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Abstract—A scheme to sample bandlimited graph signals in the
presence of noise is analyzed. Samples are aggregated at a single node by
successive applications of the so-called graph-shift operator that encodes
the local structure of the underlying graph. In contrast to the noiseless
case, when noise is present the choice of the sampling node and the
local sample-selection scheme play a major role in determining the
interpolation error. We provide optimal sampling schemes for particular
noise models. We also analyze and provide identifiability conditions for the
case where the frequency support of the bandlimited signal is unknown.
Finally, simulations with synthetic and real-world graph signals are used
to illustrate the behavior of aggregation sampling in noisy scenarios.

Keywords—Graph signal processing, Sampling, Interpolation, Bandlim-
ited graph signals, Aggregation, Noise.

I. INTRODUCTION

In recent years, classical signal processing tools, originally con-
ceived to study time-varying signals, have been extended to the
domain of signals defined on graphs [2]–[4]. This entails generalizing
algorithms currently available for time-varying signals while gaining
intuition on what concepts are preserved and lost when a signal is
defined not in the classical time grid, but in a more general graph.

A problem that has received significant attention is that of
sampling bandlimited graph signals, i.e., signals that have a sparse
representation in a frequency domain. Most works implement a
selection sampling approach, where one has access to the value of
the signal at a subset of nodes and wants to recover the signal in the
entire graph [5], [6]. Recently, an aggregation sampling approach has
been proposed, where one has access to the value of the signal at a
single node but at different time instants as given by the successive
applications of a local graph-shift operator [7]. For the particular
case of time-varying signals, the graph-shift operator represents time
delays and both the selection and aggregation sampling strategies
boil down to classical sampling. This paper studies the performance
of aggregation sampling in noisy scenarios. An aggregation sampling
scheme is fully specified by two elements: i) the sampling node,
and ii) the shifted signals (time instants) observed. In the absence of
noise, recovery from a given aggregation sampling scheme is either
perfect or infeasible [7]. When noise is present, however, the choice
of the sampling node and the sample-selection scheme have a major
impact on the interpolation error. In Section III, an interpolator based
on the Best Linear Unbiased Estimator (BLUE) is designed and the
effect on the corresponding error covariance matrix of different noise
models is discussed. In Section IV we assume that the signal to be
sampled is bandlimited but of unknown frequency support and provide
conditions under which the signal can be identified. This problem
falls into the category of sparse signal reconstruction [8], [9] where
the main idea is to leverage the structure of the observation matrix to
facilitate recovery. Simulations illustrating the behavior of aggregation
sampling in the presence of noise and uncertainty in the signal support
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for both synthetic and real-world graph signals close the paper. The
proofs not included in this paper can be found in an online appendix.1

II. PRELIMINARIES

Let G = (N , E) denote a directed graph. The set of nodes N has
cardinality N , and the set of links E is such that (i, j) ∈ E if and
only if node i is connected to node j. The set Ni : { j |(j, i) ∈ E}
contains all nodes with an incoming connection to i and is termed
the incoming neighborhood of i. The focus of this paper is not on
analyzing G, but a graph signal defined on the set of nodes N . Such
a signal can be represented as a vector x = [x1, . . . , xN ]T ∈ RN

where the i-th component represents the value of the signal at node
i. The graph G is endowed with a graph-shift operator S defined as
an N ×N matrix whose entry (i, j), denoted as Sij , can be nonzero
only if i = j or (j, i) ∈ E . Common choices for S are the adjacency
matrix of the graph [3], [10] and its Laplacian [2]. The intuitive
interpretation of S is that it represents a linear transformation that
can be computed locally at the nodes of the graph. We will assume
that S is diagonalizable, i.e., that there exists matrices V and Λ such
that S = VΛV−1, where Λ is diagonal with elements {λi}Ni=1.

A. Aggregation sampling of bandlimited signals

Given a graph signal x, define the l-th shifted signal y(l) := Slx,
which can also be written as y(l) := Sy(l−1) with y(0) = x. Note
that the i-th entry of y(l), denoted as y(l)i , can be computed by node
i using the following local aggregation y

(l)
i =

∑
j∈Ni

Sijy
(l)
j . The

shifted signals are used to define the N ×N matrix

Y := [y(0),y(1), . . . ,y(N−1)] = [x,Sx, . . . ,SN−1x]. (1)

Since the i-th row of Y is associated with node i, we define the
successively aggregated signal at i as yi := (eT

i Y)T = YT ei where
ei is the i-th canonical vector (all entries are 0 except the i-th one,
which is 1). Aggregation sampling consists in selecting K out of the
N elements (rows) of yi. This is accomplished with a K×N binary
selection matrix C to obtain ȳi := Cyi = C

(
YT ei

)
, where C

has only one 1 per row. We say that the signal ȳi samples x with
successive local aggregations. Notice that yi can be computed locally
at node i using successive exchanges with neighboring nodes.

