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Abstract—A new scheme to sample bandlimited graph signals

is proposed. The signals are defined in the nodes of a graph and

admit a sparse representation in a frequency domain related

to the structure of the graph, which is captured by the so-

called graph-shift operator. Most of the existing works focused

on using the value of the signal observed at a subset of nodes to

recover the signal in the entire graph. Differently, the sampling

scheme proposed here uses as input observations taken at a single

node. The observations correspond to sequential applications of

the graph-shift operator, which are linear combinations of the

information gathered by the neighbors of the node. When the

graph corresponds to a directed cycle, which is the support of

time-varying signals, our method is equivalent to the classical

sampling in the time domain. When the graph is more general,

we show that the Vandermonde structure of the sampling

matrix, which plays a critical role in guaranteeing recovery when

sampling time-varying signals, is preserved.

Index Terms—Graph signal processing, Sampling, Interpola-

tion, Bandlimited graph signals.

I. INTRODUCTION

The emergence of new fields of knowledge such as network
science and big data calls for the extension of the results
existing for classical time-varying signals to signals defined on
graphs [1]–[3]. This not only entails modifying the algorithms
currently available for time-varying signals, but also gaining
intuition on what concepts are preserved (and lost) when a
signal is defined, not in the classical time grid, but in a more
general graph domain.

This paper investigates the sampling and posterior recovery
of signals that are defined in the nodes of a graph. The
underlying assumption is that such signals admit a sparse
representation in a (frequency) domain which is related to the
structure of the graph where these signals reside [4]. Most
of the current efforts in this field have focused on using the
value of the signal observed at a subset of nodes to recover
the signal in the entire graph [4]–[6]. Our proposal in this
paper is different. We present a new sampling method that
accounts for the graph structure, can be run at a single node
and only requires access to information of neighboring nodes.
Moreover, we also show that the proposed method shares
similarities with the classical sampling and interpolation of
time-varying signals. If the graph corresponds to a directed
cycle, which is the support of classical time-varying signals,
our method is equivalent to classical sampling. When the
graph is more general, the Vandermonde structure of the
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sampling matrix, which is critical to guarantee recovery in
classical sampling [7], is preserved. Such a structure not
only facilitates the interpolation process, but also helps to
draw some connections between the proposed method and the
sampling of time-varying signals. The conditions under which
signal recovery is guaranteed are identified. These depend both
on the structure of the graph and the particular node taking
the observations. They also reveal that one way to understand
bandlimited graph signals is to think of signals that can be
well approximated by only observing the value of the signal at
a small neighborhood. Simulations illustrating the application
of our sampling scheme for both synthetic signals defined in
random graphs and real-world graph signals close the paper.1

II. SAMPLING OF GRAPH SIGNALS

Let G = (N , E) denote a directed graph. The set of nodes N
has cardinality N , and the set of links E is such that (i, j) 2 E
if and only if node i is connected to node j. The set Ni :

{ j |(j, i) 2 E} contains all nodes with an incoming connection
to i and is termed the incoming neighborhood of i. For any
given graph, the adjacency matrix A is defined as a sparse
N⇥N matrix with nonzero elements Aji if and only if (i, j) 2
E . The value of Aji captures the strength of the connection
between i and j. The focus of this paper is not on analyzing
G, but a graph signal defined on the set of nodes N . Such a
signal can be represented as a vector x = [x1, . . . , xN ]

T 2 RN

where the i-th component represents the value of the signal at
node i, or, equivalently, as a function f : N ! R, defined on
the vertices of the graph.

The graph G is endowed with a graph-shift operator S

defined as an N ⇥ N matrix whose entry (i, j), denoted as
Sij , can be nonzero only if i = j or (j, i) 2 E . The sparsity
pattern of the matrix S captures the local structure of G,
but we make no specific assumptions on the values of the
nonzero entries of S. Common choices for S are the adjacency
matrix of the graph [2], [8] and its Laplacian [1]. The intuitive
interpretation of S is that it represents a linear transformation
that can be computed locally at the nodes of the graph. If
y = [y1, . . . , yN ]

T is defined as y = Sx, then node i can
compute yi provided that it has access to the values of xj at
its incoming neighbors j 2 Ni. We assume henceforth that
S is diagonalizable, i.e., that there exists a N ⇥N matrix V

