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Abstract—Schemes to reconstruct signals defined in the nodes of a
graph are proposed. Our focus is on reconstructing bandlimited graph
signals, which are signals that admit a sparse representation in a
frequency domain related to the structure of the graph. The schemes,
which are designed within the framework of linear shift-invariant graph
filters, consider that the signal is injected at a single seeding node.
After several sequential applications of the graph-shift operator — which
computes linear combinations of the information available at neighboring
nodes — the seeding signal percolates across the graph. We show that if
the node is allowed to change the seeding signal with each application
of the shift operator, the original bandlimited signal can be recovered.
Conditions under which such a recovery is feasible are identified for
two different reconstruction schemes. We illustrate both reconstruction
schemes in synthetic graph signals and we analyze their performance in
noisy real-world scenarios.

Index Terms—Graph signal processing, Signal reconstruction, Interpo-
lation, Percolation, Graph shift operator, Bandlimited graph signals

1. INTRODUCTION

Coping with the needs posed by fields such as network science
and big data requires extending the results existing for classical time-
varying signals to signals defined on graphs [1], [2]. This not only
entails modifying the algorithms currently available for time-varying
signals, but also gaining intuition on what concepts are preserved
(and lost) when a signal is defined, not in the classical time grid, but
in a more general graph domain. Two problems that have recently
received substantial attention are sampling [3]-[6] and filtering [2]
signals that are defined on the nodes of a graph.

This paper investigates the reconstruction of graph signals. In our
approach, the reconstructed signal is obtained through percolation of
a seeding signal, i.e., through the application of a graph filter to an
initial signal. Graph filters are the generalization of the classical time-
invariant systems when the signals are defined in a general graph
structure. Seeding signals are graph signals defined on a subset of
the nodes in the graph. In [7] it was shown that a graph signal
of bandwidth K can be reconstructed by using K seeding nodes
followed by the application of a low-pass graph filter. Different
from both what occurs in the classical time domain and the usual
approach followed for interpolating graph signals [8]-[11], if we want
to reconstruct a signal using graph filters, the values of the seeding
signals at the seeding nodes do not correspond with those of the
signal to reconstruct [7].

The main contribution of this paper is the design of graph-signal
reconstruction schemes via percolation using only one seeding node.
Inspired by the local aggregation sampling procedure in [5], we
propose two reconstruction — interpolation — schemes where the
signal is injected at a single node and percolates throughout the graph
via successive applications of the graph shift operator. In Sec. II we
introduce the concepts needed for the definition of the reconstruction
schemes. In Sec. III we present the two schemes prosed in this paper
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as well as their conditions for perfect reconstruction. The recon-
struction scheme in Sec. III-A consists of successive injections of
seeding values each of them followed by an application of the graph-
shift operator. Differently, in the scheme considered in Sec. III-B,
the seeding node only injects a number of seeding values equal
to the bandwidth of the signal to reconstruct. The injection is then
followed by a local implementation of a low-pass filter. In Sec. IV we
first illustrate the perfect reconstruction of both schemes in synthetic
noiseless signals. Then, we analyze the reconstruction performance
when noisy signals in real-world networks are considered.'

II. BANDLIMITED GRAPH SIGNALS AND GRAPH FILTERS

Sec. II-A describes the modeling considerations and presents the
concept of the graph shift operator [2], [12]. Sec. II-B reviews
the concept of a bandlimited graph signal and establishes some
connections with the classical time domain. Sec. II-C introduces the
concept of a graph filter and details the notion of a low-pass filter,
which is central for the reconstruction scheme in Sec. III-B.

A. General modeling considerations

Let G denote a directed graph with a set of nodes or vertices
N (with cardinality N) and a set of links &, such that if node i
is connected to j, then (4,5) € &. Since G is directed, the set N; :
{j 1(4,%) € E} stands for the (incoming) neighborhood of 4. For any
given graph we define the adjacency matrix A as a sparse N X N
matrix with non-zero elements A;; if and only if (¢,5) € &£. The
value of Aj; captures the strength of the connection from % to j. The
focus of the paper is not on analyzing G, but a graph signal defined
on the set of nodes N. Formally, such a signal can be represented
as a vector x = [:vl,...,xN]T € RN where the i-th component
represents the value of the signal at node ¢ or, alternatively, as a
function f : N — R, defined on the vertices of the graph.

