (x(0), λ(0)) , (22)

5

where Vx̄,λ̄(x, λ) is the energy function defined in (20), x∗

is the solution to the problem in (2) and K is the constant
defined in (3).

Proof. See Appendix A �

Theorem 1 assures that if an environment is viable for an
agent that selects actions over a set X , the controller defined
by (18) and (19) gives origin to a trajectory x(t) that is
feasible and strongly optimal in the sense of Definition 2.
This result is not trivial, since the function f that defines the
environment is observed causally and can change arbitrarily
over time. In particular, the agent could be faced with an
adversarial nature that changes the function f and f0 in a
way that makes the value of f(t, x(t)) and f0(t, x(t)) larger.
The caveat is that the choice of the function f must respect
the viability condition that there exists a feasible action x†

such that f(t, x†) ≤ 0 for all t ∈ [0, T]. This restriction still
leaves significant leeway for strategic behavior. E.g., in the
shepherd problem of Section II-B we can allow for strategic
sheep that observe the shepherd’s movement and respond by
separating as much as possible. The strategic action of the
sheep are restricted by the condition that the environment
remains viable, which in this case reduces to the condition
that the sheep stay in a ball of radius 2r if all ri = r.

Further note that, the initial value of the energy function
used to bound both regret and fit is related with the square
of the distance between the initial action and the optimal
offline solution of problem (2). Therefore, the closer we start
from this action the smaller the bound of regret and fit will
be. Likewise, the larger the gain ε, the smaller the regret
bound is. This is not possible in practice because larger ε
entails trajectories with larger derivatives which cannot be
implemented in systems with physical constraints. In the
example in Section II-B the derivatives of the state x(t)
control the speed and acceleration of the shepherd. Notice
however that the fit cannot be made arbitrarily small and
that it grows at least as

√
KT .

IV. NUMERICAL EXPERIMENTS

We evaluate performance of the saddle point algorithm
defined by (18)-(19) in the solution of the shepherd problem
introduced in Section II-B. We determine sheep paths using
a perturbed polynomial characterization akin to the one in
(8). Specifically, letting pj(t) be elements of a polynomial
basis, the k-th component, with k = 1, 2, of the path
yi(t) = [yi1(t), yi2(t)]T followed by the ith sheep is given
by

yik(t) =

ni−1∑
j=0

yikjpj(t) + wik(t), (23)

where ni denotes the total number of polynomials that
parameterize the path followed by sheep i, and yikj represent
the corresponding ni coefficients. The noise terms wik(t) are
Gaussian white with zero mean, standard deviation σ and
independent across components and sheep.

To determine yikj we make wik(t) = 0 in (23) and require
all sheep to start at position yi(0) = [0, 0]T and finish at

position yi(T) = [1, 1]T . A total of L random points {ỹl}Ll=1

are drawn independently and uniformly at random in [0, 1]2.
Sheep i = 1 is required to pass trough points ỹl at times
lT/(L + 1), i.e., y1(lT/(L + 1)) = ỹl. For each of the
other sheep i 6= 1 we draw L random offsets {∆ỹil}Ll=1

uniformly at random from [−∆,∆]2 and require the ith sheep
path to satisfy yi(lT/(L + 1)) = ỹl + ∆ỹil. Paths yi(t)
are then chosen as those that minimize the path integral of
the acceleration squared subject to the constraints of each
individual path, i.e.,

y∗i = argmin

∫ T

0

‖ÿi(t)‖2dt,

s.t. yi(0) = [0, 0]T , yi(T) = [1, 1]T ,

yi(lT/(L+ 1)) = ỹl + ∆ỹil, (24)

where, by construction ∆ỹil = 0 for i = 1. The problem (24)
can be solved as a quadratic program [14]. Let y∗i (t) be the
trajectory given by (23) when we set yikj = y∗ikj . We obtain
the paths yik(t) by adding wik(t) to y∗i (t).