Recovery of the original signal x from its sampled version ȳi

is possible under the assumption that x is bandlimited. More specif-
ically, that x can be expressed as a linear combination of a subset
of the columns of V = [v1, ...,vN ], or, equivalently, that the vector
x̂ = V−1x is sparse. In this context, vectors vk are interpreted as the
graph frequency basis and x̂k as the corresponding signal frequency
coefficients. It will be assumed that the active frequencies are the first
K ones, associated with the eigenvalues of largest magnitude [5].
Under this assumption, it holds that x̂ = [x̂1, ..., x̂K , 0, ..., 0]T . For
convenience, we define VK := [v1, ...,vK ] and x̂K := [x̂1, ..., x̂K ]T

so that we may write x̂ = [x̂T
K , 0]T .

Define υi := VT ei, the N × N columwise Vandermonde
matrix Ψ with entries Ψij := λi−1

j , and the N × K matrix
Ψi := Ψdiag(υi)EK , where EK := [e1, ..., eK ] is a tall matrix

1http://www.seas.upenn.edu/∼ssegarra



collecting the K first canonical vectors. Then, the sampled signal ȳi

can be written in terms of x̂ as [7]

ȳi = Cyi = CΨdiag(υi)x̂ = CΨix̂K . (2)

If matrix CΨi is invertible, we can interpolate x as

x = VK x̂K = VK(CΨi)
−1ȳi. (3)

Conditions under which CΨi is invertible have been studied in [7,
Prop. 1]. Those basically require the eigenvalues {λi} to be distinct
and the entries of υi to be non-zero for the set of active frequencies.
If the conditions are met and there is no noise, (3) can be used to
perfectly interpolate x from the K samples in ȳi. When noise is
present, perfect recovery is in general infeasible, as we study next.

Remark 1: The conditions for CΨi being invertible given in [7,
Prop. 1] leverage the fact of CΨEK being the product of a di-
agonal and a Vandermonde matrix. To guarantee such a property,
we define selection matrices of the form CK(n0, N0) := [en0 ,
en0+N0 , . . . , en0+(K−1)N0

]T and the set of admissible C as CK :={
CK(n0, N0) | N0 =1,. . . ,N/K and n0 =1,. . . ,N−N0(K − 1)

}
.

III. SAMPLING IN THE PRESENCE OF NOISE

Consider the shifted sampled signal yi corrupted by additive
noise, so that the observed signal zi is given by zi = yi + wi.
The noise wi is assumed to be zero-mean, independent of the graph
signal, and colored with a covariance matrix R

(i)
w := E[wiw

H
i ].

For notational convenience, we define also w̄i = Cwi and R̄
(i)
w =

CR
(i)
w CH . Hence, the relation between the observed samples z̄i and

the original signal x is given by

z̄i = CΨix̂K + w̄i, x = VK x̂K . (4)

The BLUE estimator of x̂K , which minimizes the least squares error,
is given by [11]

ˆ̂x
(i)

K =
(
ΨH

i CH(R̄(i)
w )−1CΨi

)−1

ΨH
i CH(R̄(i)

w )−1z̄i, (5)

provided that the inverse in (5) exists. After obtaining ˆ̂x
(i)

K , the time
signal recovered at the i-th node x̂(i) can be found as

x̂(i) = VK
ˆ̂x
(i)

K . (6)

Finally, the error covariance matrices for the frequency and time
estimators R̂

(i)
e := E[(x̂K − ˆ̂x

(i)

K )(x̂K − ˆ̂x
(i)

K )H ] and R
(i)
e :=

E[(x− x̂(i))(x− x̂(i))H ] are [11]

R̂(i)
e =

(
ΨH

i CH(R̄(i)
w )−1CΨi

)−1
, (7)

R(i)
e = VKR̂(i)

e VH
K . (8)

Note that the error covariance matrix R
(i)
e depends on the noise

model, the frequencies of the graph (eigenvalues of the shift operator),
the node taking the observations, and the sample-selection scheme
adopted (cf. Remark 1).