The graph G can be endowed with the so-called graph-shift
operator S [2], [12]. The shift S is a N x N matrix whose entry
Sj; can be non-zero only if ¢ = j or if (i,j) € £. The sparsity
pattern of the matrix S captures the local structure of G, but we
make no specific assumptions on the values of the nonzero entries of
S. Widely-used choices for S are the adjacency matrix of the graph
[2], [12] and the Laplacian [1]. The intuition behind S is to represent
a linear transformation that can be computed locally at the nodes of
the graph. More rigorously, if y is defined as y = Sx, then node
1 can compute y; provided that it has access to the value of x; at
j € N;. We assume henceforth that S is diagonalizable, so that there
exists a N X N matrix V and a N x N diagonal matrix A that can
be used to decompose S as S = VAV L,

Notation: Generically, the entries of a matrix X and a (column) vector x
will be denoted as X;; and x;; however, when contributing to avoid confusion,
the alternative notation [X];; and [x]; will be used. The notation 7 and
H stands for transpose and transpose conjugate, respectively; diag(x) is a
diagonal matrix satisfying [diag(x)];; = [x]; e; is the i-th N x 1 canonical
vector (all entries of e; are zero except the i-th one, which is one); Ex :=
le1, ..., ex] is a tall matrix collecting the K first canonical vectors; and O is
the all-zero vector (when not clear from the context, a subscript indicating the
dimensions will be used). The modulus (remainder) obtained after dividing =
by N will be denoted as mod ().



The next section presents the concept of a bandlimited graph signal.
To establish connections with the notion of bandlimitedness for classi-
cal time-varying signals, we define the directed cycle graph G4, with
edge set 4. = { (i, mody (i + 1)) }L,. Its adjacency and Laplacian
matrices are denoted, respectively, as A4 and Lgc:=I—Ag4..

B. Bandlimited graph signals

A common assumption when studying graph signals is that the
graph-shift operator S plays a key role in explaining the signals of
interest x. More specifically, that x can be expressed as a linear
combination of a subset of the columns of V. = [vi,...,vn],
or, equivalently, that the vector X = V 'x is sparse [3]. In this
context, vectors v; are interpreted as the graph frequency basis,
Z,; as the corresponding signal frequency coefficients, and x as a
K bandlimited graph signal. The superscript ~ will be used to
emphasize that the corresponding signal pertains to the frequency
domain. We will assume that the set of active frequencies are known
and, without loss of generality, that those are the first K ones. Then,
with X := [Z1,...,2k|" being a K x 1 vector collecting the
coefficients associated with those frequencies, it holds that x is a K
bandlimited signal if

07,
where Vg := VEg = [vy, ...

X = [Xk,0,... x = VX = VgXk, (1

vil.

Remark 1 Classical time-domain discrete signals can be thought as
graph signals on the directed cycle Gg.. Setting the shift operator
either to S = Agc or S = Lyg. gives rise to the Fourier basis

F. More formally, the right eigenvectors of S satisfy V. = F, with
Fi; = %e*’ VIR (=D E-D),
N

C. Graph filters

Let H: RY — R" be a graph signal operator, i.e. a map between
signals. We are interested in operators of the form H := Zf;ol S,
i.e., in linear transformations that can be expressed as a polynomial
(of degree L — 1) of the graph-shift operator. This type of transfor-
mations are called graph filters [2]. Graph filters are of particular
interest because they can be implemented locally, e.g., with L — 1
exchanges of information among neighbors. This is true since the
graph-shift operator S can be computed locally (cf. Sec. II-A).