In subsequent numerical experiments we consider m = 5
sheep, a time horizon T = 1, and set the proximity constraint
in (9) to ri = 0.3. We use the standard polynomial basis
pj(t) = tj in both, (8) and (23). The number of basis
elements in both cases is set to n = ni = 30. To generate
sheep paths we consider a total of L = 3 randomly chosen
intermediate points, set the variation parameter to ∆ = 0.1,
and the perturbation standard deviation to σ = 0.1. These
problem parameters are such that the environment is most
likely viable in the sense of Definition 1. We check that
this is true by solving the offline feasibility problem. If
the environment is not viable a new one is drawn before
proceeding to the implementation of (18)-(19).

We emphasize that even if the trajectory of the sheep is
known to us, the information is not used by the controller.
The controller is fed information of the position of the sheep
at the current time, which it uses to evaluate the environment
functions fi(t, x) in (9), their gradients fix(t, x) and the
gradient of f0(t, x). In Section IV-A f0(t, x) takes the form
of (10) while in Section IV-B takes the form of (11).

A. Preferred sheep problem

Besides satisfying the constraints defined in (9), the shep-
herd in being as close as possible from the first sheep.
This translates into the optimality criterion defined in (10).
Since we construct sheep trajectories that are viable the
hypotheses of Theorem 1 hold. Thus, if the shepherd follows
the dynamics described by (18) and (19), the resulting action
trajectory is feasible and strongly optimal.

Since the trajectory is feasible, we expect the fit to be
bounded by a sublinear function of T . This does happen, as
can be seen in Figure 3 where a gain ε = 50 is used. In fact,
the fit does not grow and is bounded by a constant for all
time horizons T . The trajectory is therefore strongly feasible.
This does not contradict Theorem 1 because strong feasibility
implies feasibility. The reason why it’s reasonable to see
bounded fit here is that the objective function pushing the

6

0 0.2 0.4 0.6 0.8 1 1.2

−0.5

0

0.5

1

1.5

x (m)

y
(m

)

Sheep 1

Sheep 2

Sheep 3

Sheep 4

Sheep 5

Shepherd

Fig. 2: Path of the sheep and the shepherd for the preferred sheep
problem (Section IV-A) when the gain of the saddle point controller
is set to be ε = 50. The shepherd succeed in following the herd
since its path – in red – is close to the path of all sheep.

shepherd closer to the sheep is redundant with the constraints
that push the shepherd to stay closer to all sheep. The regret
trajectory for this experiment with ε = 50 is shown in
Figure 4. Since the trajectory is strongly optimal as per
Theorem 1, we expect regret to be bounded. This is the case
in Figure 4 where regret is actually negative for all times
t ∈ [0, T]. Negative regret implies that the trajectory of the
shepherd is incurring a total cost that is smaller than the
one associated with the optimal solution. Notice that while
the optimal fixed action minimizes the total cost as defined
in (2) it does not minimize the objective at all times. Thus,
by selecting different actions the shepherd can suffer smaller
instantaneous losses than the ones associated with the optimal
action. If this is the case, regret – which is the integral of
the difference between these two losses – can be negative.

B. Minimum acceleration problem

We consider an environment defined by the distances
between the shepherd and the sheep given by (9) and the
minimum acceleration objective defined in (11). Since the
construction of the target trajectories gives a viable environ-
ment we satisfy, the hypotheses of Theorem 1. Hence, for
a shepherd following the dynamics given by (18) and (19),
the action trajectory is feasible and strongly optimal. For the
simulation the gain of the controller is set to ε = 50.

A feasible trajectory implies that the fit must be bounded
by a function that grows sub linearly with the time horizon T .
Notice that this is the case in Figure 6. Periods of growth are
observed, yet the presence of inflection points is an evidence
of the growth being controlled. The fit in this problem is
larger than in problem IV-A (c.f figures 3 and 6). This result
is predictable since the constraints and the objective push
the action in different directions. For instance, suppose that
all constraints are satisfied and that the Lagrange multipliers
are zero. Then, the subgradient of the Lagrangian is equal to

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−0.09

−0.08

−0.07

−0.06

−0.05

−0.04

−0.03

−0.02

−0.01

0

0.01

Time (s)

F
it

(m
2 s)

Sheep 1
Sheep 2
Sheep 3
Sheep 4
Sheep 5

Fig. 3: Fit FT for the preferred sheep problem (Section IV-A) when
the gain of the saddle point controller is set to be ε = 50. As
predicted by Theorem 1 the trajectory is feasible since the fit is
bounded, and, in fact, appears to be strongly feasible.

the subgradient of the objective function. Hence the action
will be modified trying to minimize the acceleration without
taking the constraints (distance with the sheep) into account.
Hence, pushing the action to the boundary of the feasible set.
In this problem, this translates into the fact that the shepherd
does not follow the sheep as closely as in the problem in
section IV-A (c.f Figure 5).