1
Notation: Boldface capital letters denote matrices and boldface lowercase

letters column vectors. Generically, the entries of a matrix X and a vector x
are denoted as Xij and xi; however, when contributing to avoid confusion, the
alternative notation [X]ij and [x]i will be used. The notations T and H stand
for transpose and transpose conjugate, respectively; diag(x) is a diagonal
matrix satisfying [diag(x)]ii = [x]i; ei is the i-th N⇥1 canonical vector (all
entries of ei are zero except the i-th one, which is one); EK := [e1, ..., eK ]

is a tall matrix collecting the K first canonical vectors; and 0 is the all-zeros
vector. The modulus obtained after dividing x by N is denoted as modN (x).



and a N ⇥N diagonal matrix ⇤ such that S = V⇤V

�1. In
particular, the previous is true for normal matrices satisfying
SS

H
= S

H
S. In that case we have that V is unitary, which

implies V

�1
= V

H .
A natural definition of sampling for a graph signal is to

introduce a fat K ⇥N selection matrix C and define

¯

x = Cx. (1)

as the sampled signal [6]. If the matrix C is chosen as binary,
i.e., with elements Cij 2 {0, 1}, and satisfying

P
j Cij = 1

for all i, then the signal ¯

x is a selection of K out of
the N elements of x. In such a case, the ratio K/N is
the sampling rate of the signal. Uniform sampling amounts
to setting C = [e1, eN/K+1, . . . , eN�N/K+1]

T , while the
selection of the first K elements of x is accomplished by
setting C = E

T
K := [e1, . . . , eK ]

T . In general, it is not clear
how to choose good selection matrices C. This is in contrast
to conventional sampling of signals in the time domain where
uniform sampling is advantageous [7].

An equally valid, yet less intuitive, definition is to fix a
node, say i, and consider the sampling of the signal seen by
this node as the shift operator S is applied recursively. To
describe this sampling methodology more clearly, define the
l-th shifted signal y(l)

:= S

l
x and the N ⇥N matrix

Y := [y

(0)
,y

(1)
, . . . ,y

(N�1)
] = [x,Sx, . . . ,S

N�1
x], (2)

which groups the signal x and the result of the first N � 1

applications of the shift operator. Associating the i-th row of
Y with node i, we define the successively aggregated signal
at i as yi := (e

T
i Y)

T
= Y

T
ei. Sampling is now reduced to

the selection of K out of the N elements (rows) of yi, which
we accomplish with a selection matrix C [cf. (1)]

¯

yi := Cyi = C

�
Y

T
ei

�
. (3)

We say that the signal ¯

yi samples x with successive local
aggregations. This nomenclature follows from the fact that
y

(l) can be computed recursively as y

(l)
:= Sy

(l�1) and
that the i-th element of this vector can be computed using
signals associated with itself and its incoming neighbors:
y

(l)
i =

P
j2Ni

Sijy
(l�1)
j . We can then think of the signal yi

as being computed locally at node i using successive variable
exchanges with neighboring nodes. In fact, it is not difficult
to see that y(l)i is a linear combination of the values of xj at
nodes j whose distance (number of hops) from node i is less
than or equal to l. Hence, the sampled signal ¯

yi in (3) is a
selection of values that node i can determine locally.

Sampling in the time domain: To understand the difference
between selection sampling [cf. (1)] and aggregation sampling
[cf. (3)], it is instructive to consider their application to a signal
defined in the time domain. Classical time domain signals can
be represented as graph signals defined on top of a directed
cycle graph [1], [6]. To do so define the directed cycle graph
Gdc as one in which the edge set Edc := {(i,modN (i)+1)}Ni=1,
connects node i to node i+ 1 for all nodes except N , which
is connected to node 1. The leftmost graph in Fig. 1 is an
example of a signal x defined on top of the directed cycle
Gdc of length N=6. For this example, we consider selection

sampling and aggregation sampling when using the adjacency
matrix of Gdc as shift operator S = Adc and the uniform
selection matrix C = [e1, eN/K+1, . . . , eN�N/K+1]