Note that the graph filter H can be written as H :=

(ZlL 'y A')V ™', The diagonal matrix H = ZlL ' At can
be V1ewed as the frequency response of H and it can be alternatively
written as H = diag(h), where vector h is a vector that contains
the N frequency coefficients of the filter. By defining the N x L
Vandermonde matrix
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where \; are the elgenvalues of S, and the vector containing the
coefficients of the filter as h := [ho,...,hr—1]", it holds that h =
W¥h and therefore

L—1

H :Zzzo
This implies that if y is defined as y =
representation y satisfies

mS! =Vdiag(¥h)V ' =Vdiag(h)V~".  (3)

Hx, its frequency

y= diag(‘llh)ﬁ. @)

Within this context, a low-pass_graph filter of bandwidth K is one
where the frequency response h is given by

= [hx,0,...,0]", )

where h contains the frequency response for the first K frequencies.
Notice that when the low-pass filter in (5) is applied to an arbitrary
signal x, the output signal is K bandlimited as described in (1).
The following proposition states the minimum degree needed for the
design of a low-pass filter (cf. Proposition 1 in [7]).

Proposition 1 Let D denote the number of distinct eigenvalues of S
in {\x}n_k 1. Then, it holds that if L > D, there exist infinitely
many nonzero L x 1 vectors of low-pass filter coefficients h*, i.e.
that h* is of the form (5).

The idea behind the proof is to show that if L > D, the nullspace of
the (N — K) x L matrix g 1, := [€x41,...,ex]|" ¥ is non-empty
(so that h* can be selected from that space). This requires setting
L larger than the rank of Wk 1. Since Wg 1 has a Vandermonde
structure, its rank is D (the number of distinct \;) and, therefore,
the proposition follows. Low-pass filters will be instrumental in the
design of the reconstruction scheme in Sec. III-B.

III. RECONSTRUCTION USING A SINGLE SEEDING NODE

We present reconstruction — interpolation — schemes for graph
signals where the signal is injected at a single node and percolates
through the graph via successive applications of the graph shift oper-
ator S. Assume without loss of generality that the first node is the one
injecting the signal, and let the N x 1 vector x® = [z, 0,...,0]T
denote the signal injected at time . The signals are propagated across
nodes through successive applications of the graph shift S, so that
the obtained signal y® after ¢ shifts is given by

y® =8yt 4 x® yY =o. (©6)

With y := y"™Y denoting the reconstructed signal after 7 — 1
applications of the shift for some integer 7, we rewrite (6) to obtain
y = Zz’ 1Sl (r—1-1) Ez‘ l (T 1— l) (7)

which relates the reconstructed signal y with the successive inputs
() of the seeding node. Notice that (7) can be interpreted as the
application of the graph filter

_ ZZ—:—OI ,f(T_l_l)Sl ®)

of degree 7—1 to the canonical vector e;. The coefficients of the filter
are given by the seeding values {x(t) }t o » Which can be alternatively
written as % := [27V ..., Z(9)T. Our objective is then to design
the amount of seeding signals 7 and each of the seeding values in X
so that the reconstructed graph signal y equals a desired signal x. In
Sec. III-A we solve this design problem and state the conditions for
guaranteed perfect reconstruction. In Sec. III-B we exploit the fact of
x being bandlimited to propose an alternative reconstruction scheme
which first injects a (shorter) seeding signal and then processes it
using a low-pass graph filter.

A. Reconstruction via successive shift applications

Since the reconstructed signal can be understood as the output of
a graph filter [cf. (8)], we will address the reconstruction problem in
the frequency domain. We begin by defining the frequency represen-
tations of the input and the output of the filter as €; := V" 'e; and
§ := V~ly. The first collects the frequency coefficients associated
with the first canonical vector (input of the filter) and the second one
those of the reconstructed signal (output of the filter). Note that the
elements in €; represent how strongly the seeding node expresses
each of the graph frequencies.

The output-input relationship of filter (8) in the frequency domain
can be written as [cf. (4)]

¥ = diag(¥x)8; = diag (e, ) UX, ©)



where we have set L = 7 in the definition of ¥ [cf. (2)] and, for
the second equality, we have used the fact that for generic vectors a
and b it holds that diag(a)b = diag(b)a.