Since the trajectory is strongly optimal, we should observe
a regret bounded by a constant. This is the case in Figure 7.
Notice that regret increases since the initial action differs
from the optimal. However, as in the case of the fit, the
inflection point at the end of the simulation is the evidence
that the regret is being controlled. Compared with the regret
of the black sheep problem (c.f Figure 4), the regret in this
problem is larger. This is again explained by the fact that in
this problem objective and constraints can push the action in
different directions while in Section IV-A both point in the
same general direction.

V. CONCLUSION

We considered a continuous time environment in which
an agent must select actions to satisfy a set of constraints.
These constraints are time varying and the agent does not
have information regarding their future evolution. We defined
a viable environment as one in which there is a fixed action
that verifies all the constraints at all times. An objective
function was considered as well to select a strategy that
meets an optimality criterion from the set of strategies that
satisfy the constraints. We proposed an online version of
the saddle point controller of Arrow-Hurwicz to generate
trajectories with small fit and regret. We showed that for any
viable environment the trajectories that follow the dynamics
of this controller are feasible and strongly optimal. Numerical
experiments on a shepherd that tries to follow a herd of sheep
support these theoretical results.

7

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−0.7

−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

0

Time (s)

R
eg

re
t (

m
2 /s

3)

Fig. 4: Regret RT for the preferred sheep problem (Section IV-A)
when the gain of the saddle point controller is set to be ε = 50.
The trajectory is strongly feasible, as predicted by Theorem 1.

0 0.2 0.4 0.6 0.8 1 1.2

−0.5

0

0.5

1

1.5

x (m)

y
(m

)

Sheep 1

Sheep 2

Sheep 3

Sheep 4

Sheep 5

Shepherd

Fig. 5: Path of the sheep and the shepherd for the minimum
acceleration problem (Section IV-B) when the gain of the saddle
point controller is set to be ε = 50. Observe that the shepherd path
– in red – is not as close to the path of the sheep as in Figure 2.
This is reasonable because the objective function and the constraints
push the shepherd in different directions.

APPENDIX

A. Proof of Theorem 1

Let us state the following lemma, needed in the proof of
Theorem1, concerning the projection of a vector over a set.

Lemma 1. Let X be a convex set and x0, x ∈ X . Then

(x0 − x)TΠX(x0, v) ≤ (x0 − x)T v. (25)

Proof. See Lemma 1 [13] �

Consider action trajectories x(t) and multiplier trajectories
λ(t) and the energy function Vx̄,λ̄(x(t), λ(t)) in (20), for
arbitrary given action x̄ ∈ Rn and multiplier λ̄ ∈ Λ. The
derivative of the energy with respect to time is then given by

V̇x̄,λ̄(x(t), λ(t)) = (x(t)− x̄)T ẋ(t)+(λ(t)− λ̄)T λ̇(t). (26)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−0.04

−0.02

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

Time (s)

F
it

(m
2 s)

Sheep 1

Sheep 2

Sheep 3

Sheep 4

Sheep 5

Fig. 6: Fit FT for the minimum acceleration problem (Section IV-B)
when the gain of the saddle point controller is set to ε = 50.
Since the fit is bounded, the trajectory is feasible in accordance
with Theorem 1. Since the gradient of the objective function and
the gradient of the feasibility constraints tend to point in different
directions, the fit is larger than in Section IV-A (c.f Figure 3).