The error covariance matrix can be used to assess the performance
of the estimation. However, there exist multiple alternatives to quan-
tify the error. Common approaches include the minimization of the
trace of the covariance matrix, which corresponds to the minimizing
of the Mean Square Error (MSE), as well as the minimization of its
largest eigenvalue, its log determinant and the inverse of the trace of
its inverse. We summarize these error metrics as follows

e1 := trace(R(i)
e ), e2 :=λmax(R(i)

e ), (9)

e3 :=log det(R̂(i)
e ), e4 :=

[
trace

(
R̂(i)−1

e

)]−1

.

Notice that the error metrics e3 and e4 are computed based on the
error covariance matrix for the frequency estimator R̂

(i)
e instead of

the time estimator since R
(i)
e is a singular matrix [cf. (8)].

Expressions (7)-(8) hold for a general noise covariance matrix
R

(i)
w . We now present three particular noise models of interest:

i) White noise in the observed signal zi. This implies that wi is
white and therefore R

(i)
w = σ2I, with σ2 denoting the noise power.

Consequently,
R̄(i)

w = σ2I. (10)

ii) White noise in the original signal x. With w denoting the
white additive noise present in x, we can use the linear observation
model to write wi = Ψdiag(υi)V

−1w. This implies that R
(i)
w =

σ2Ψdiag(υi)V
−1(V−1)Hdiag(υi)

HΨH and, when the shift S is a
normal matrix, i.e. V−1 = VH , this expression reduces to

R̄(i)
w = σ2CΨ|diag(υi)|2ΨHCH . (11)

iii) White noise in the active frequency coefficients x̂K . With ŵK

denoting the white additive noise present in x̂K , we can use the linear
observation model to write wi = Ψdiag(υi)EKŵK =ΨiŵK . This
implies that

R̄(i)
w = σ2CΨiΨ

H
i CH . (12)

This noise model can arise when the signal to be sampled has been
previously processed with a low-pass graph filter [10], [12].

A. Selection of the sampling set

The two elements that define the samples in ȳi are: the node i that
samples (aggregates) the information and the sample-selection scheme
specified by C. Here, we discuss how to design these two elements
and how that design depends on the properties of G (spectrum of S)
and x (set of active frequencies).

1) Selection of the sampling node: In a noiseless scenario, the
outcome of running aggregation sampling at a specific node i is
binary: it leads to either perfect or infeasible recovery [7]. However,
when noise is present, the error covariance matrix R

(i)
e is different for

each i. Hence, it is reasonable to select as a sampling node one leading
to a small error. Selecting the best one requires the computation
of N closed-form expressions, which involve matrix inversions. If
computational complexity is a limiting factor, the structure of the
noise correlation and the interpolation matrix (which depends on the
spectrum of S), can be exploited to reduce the computational burden.

For the case where white noise is present in x̂K , when substituting
(12) into (7) and (8), it follows that

R̂(i)
e = σ2I, R(i)

e = σ2VKVH
K . (13)

Consequently, for this particular noise model, the estimator perfor-
mance is independent of the node choice for every error metric [cf.
(9)]. The result is intuitive: given that the noise and the signal are
present in the same frequencies, it is irrelevant if a node amplifies
or attenuates a particular frequency. By contrast, if the white noise is
present in ȳi, the following result holds.

Proposition 1: If the noise covariance is given by (10) and the
selection matrix is C = CK(n0, N0); then, the sampling node i∗

that minimizes e4 in (9) can be found as

i∗=arg max
i

K∑
k=1

|[υi]k|2
|λk|2n0 − |λk|2(n0+N0K)

1− |λk|2N0
. (14)

The optimal sampling node i∗ will be one with large values of |[υi]k|
for the active frequencies k ≤ K, i.e. a node that strongly expresses



the active frequencies. The relative importance of frequency k is
given by the fraction in (14), which depends on the modulus of the
associated eigenvalue and the structure of the selection matrix C
(values for n0 and N0).

2) Design of the sample-selection scheme C: The error covari-
ance matrix, and hence the different error metrics presented in (9),
depend on C. As was the case for the sampling node selection, in
some cases the spectral properties of S as well as the structure of CK
and the noise covariance, can be exploited to determine the optimal
observation strategy. E.g., for the case where white noise is present
in x̂K , it is immediate to see that the performance is independent
of the sample-selection scheme [cf. (13)]. For the case where white
noise is present in ȳi, the following result holds.