Since we assume x to be K-bandlimited with active frequencies
X and our design goal is to have X =y, (9) implies that the filter
output must satisfy

[Rr, 0" = diag(e,)¥x. (10)

The following proposition states the conditions under which (10) can
be solved with respect to X. Its proof can be found in an online
appendix [13].

Proposition 2 Let U; and U be, respectively, the number of values
in {[€1]x}A—1 and {[€1]x } =41 that are zero; let D1 be the number
of repeated values in { A, }7—,; and let D2 be the number of repeated
values in {\x}rex,, where Ky :={k | K <k < N and [e1]x #
0}. Then, the system of N equations in (10) is guaranteed to have a
solution w.r.t. X if the two following conditions hold:

i) U1 =0 and D; = 0; and

ii) >N —Uz — Ds.

Condition i) basically states that the seeding node needs to be able
to act on every active frequency (Ui = 0) and this action must
be different for each of these frequencies (D1 = 0). Condition ii)
states the minimum number of seeding values needed for perfect
reconstruction. Notice that, if condition i) holds, Proposition 2 allows
us to set 7 = N —Us— D5 and solve (10) to find the values {57“)}:;01
that the seeding node must inject into the network.

As a particular case, consider the connection with the classical time
domain where the shift operator is given by the adjacency matrix
of the directed cycle, i.e. S = Ag.. In this case, applying the [th
power of shift-operator A}, to a signal amounts to shifting the signal
l time instants. Particularizing (7) for the problem at hand yields
that the reconstructed signal y is y = 27;01 AL x71D  Since in
this case the seeding values X = [:?(’55,07 ...,0]7 correspond to
Dirac deltas, Afie)?(t) is a shifted Dirac with the non-zero entry at
the (I + 1)th position. Therefore, the goal of designing {z}7-}
such that y = x can be trivially guaranteed by setting 7 = N and
z® = rNn—t, Wwitht =0,..., N — 1. Clearly, for the entire signal to
be propagated across the graph (circular time grid), the percolation
procedure needs N — 1 shifts. This is consistent with Prop. 2 since,
for this particular case, U2 = D2 = 0 [cf. condition ii)].

The reconstruction scheme presented can be used to recover graph
signals that are not bandlimited. This is not surprising since the way
in which the signal percolates through the network — via successive
applications of S — does not take into account the bandwidth of x.
A different reconstruction scheme based on local interactions which
further exploits the bandlimitedness of x is presented next.

B. Reconstruction via successive shifts and low-pass filtering

Given a K bandlimited signal x, the reconstruction scheme con-
sidered here can be divided into two phases:

o Seeding phase. The seeding node injects K signals, correspond-
ing to the percolation dynamics (6) for times ¢ = 0,..., K — 1.
o Filtering phase. The seeding signal is processed using a low-pass
graph filter, which can be implemented locally by exchanging
information only among neighboring nodes.
The goal of the seeding phase is to inject into the graph the infor-
mation needed to recover x. Since x has bandwidth K, we need
at least K seeding values for perfect reconstruction. Thus, under
this scheme, the K seeding values are grouped into vector Xx =
[ZHE-D . 2T In the filtering phase, we further propagate the
information available from the seeding phase while annihilating the
components present in the frequencies k£ > K not present in x.

0.26 0.08 0.4
0.40 ‘006 oo t seed 1 seed?2
o 0 -0.017 0.059
s = r 1 -0.036 -0.019
o o 2 0161 -0.341
30296 0
-0.06 0.36 0.4
' 4 0202 0
e e e e 5 -0465 0
£oz 6 0.054 0
i 7 0.095 0

Frequency Index

Fig. 1: (top) Graph signal x to
reconstruct. The seeding node is
circled in red. (bottom) Frequency
components X of graph signal x.

TABLE I: Seeding values
injected by the seeding node
at each time ¢ for both re-
construction schemes.

Denote by y the signal obtained from the seeding phase, z := Hy
the signal obtained from the filtering phase, and y and Z their
corresponding frequency representations. Let Zx := E%Z be a vector
containing the first K entries of z. Since z is the output of the
reconstruction, we want Zx = Xx, while the entries of z for k£ > K
must be zero.