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−10

−5

0

5

10

15

Time (s)

R
eg

re
t (

m
2 /s

3)

Fig. 7: Regret RT for the minimum acceleration problem (Section
IV-B) when the gain of the saddle point controller is set to be ε =
50. The trajectory is strongly optimal as predicted by Theorem 1.
Since the gradient of the objective function and the gradient of the
feasibility constraints tend to point in different directions, regret is
larger than the regret of the preferred sheep problem (c.f Figure 3).

If the trajectories x(t) and λ(t) follow from the saddle point
dynamical system defined by (18) and (19) respectively we
can substitute the action and multiplier derivatives by their
corresponding values and reduce (26) to

V̇x̄,λ̄(x(t), λ(t)) = (x(t)− x̄)TΠX(x,−ε(f0,x(t, x(t))

+fx(t, x(t))λ(t)) + (λ(t)− λ̄)TΠΛ(x, εf(t, x(t))).
(27)

Then, in virtue of Lemma 1 we have that

V̇x̄,λ̄(x(t), λ(t)) ≤ ε[−(x(t)− x̄)T (f0,x(t, x(t)) (28)

+ fx(t, x(t))λ(t)) + (λ(t)− λ̄)T f(t, x(t))].

8

Notice that L(t, x(t), λ(t)) = f0(t, x(t)) + λ(t)T f(t, x(t))
is a convex function with respect to the actions since it is
a sum of convex functions with respect to x. Then, using
the definition of subgradient (c.f. Definition 3) we can upper
bound the inner product

−(x(t)− x̄)T (f0,x(t, x(t)) + fx(t, x(t))λ(t))

= −(x(t)− x̄)TLx(t, x(t), λ(t))
(29)

by the difference L(t, x̄, λ(t)) − L(t, x(t), λ(t)). Then, we
can upper bound the right hand side of the equation 28 and
obtain

V̇x̄,λ̄(x(t), λ(t)) ≤ ε[f0(t, x̄) + λT (t)f(t, x̄)− f0(t, x(t))

− λT (t)f(t, x(t)) + (λ(t)− λ̄)T f(t, x(t))].
(30)

Notice that on the right hand side of the above inequality the
fourth and the fifth term cancel out, then it reduces to

V̇x̄,λ̄(x(t), λ(t)) ≤ ε[f0(t, x̄) + λT (t)f(t, x̄)

−f0(t, x(t))− λ̄T f(t, x(t))]. (31)

Rewriting the above equation and then integrating both sides
with respect to the time from time t = 0 to t = T , we obtain∫ T

0

f0(t, x(t))− f0(t, x̄) + λ̄T f(t, x(t))− λT (t)f(t, x̄)dt

≤ −1

ε

∫ T

0

V̇x̄,λ̄(x(t), λ(t))dt.

(32)

Since the energy function (20) is positive, the above equation
reduces to∫ T

0

f0(t, x(t))− f0(t, x̄) + λ̄T f(t, x(t))− λT (t)f(t, x̄)dt

≤ 1

ε
Vx̄,λ̄(x(0), λ(0)). (33)

Since (33) holds for any x̄ ∈ X and any λ̄ ∈ Λ, it
holds for the particular choice x̄ = x∗, λ̄ = 0. Since
λT (t)f(t, x∗) dt ≤ 0 ∀t ∈ [0, T] we can lower bound the
left hand side of (33) to obtain:∫ T

0

f0(t, x(t))− f0(t, x∗)dt ≤ 1

ε
Vx∗,0(x(0), λ(0)). (34)

Notice that the left hand side of the above equation is the
definition of regret given in 4. Thus, we have shown that the
upper bound for the regret is the one stated in (22). And since
the right hand side of the above equation is a constant for all
T > 0 we proved that the trajectory generated by the saddle
point controller is strongly optimal. It remains to prove that
the trajectory generated is feasible. In order to do so, choose
x̄ = x∗, and use the Assumption 3, to transform (33) into∫ T

0

λ̄T f(t, x(t))−λT (t)f(t, x∗) dt

≤ 1

ε
Vx∗,λ̄(x(0), λ(0)) +KT. (35)

Since λT (t)f(t, x∗) dt ≤ 0 ∀t ∈ [0, T] we can again
lower bound the left hand side of the above equation by
λ̄T
∫ T