Proposition 2: If the noise covariance is given by (10), the selection
matrix is C = CK(n0, N0) and N0 is fixed; then, the n∗0 minimizing
e3 in (9) is the same for any node i and can be found as

n∗0 =

{
1 if

∏K
k=1 |λk|2 ≤ 1,

N −N0(K − 1) otherwise.
(15)

The expression for n∗0 shows that if one application of S has an overall
effect of amplification in the active frequencies, then we should aim
to apply S as many times as possible, whereas if the opposite is true,
we should avoid its application. The problem in (15) can be solved
for different values of N0 to get the overall optimal (n∗0, N

∗
0 ) pair.

One can also look at C /∈ CK . In that case, the problem can
be formulated as a binary optimization over C, which is typically
challenging. If the size of the space search (N choose K) is not
too large, the problem can be solved by exhaustive search. For more
general cases, a reasonable approach is to formulate the problem,
relax it, and exploit its structure to find a good approximate solution.
Although of interest, developing approximate algorithms to design
C /∈ CK is out of the scope of this paper and is left as future work.

IV. IDENTIFYING THE SUPPORT OF THE GRAPH SIGNAL

In the previous sections, it has been assumed that the frequency
support of x̂ corresponded to the K principal eigenvectors. A related
but more challenging problem is to design the sampling and interpo-
lation procedures when the frequency support K is not known.

A. Noiseless joint recovery and support identification

Consider aggregation sampling in a noiseless scenario, where we
know that x̂ is K-sparse but we do not know the support of the K
nonzero entries. Then, we may recover x̂ by solving

x̂∗ := arg min
x̂

||x̂||0 (16)

s.t. Cyi = CΨdiag(υi)x̂,

where ‖ · ‖0 denotes the 0-norm, and the constraint follows from the
relationship between the original and the observed signal [cf. (2)].
Problem (16) indeed recovers x̂ when the following conditions hold.

Proposition 3: Let x and C be, respectively, a bandlimited graph
signal with at most K non-zero frequency components and a selection
matrix with 2K rows of the form C = C2K(n0, N0). Then, if all the
entries in υi are non-zero and all the eigenvalues of S are non-zero
and satisfy that λN0

k 6= λN0
k′ for all k 6= k′, it holds that

i) the solution to (16) is unique; and
ii) the original graph signal can be recovered as x = Vx̂∗.

The conditions for joint recovery and identification support in
Proposition 3 leverage the fact that Ψ is a Vandermonde matrix,

which is a distinct feature of the aggregation sampling scheme. From
a computational perspective, the presence of the 0-norm in (16)
renders the optimization non-convex, thus challenging to solve. A
straightforward way to convexify it is to replace the 0-norm with a
1-norm. Note that if such a process finds a feasible solution, call it
x̂∗1, such that ||x̂∗1||0 = K, then it holds that x̂∗ = x̂∗1. Conditions
under which this process is guaranteed to identify the support can
be found by analyzing either the coherence or the restricted isometry
property (RIP) of the matrix CΨdiag(υi) [8]. The former is easier
to find since it depends on the most similar pair of eigenvalues of
S. However, the sparsity bound given by the matrix coherence is
oftentimes too restrictive [8].

B. Noisy joint recovery and support identification

If noise is present and the frequency support of the signal is
unknown, the (K-sparse) least squares estimate of x̂ can be found as
the solution to the following optimization problem

x̂∗ := arg min
x̂
‖(R̄(i)

w )−1/2(Cyi −CΨdiag(υi)x̂
)
‖22 (17)

s.t. ||x̂||0 ≤ K

where the matrix multiplication (R̄
(i)
w )−1/2 in the objective accounts

for the fact that the noise is colored. As in the noiseless case, an
approach to convexify (17) is to replace the 0-norm with the 1-norm
and solve the problem

x̂∗1 := arg min
x̂
‖(R̄(i)

w )−1/2(Cyi −CΨdiag(υi)x̂
)
‖22 + γ||x̂||1,

(18)
for different values of the parameter γ.

V. NUMERICAL EXPERIMENTS

A. Recovery when the frequency support in unknown

Consider a 20-node undirected graph G generated as an Erdõs-
Rényi graph with edge probability 0.20 [13]. With A = VΛAVH

denoting its adjacency matrix, three different graph-shift operators are
considered: S1 = A, S2 = I − A, and S3 = 0.5A2. Notice that,
even though the support of S3 differs from that of S1 and S2, the
shift S3 still preserves the notion of locality as defined by a two-hop
neighborhood. Note also that the three shift operators share the same
set of eigenvectors V, but they have a different set of eigenvalues.