Let D denote the number of distinct eigenvalues in { A\ }h_ 11
and denote by h* the coefficients of a low-pass filter (cf. Sec. II-C)
of degree D. Defining h* := ¥h* we may analyze the application
of the low-pass filter in the frequency domain as

Zx = Ekdiag(h*)y = Ekdiag(h*)ExELy. (11
Further defining ﬁ} .= ELWh* and §x := EL¥, (11) can be
rewritten as

Zx = diag(hl)Vk. (12)

Using (9) to obtain the output of the seeding phase and recalling that
we want Zx = X, we rewrite (12) to obtain

R = diag(hly)EX diag(€,) Ux, (13)

where W has K columns, i.e. K = L in (2). Expression (13) relates
the active frequencies Xk of the signal to reconstruct and the seeding
values Xi. The following proposition states the conditions under
which (13) can be solved with respect to Xx. The proof is also
available in the online appendix [13].

Proposition 3 Let U; and D; be defined as in Proposition 2. Then,
the system of K equations in (13) is guaranteed to have a solution
w.rt. X if the following conditions hold:

i) Uy =0 and D; = 0; and

i) Ak, # Ak, for all (Ag,, Ak, ) such that k1 < K and k2 > K.

Condition i) is equivalent to that in Prop. 2 whereas condition ii)
ensures that the low-pass filter with coefficients h™ does not cancel
any of the present frequencies in the signal to reconstruct x.

Note that while in Sec. III-A the seeding node had to inject 7 =
N — Uz — D> seeding signals, now that number has been reduced to
K. However, the number of times that the graph shift operator has
to be applied is basically the same for both reconstruction schemes.
For the scheme in Sec. III-A, we need to apply the shift operator
N — Us — D5y — 1 times. For the scheme in this section, we need to
apply the shift operator &' — 1 times for the seeding phase and D
times for the filtering phase. Whenever no eigenvalues are repeated
and Uz = 0, both reconstruction schemes require exactly N — 1
graph-shift applications.

In the following section we illustrate the application of both
reconstruction schemes in synthetic and real-world graph signals.
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Fig. 2: Intermediate signals obtained when reconstructing the graph signal in Fig. 1 via percolation from a single seeding node, and their
frequency representation. (a) Reconstruction via successive shift applications (cf. Sec. III-A) for times ¢ = 0 (left), ¢t = 2 (mid), and t = 6
(right). (b) Reconstruction via successive shifts and low-pass filtering (cf. Sec. III-B) for times ¢t = 0 (left), t = 2 (mid), and ¢ = 6 (right).

IV. NUMERICAL EXPERIMENTS

Test Case 1.- Perfect reconstruction of noiseless graph signals.
Consider the 10-node graph in Fig. 1 generated as an Erdds-Rényi
graph with edge probability 0.3, and a signal defined on the graph
taking the values stated at each node and encoded by the nodes’
colors. Considering the adjacency matrix of the graph as its shift
operator, i.e. S = A, the graph signal has bandwidth 3 since
only three frequency coefficients are different from zero; see Fig. 1
(bottom). Our objective is to reconstruct this signal by injecting
seeding values at the seeding node, circled in red in Fig. 1.

We first illustrate the reconstruction scheme presented in Sec. I1I-A.
After checking that condition i) in Prop. 2 is satisfied, we fix 7 =8
to satisfy condition ii) since N = 10, Uz = 2, and Dy = 0. This
guarantees that we can perfectly reconstruct the desired signal with
7 = 8 seeding values X, which can be computed using (10). The
column ‘seed 1’ in Table I presents these seeding values, i.e., the
seeding node must inject the value —0.017 at time ¢t = 0, —0.036
at £ = 1, and so on. In Fig. 2a, we present the intermediate graph
signals obtained at times ¢t = 0, ¢ = 2 and ¢t = 6. For t = 7, we
recover exactly the signal in Fig. 1. Naturally, the signal at t = 0
attains the value zero for all nodes except for the seeding node where
the injected value is attained. The frequency representation of this
signal is simply —0.017€; and, given that the last two frequency
components are exactly zero, it becomes clear that U> = 2 as stated
previously (cf. Prop. 2). Notice that in the signal at time ¢ = 6, which
corresponds to the intermediate signal before perfect reconstruction,
every frequency component is present — except for the last two, which
are always zero. This illustrates the fact that intermediate signals are
not bandlimited when following this reconstruction scheme.