0
f(t, x(t)) and obtain

λ̄T
∫ T

0

f(t, x(t))dt ≤
(
Vx∗,λ̄(x(0), λ(0))

)
/ε+KT. (36)

Now let’s choose λ̄ =
[∫ T

0
f(t, x(t)) dt

]+
. The projection

on the positive orthant is needed because λ̄ ∈ Rm+ . Let I =

{i = 1..m|
∫ T

0
fi(t, x(t)) dt ≥ 0)}. Notice that if i 6∈ I ,

then λ̄i
∫ T

0
fi(t, x(t)) dt = 0. On the other hand, if i ∈ I ,

λ̄i
∫ T

0
fi(t, x(t)) dt =

(∫ T
0
fi(t, x(t)) dt

)2

≥ 0. Therefore,
for all i ∈ I we have:(∫ T

0

fi(t, x(t)) dt

)2

≤ 1

ε
V
x∗,[

∫ T
0
f(t,x) dt]

+(x(0), λ(0)) +KT. (37)

Notice that, the left hand side of the above equation is the
square of the ith component of the fit. Thus for all i ∈ I

FT,i ≤
(

1

ε
V
x∗,[

∫ T
0
f(t,x) dt]

+(x(0), λ(0)) +KT

)1/2

. (38)

If i 6∈ I then FT,i < 0 therefore it is also smaller than the
bound in (38). Which proves that the trajectories generated
by the saddle point controller defined by (18) and (19) are
feasible.

REFERENCES

[1] K. J. Arrow and L. Hurwicz, Studies in linear and nonlinear program-
ming. CA: Stanford University Press, 1958.

[2] M. W. Hirsch, S. Smale, and R. L. Devaney, Differential equations,
dynamical systems, and an introduction to chaos, vol. 60. Academic
press, 2004.

[3] E. Rimon and D. E. Koditschek, “Exact robot navigation using artificial
potential functions,” Robotics and Automation, IEEE Transactions on,
vol. 8, no. 5, pp. 501–518, 1992.

[4] C. W. Warren, “Global path planning using artificial potential fields,”
in Robotics and Automation, 1989. Proceedings., 1989 IEEE Interna-
tional Conference on, pp. 316–321, IEEE, 1989.

[5] O. Khatib, “Real-time obstacle avoidance for manipulators and mobile
robots,” Int. J. Rob. Res., vol. 5, pp. 90–98, Apr. 1986.

[6] S. Shalev-Shwartz, “Online learning and online convex optimization,”
Foundations and Trends in Machine Learning, vol. 4, no. 2, pp. 107–
194, 2011.

[7] V. Vapnik, The nature of statistical learning theory. Springer, 2000.
[8] M. Zinkevich, “Online convex programming and generalized infinites-

imal gradient ascent,” in ICML, pp. 928–936, 2003.
[9] E. Hazan, A. Agarwal, and S. Kale, “Logarithmic regret algorithms

for online convex optimization,” Machine Learning, vol. 69, no. 2-3,
pp. 169–192, 2007.

[10] D. P. Bertsekas, Nonlinear Programming. Belmont, MA: Athena
Scientific, 1999.

[11] M.-G. Cojocaru and L. Jonker, “Existence of solutions to projected
differential equations in hilbert spaces,” Proceedings of the American
Mathematical Society, vol. 132, no. 1, pp. 183–193, 2004.

[12] D. Zhang and A. Nagurney, “On the stability of projected dynamical
systems,” J. Optim. Theory Appl., vol. 85, pp. 97–124, Apr. 1995.

[13] S. Paternain and A. Ribeiro, “Online learning of feasible strategies in
unknown environments,”

[14] D. Mellinger and V. Kumar, “Minimum snap trajectory generation
and control for quadrotors,” in Proceedings of the IEEE International
Conference on Robotics and Automation (ICRA), May 2011.

	Introduction
	Viability, feasibility and optimality
	Regret and fit
	The shepherd problem

	Saddle point algorithm
	Numerical experiments
	Preferred sheep problem
	Minimum acceleration problem

	Conclusion
	Appendix
	Proof of Theorem 1

	References