T . In
selection sampling, we just multiply the graph signal x with
the selection matrix C to obtain the sampled signal ¯

x = Cx

as indicated by (1). If K/N = 1/2, in the example in Fig.
1 this amounts to selecting the values at the 3 odd nodes. In
aggregation sampling, we consider subsequent applications of
the shift matrix S = Adc. Each of these shifts amounts to
rotating the signal clockwise so that the element at node i

moves to node i+1 for all i < N and the element at node N

moves to node 1. If we consider, e.g., node i = 1, the first shift
moves signal xN to this node so that y(1)1 = xN , the second
shift moves signal xN�1 to this node so that y(2)1 = xN�1 and
so on; see the 6 graphs in Fig. 1. It follows that the aggregated
signal y1 in (2) is given by y1 = [x1, xN , xN�1, . . . , x2].
This is just a shift of the original signal x, which, upon
multiplication by the selection matrix C as per (3) results in
a vector ¯

y1 = Cy1 that contains the same elements that ¯

x

contains.
For the cycle graph and shift operator S = Adc selection

and aggregation sampling produce not only equivalent sampled
signals but also reduce to conventional sampling. This is
not a coincidence because both methods are designed as
generalizations of conventional sampling. In general, selec-
tion sampling and aggregation sampling produce different
outcomes. In selection sampling we move through nodes to
collect samples at points uniquely identified by C, whereas
in aggregation sampling we move the signal through the
graph while collecting samples at a fixed node. Observe that
because aggregation sampling depends on the shift operator,
it incorporates the structure of the graph into the sampling
procedure. This is not true for selection sampling except for
the choice of matrices C adapted to particular graphs.

III. SAMPLING OF BANDLIMITED GRAPH SIGNALS

Recovery of the original signal from its sampled version
is possible under the assumption that the original signal is
bandlimited and therefore admits a sparse representation. The
common practice when addressing the problem of sampling
signals in graphs is to suppose that the graph-shift operator S
plays a key role in explaining the signals of interest x. More
specifically, that x can be expressed as a linear combination of
a subset of the columns of V = [v1, ...,vN ], or, equivalently,
that the vector b

x = V

�1
x is sparse. In this context, vectors

vk are interpreted as the graph frequency basis and bxk as the
corresponding signal frequency coefficients. It will be assumed
throughout that the active frequencies are the first K ones,
associated with the eigenvalues of largest magnitude [4], [9].
Under this assumption, it holds that bx = [bx1, ..., bxK , 0, ..., 0]

T .
However, the results presented in the paper can be applied to
any set of active frequencies K of size K provided that K is
known. For convenience, we define VK := [v1, ...,vK ] and
b
xK := [bx1, ..., bxK ]

T so that we may write b
x = [

b
x

T
K , 0]

T .
Notice that, for b

x to be sparse, it is reasonable to assume
that S is involved in the generation of x. When G = Gdc, it
can be easily shown that setting the shift operator either to
S = Adc or to S = Ldc := I�Adc gives rise to the Fourier
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Fig. 1: Sampling in the time domain as aggregation sampling in a directed cycle graph. In aggregation sampling we utilize successive
applications of a shift operator determined by the given graph and sample the resulting signal observed at a given node. Using the cycle
adjacency matrix Adc as shift operator results in the signal x rotating through the graph and the selection of elements of the aggregated
signal reduces to conventional sampling. Aggregation sampling is, therefore, a generalization of conventional sampling to graph signals that
utilizes the underlying graph structure in the construction of samples.

basis F. More formally, that the right eigenvectors of S satisfy
V = F, with Fij := N

�1/2
e

+j 2⇡N (i�1)(j�1) and j :=
p
�1.

Selecting S = Adc has the additional advantage of satisfying
⇤ii = e

�j 2⇡N (i�1), i.e., the eigenvalues of the shift operator
correspond to the classical discrete frequencies.

A. Selection sampling of bandlimited graph signals

Under the selection sampling approach [4]–[6], sampling
a graph signal amounts to setting ¯

x = Cx [cf. (1)]. Since
the K ⇥N binary selection matrix C indexes the nodes that
are observed, the issue then is how to design C, i.e., which
nodes to select, and how to recover the original signal x from
its samples ¯

x. To answer these questions, it is assumed that
the signal x is bandlimited, so that it can be expressed as a
linear combination of the K principal eigenvectors in V. The
sampled signal ¯

x is then ¯

x = Cx = CVKb
xK . Clearly, if

the matrix CVK is invertible, then b
xK can be recovered from

¯

x. Once b
xK is known, the signal in the original domain is

x = VKb
xK . Combining the previous equations, we have

x = VKb
xK = VK(CVK)

�1
¯

x, (4)

which reveals how the original signal can be interpolated from
its samples. For (4) being true, CVK has to be invertible.
Hence, the key for guaranteeing perfect reconstruction is to
select a subset of nodes such that the corresponding rows in
VK are linearly independent. In the classical domain of time-
varying signals, the (Fourier) basis has a Vandermonde struc-
ture, both row-wise and column-wise. This implies that any
subset of K rows will give rise to a (row-wise) Vandermonde
matrix and, hence, invertibility is guaranteed. However, for an
arbitrary graph this is not guaranteed and algorithms to select
subsets that ensure recovery are required [5].