For the second reconstruction scheme (cf. Sec. III-B), only three
seeding values are needed — since the signal to recover has bandwidth
three — injected at times ¢ = 0 to ¢t = 2; see Table I. These values are
obtained from (13) and, after checking fulfillment of conditions i) and
ii) in Prop. 3, we are guaranteed perfect reconstruction. From time
t = 3 onwards, the filtering phase starts and the seeding node does not
inject any further values. However, a low-pass filter is implemented
through local interactions and, at each time step, one frequency is
annihilated. Consequently, at time ¢ = 6 (cf. Fig. 2b) we see that some
of the frequencies which are not present in x, the signal to recover,
are already zero. Indeed, for perfect reconstruction, frequencies 5
and 8 have to be set to zero. This can be achieved through two local
interaction steps, so that for time ¢ = 8 we perfectly recover the
desired signal x.

Test Case 2.- Reconstruction performance for noisy graph signals.
Consider the social network in Fig. 3a where every node represents
a member of the student government at the University of Ljubljana
in Slovenia [14]. An edge between two students indicates that they
have informally discussed university affairs. Assume that we want
to reconstruct a 3-bandlimited signal in this graph, indicated by the
node colors in Fig. 3a. We consider the graph-shift operator to be the
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Fig. 3: (a) A social network and a bandlimited graph signal to recover,
where the signal values are indicated by the node colors. (b) Average
reconstruction error as a function of the seeding node for the noisy
graph-shift operator S.
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Laplacian of the graph, i.e. S = L. In this context, each value of the
graph signal can be interpreted as a one-dimensional opinion of the
corresponding individual regarding some topic, and each successive
application of S can be seen as an opinion update influenced by
the opinion of neighboring individuals. Furthermore, reconstruction
using a single seeding node amounts to designing the opinion that
an individual has to transmit to its neighbors at each time point to
induce the desired global opinion in the graph. Within this framework,
the first reconstruction scheme (cf. Sec. III-A) is more natural since
the collaborative implementation of a low-pass filter needed for the
second scheme (cf. III-B) would be an unrealistic assumption. Perfect
reconstruction can be achieved as illustrated in Test Case 1 as long
as the conditions stated in Prop. 2 are satisfied.

In a real scenario, however, opinion transmission is noisy since it
is difficult for individuals to sense exactly the opinion of others. We
model this by considering the graph-shift operator S = L+W, where
‘W has the same sparsity pattern as L and every non-zero element
is independently drawn from a zero-mean normal distribution with
standard deviation 10~2. Unlike the noiseless case, the reconstruction
performance in noisy scenarios depends on the seeding node. Denot-
ing by X; the recovered signal when node ¢ acts as seeding node, we
quantify the reconstruction error of node i as e(i) = ||X; —x||2/|x/|2-
The empirical error across 1000 noisy reconstructions is minimized
by node 10 in Fig. 3a with an error of 0.17 and maximized by node 6
with an error of 3.6; see Fig. 3b. The worse performances — seeding
nodes 6, 2, and 7 — are related to nodes that have limited action
on the active frequencies, i.e. the absolute values of the elements
{[€:]x};_1 are small for i € {6,2,7}. The opposite is true for the
nodes achieving the best performances, i.e., nodes 10, 8, and 1. These
issues will be further investigated in the journal version of this paper.

V. CONCLUSIONS

Two schemes for the reconstruction of graph signals through
percolation of data injected at a single seeding node were designed.
In the first one, the seeding node injected successive values followed
by applications of the graph-shift operator. In the second scheme, a
shorter seeding phase was followed by the implementation of a low-
pass filter. Conditions for perfect reconstruction were identified and
illustrated through synthetic and real-world network experiments.
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