Let x be a 3-bandlimited graph signal of unknown support, i.e.,
we know that x̂ = V−1x contains K = 3 nonzero components, but
we do not know the indices of these K active frequencies. In this
case, 2K = 6 samples are needed to guarantee identifiability and,
provided that the conditions in Proposition 3 are satisfied, the signal
can be recovered by solving problem (16) using any of the three shift
operators. However, when solving a relaxed version of problem (16),
accurate signal recovery depends on the specific graph, signal and
node selected for reconstruction. Moreover, the recovery rate depends
on the choice of the graph-shift operator S. To assess recovery better,
Fig. 1a plots the success rate – fraction of realizations for which the
actual signal was recovered – for graph-shifts S1, S2 and S3, and
different number of observations. Each point in the plots represents
an average across all nodes in the graph, 5 signal realizations and
10 random graph realizations. The recovery rate for S3 = 0.5A2 is
consistently higher than that for the other two shift operators. This
could be explained because when squaring the adjacency matrix to
generate S3, the dissimilarity between any pair of eigenvalues is
increased, which reduces the matrix coherence associated with S3

and facilitates sparse recovery (cf. last paragraph in Section IV-A).
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Fig. 1: (a) Recovery rate of bandlimited signals with unknown support as a function of the number of samples. (b) Empirical and theoretical reconstruction
errors for different sampling nodes when white noise is added to the observed signal. (c) Empirical and theoretical reconstruction errors when white
noise is added directly to the signal x4.

B. Recovery in the presence of noise

Consider a 64-node graph representing sectors of the U.S.
economy and the shift operator S = VΛVH such that S̄ij =
(U(i, j) + U(j, i))/2, where U(i, i′) represents how much of the
production of sector i (in dollars) was used as an input of sector i′

during years 2008, 2009, and 2010 [14]. The 64 nodes consist of
62 industrial sectors plus two artificial sectors, namely: the added
value generation (AV) and the market of final users (FU). Consider
the signal x on the mentioned graph containing the total production
of each sector (including AV and FU) during year 2011. Since
signal x is approximately bandlimited, we define x4 = V4x̂4 as
the approximation of x obtained by keeping the first 4 frequency
coefficients.

We perform aggregation sampling at different economic sectors
(nodes) of multiple noisy versions of x4. We first consider adding
noise to the observed signal as described in (10). In Fig. 1b we plot
the empirical average reconstruction error at different nodes across
1,000 noisy realizations of x4 and compare it with the theoretical
average error, i.e., the trace of R

(i)
e in (8) [cf. e1 in (9)]. We first

observe that the computed theoretical error indeed coincides with
the average empirical error across realizations. Moreover, notice that
the reconstruction performance is highly node dependent. The error is
minimized for the reconstruction based on the artificial sectors AV and
FU. This is reasonable since these two nodes – unlike other sectors –
are closely related to every other sector of the economy. Furthermore,
the sectors achieving the worst reconstruction errors are ‘Publishing
Industries’ and ‘Ground Passenger Transportation’ corresponding to
positions 34 and 31. This can be explained by observing that vectors
ῡ34 = υ34E4 and ῡ31 contain elements very close to zero, increasing
the sensitivity of the reconstruction in the presence of noise.

We then investigate the reconstruction performance when the
noise is added to x4, following the model described in (11) for a fixed
σ2. As was the case in the previous section, the average empirical
error (across 1,000 realizations) matches closely our theoretical
estimates; see Fig. 1c. Moreover, the specific nodes that lead to a
good (bad) interpolation performance are very similar to those in the
previous noise model. Indeed, sectors 34 and 31 lead to the highest
errors whereas AV and FU attain the best reconstructions.

Finally, we consider adding white noise only to the 4 active
frequencies, as described in (12). The empirical reconstruction error
associated with each node – averaged over 1,000 realizations – is the
same. This validates the analysis in (13), which stated that, for this
noise model, the quality of the reconstruction is node independent.

VI. CONCLUSION

The behavior of aggregation sampling in the presence of noise
was analyzed. Optimal choices for the sampling node and the local
sample-selection scheme were discussed, since these have a major
impact on the interpolation error. Moreover, the interpolation per-
formance for graph signals of unknown support was studied, and
identifiability conditions were described.
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