B. Aggregation sampling of bandlimited graph signals

As explained in (3), under the aggregation approach the
sampled signal is formed by observations of the shifted signals
y

(l)
= S

l
x taken at a given node i. Under this second

approach, the graph-shift operator S plays a key role not
only in explaining and recovering x, but also in sampling

x. Another reason to consider this scheme is that the entries
of y

(l) can be found by sequentially exchanging information
among neighbors. This implies that: a) for setups where
graph vertices correspond to nodes of an actual network, the
procedure can be implemented distributedly; and b) if recovery

is feasible, the observations at a single node can be used to
recover the signal in the entire graph.

Mimicking the approach in the previous section, we first
analyze how the bandlimitedness of x is manifested on the
sampled signal. Then, we identify under which conditions re-
covery is feasible and describe the corresponding interpolation
algorithm. For the ease of exposition, the dependence of yi

on b
x is given in the form of a lemma.

Lemma 1: Define the N ⇥ 1 vector �i := V

T
ei, which

collects the values of the frequency basis {vk}Kk=1 at node

i, and the N ⇥N (column-wise) Vandermonde matrix

 :=

0

BBB@

1 . . . 1

�1 . . . �N

.

.

.

.

.

.

�

N�1
1 . . . �

N�1
N

1

CCCA
. (5)

Then, the shifted signal yi can be expressed as

yi =  diag(�i)bx. (6)

Proof : Using the spectral decomposition of S, signal y

(l)

can be written as y

(l)
= S

l
x = (V⇤

l
V

�1
)x = (V⇤

l
)

b
x.

Based on the definitions of yi and �i, it follows that yi =

Y

T
ei = (VV

�1
Y)

T
ei = (V

�1
Y)

T
V

T
ei = (V

�1
Y)

T�i.
Since the l-th column of matrix Y is y

(l�1), this column
can be written as (V⇤

l�1
)

b
x and, therefore, the l-th column

of (V

�1
Y) can be written as ⇤l�1b

x or, equivalently, as
diag(bx)[�l�1

1 , ...,�

l�1
N ]

T . Leveraging the fact that the vector
containing the l-th power of the eigenvalues corresponds to the
row l+1 of matrix  , the shifted signal yi can be expressed
as yi = (V

�1
Y)

T�i = (diag(bx) T
)

T�i =  diag(bx)�i =

 diag(�i)bx, which is the claim in the lemma.

While in Sec. III-A the relationship between the sparse fre-
quency coefficients b

x and the signal to be sampled was simply
given by x = V

b
x, now it is given by yi =  diag(�i)bx.

Next, we use Lemma 1 to identify under which conditions
recovery is feasible. To do this, let us define the N⇥K matrix
 i =  diag(�i)EK . Then, the sampled signal ¯

yi is

¯

yi = Cyi = C diag(�i)bx = C ibxK , (7)

where C is the binary K ⇥ N selection matrix, and b
xK the

vector collecting the non-zero components of b
x. To simplify

exposition, for the time being we will assume that C=E

T
K ,



i.e., that the observations correspond to the original signal
and the first K�1 shifts. This assumption can be relaxed,
as discussed in Remark 1.

If matrix C i is invertible, then b
xK can be recovered from

¯

yi [cf. (7)] and, once b
xK is known, x can be found as x =

VKb
xK . Combining the previous expressions, we have [cf. (4)]

x = VKb
xK = VK(C i)

�1
¯

yi. (8)

The equation shows how the original signal can be interpolated
from its samples. As already stressed, for (8) to hold true,
C i has to be invertible. Hence, the key for guaranteeing
perfect signal reconstruction is to select samples such that
the corresponding rows in  i are linearly independent. While
for the selection sampling described in Sec. III-A there is
no straightforward way to check the invertibility of CVK

(existing algorithms typically do that by inspection [5]), for
the aggregation sampling in (6)-(8), the invertibility of C i

can be guaranteed if the two following conditions hold.
Proposition 1: Let x and

¯

yi be, respectively, a bandlimited

graph signal where at most K of the first frequency compo-

nents are non-zero and the output of the sampling process as

defined in (7) with C = E

T
K . Then, the N entries of signal x

can be recovered from the K samples in

¯

yi if the two following

conditions hold

i) The first K eigenvalues of the graph-shift operator S are

distinct; i.e., �k1 6= �k1 for all k1 6= k2, k1  K and k2  K.

ii) The K first entries of �i are non-zero.

Proof: To proposition is true because C i can be understood
as the product of C EK – invertible if i) holds true – and
E

T
Kdiag(�i)EK – invertible if ii) holds true.

One of the implications of the proposition is that there is
no need to compute or observe the entire vector yi, since
its first K entries suffice to guarantee recovery. This readily
implies that a K-bandlimited graph signal can be recovered by
observing the values of the signal in a K�1 hop neighborhood.

The conditions in Prop. 1 are not difficult to check and they
provide additional insights on the behavior of the sampling and
interpolation procedure. Condition i) refers to the structure of
the entire graph. It states that if a graph has two identical
frequencies and the signal of interest is a linear combination
of both of them, the sampling procedure will fail, regardless
of the chosen node. Condition ii) refers to the specific node
where the samples of the shifted signal are taken. It states
that any node in the network can be used to sample the signal
provided that (e

T
k �i) 6= 0 for k  K; i.e., that the chosen

node participates in the specific frequencies on which signal
x is expressed. In practice, when noise is present, the recovery
performance will depend on how strongly the particular node
expresses the frequencies of interest. More precisely, since (8)
requires inverting diag(ET

K�i), nodes with low values of eTk �i

will lead to reconstructions highly sensitive to noise.
Remark 1: The structure of the selection matrix C and, in
particular, the fact that C EK is a Vandermonde matrix are
instrumental to guarantee the recovery of the original signal.
Note that C EK is Vandermonde not only when C = E

T
K ,

but also when C = [e1, e1+N0 , . . . , e1+(K�1)N0
]

T , provided
that 1  N0  N/K and �

N0
k1

6= �

N0
k2

for all k1 6= k2,
where k1  K and k2  K. By setting N0 = N/K, the
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Fig. 2: A bandlimited graph signal. (a) The graph G and the graph
signal x defined on the nodes of G. The sampling node is circled in
red. (b) Frequency components b

x of the graph signal x. Given that
there are three non-zero coefficients, the bandwidth of signal x is 3.

counterpart of the classical time sampling theorem (which
considers uniformly spaced samples) is recovered. Moreover,
if �k 6= 0 for k  K, selection patterns of the form C =

[en0 , en0+N0 , . . . , en0+(K�1)N0
]

T will also lead to invertible
matrices. In this case, C EK can be expressed as a product
of a Vandermonde and a non-zero diagonal matrix.

IV. NUMERICAL EXPERIMENTS

We start by illustrating the perfect recovery of synthetic
graph signals. Consider the 20-node undirected graph G de-
picted in Fig. 2a, which corresponds to a realization of a
symmetric Erdõs-Rényi graph with edge probability 0.20.
With A = V⇤AV

H denoting the adjacency matrix of G,
three different graph-shift operators are considered: S1 = A,
S2 = I � A, and S3 = 0.5A

2. Even though the support of
S3 differs from that of S1 and S2, the graph-shift operator S3

still preserves the notion of locality as defined by a two-hop
neighborhood. Note also that the three shift operators share
the same set of eigenvectors V, but they have a different set
of eigenvalues. Let x be a graph signal supported on G. This
signal is represented in Fig. 2a where the value of the signal
at every node is written explicitly next to each node and also
coded by its color. Although seemingly random in the node
domain, the structure of the signal x is highly determined
by the graph. To illustrate this, Fig. 2b plots the frequency
components b

x of signal x, where the graph frequency basis
is given by the columns of V. The figure shows that x has a
bandwidth of K = 3. Since V is the basis for S1, S2 and S3,
the frequency representation b

x and the bandwidth K are the
same for the three operators. Thus, the procedure in Sec. III-B
will recover the whole signal using three aggregated samples,
no matter which operator is chosen for the aggregation.

Suppose that we select node i = 4 as sampling node, which
is circled in red in Fig. 2a. If the shift is S1, the 3 first ob-
servations taken by that node are y4 = [�0.55, 1.27,�2.94]

T .
The first observation corresponds to the value of the signal at
node 4, the second one to the aggregated signal at its neighbors
and the third observation corresponds to a linear combination
of the signal values within its two-hop neighborhood. Since
K = 3, Prop. 1 guarantees recovery if: i) the 3 first eigenvalues
of the shift operator are distinct and ii) the 3 first values of
�4 are non-zero. It turns out that for S1 and node 4 these
two conditions hold true and, hence, the interpolation in (8)
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Fig. 3: Heat map of the graph-shift operator S of the economic
network. It is sparse across the real economic sectors (from sector 1
to 62) while the artificial sectors AV and FU are highly connected.

yields the original signal in Fig. 2a. In fact, for the network at
hand, these two conditions are satisfied for all nodes and shift
operators considered. This implies that perfect reconstruction
is achieved regardless of the node and shift operator – among
the three presented – carrying out the aggregation. To better
asses the conditions in Prop. 1, we build 10,000 different
random connected graphs where the edge probability is chosen
from the interval [0.15, 0.25]. We vary the number of nodes
from 10 to 30 and the active frequencies from 1 to 5. For
each random graph and signal defined on it, we test for perfect
signal recovery on every node. The results show that in 99.89%

of the cases the signal is successfully recovered.
We now present results for real-world graph signals corre-

sponding to the exchange among the different sectors of the
economy of the United States. The Bureau of Economic Anal-
ysis publishes a yearly table of inputs and outputs organized by
economic sectors [10]. More precisely, we have a set N of 62
industrial sectors and a similarity function U : N ⇥N ! R+

where U(i, i

0
) represents how much of the production of sector

i, expressed in trillions of dollars per year, was used as an
input of sector i

0 on average during years 2008, 2009, and
2010. Moreover, for each sector we are given two economic
markers: the added value (AV) generated and the level of
production destined to the market of final users (FU). Thus,
we define a graph on the set of N = 64 nodes comprising the
original 62 sectors plus the two artificial ones (AV and FU)
and an associated symmetric graph-shift operator ¯

S defined
as ¯

Sij = (U(i, j) + U(j, i))/2. We then threshold ¯

S in order
to make it more sparse by setting to 0 all the values lower
than 0.01 to obtain the shift operator S = V⇤V

H , which
is normal given that it is symmetric; see Fig. 3. Consider
now the signal x 2 R64 on the mentioned graph where x

contains the total production – in trillion of dollars – of each
sector (including AV and FU) during year 2011. Signal x is
approximately bandlimited in S since most of the elements of
b
x = V

H
x are close to zero. In particular, the first 4 frequency

coefficients contain 99.65% of the signal’s energy. Hence, in
what follows we interpret the graph signal x as a “noisy”
realization of a signal of bandwidth K = 4.

Perfect recovery with K = 4 samples is not feasible in
this case and the goal is to approximate x. As anticipated
in Sec. III-B, the quality of the reconstruction depends on

the sampling node. The best reconstruction is achieved by the
artificial sectors AV and FU, which are connected and closely
related to every other sector. If those two sectors are excluded,
the best reconstruction among real sectors is achieved by
‘Insurance Carriers’, which is also well connected to most
sectors of the economy (cf. node 40 in Fig. 3). The worst
is given by ‘Publishing Industries’ (node 34). This sector is
poorly connected and the first 4 entries of �34 are very small
(cf. discussion after Prop. 1). The median reconstruction error
across nodes is 1.9%. An alternative approach is to implement
selection sampling, i.e., to sample the signal x in 4 different
sectors – excluding the artificial sectors AV and FU – and
interpolate the whole signal from these 4 observations. Recall
that reconstruction is not guaranteed for every subset of 4
nodes since we must have invertibility of (CVK) [cf. (4)].
Indeed, the median reconstruction error in this case is 420%.
The differences in terms of the best recovery performance
are less noticeable: 0.35% for the best node in aggregation
sampling and 0.39% for the the best subset of four nodes
in selection sampling. Equally interesting, if more general
sampling strategies (like the ones described in Remark 1) are
implemented, the median error can be reduced down to 0.40%

while keeping the minimum error at 0.35%.

V. CONCLUSIONS

The problem of sampling bandlimited graph signals was
investigated. A new scheme based on the aggregation of local
information at a single node after successive applications of
the graph-shift operator was proposed. This contrasts most
existing works, which focus on observing the value of the
signal at a subset of nodes. Our scheme was shown to be
equivalent to classical sampling for directed cycle graphs
whereas, for more general graphs, the Vandermonde structure
of the sampling matrix was exploited to find the conditions
for perfect reconstruction.
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