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Abstract—Network processes are often conceptualized as sig-
nals defined on the vertices of a graph. To untangle the latent
structure of such signals, one can be view them as outputs of
linear graph filters modeling underlying network dynamics. This
paper deals with the problem of blind graph filter identification,
which finds applications in social and brain networks, to name
a few. Given a graph signal y modeled as the output of a graph
filter, the goal is to recover the vector of filter coefficients h and
the input signal x which is assumed to be sparse. While the
filtered graph signal is a bilinear function of x and h, y is also
a linear combination of the entries of the rank-one matrix xhT .
As with blind deconvolution of time (or spatial) domain signals,
it is shown that the blind graph filter identification problem can
be tackled via rank minimization subject to linear constraints.
Graph-dependent conditions under which the solution set of
the optimization problem includes only rank-one matrices are
derived. Numerical tests with synthetic and real-world networks
corroborate the effectiveness of the blind identification approach.

Keywords—Graph signal processing,, blind system identification,
graph filter, graph process.

I. INTRODUCTION

Coping with the challenges posed by fields such as network
science and big data necessitates broadening the scope beyond
classical time-varying signal analysis and processing, to also
accommodate signals defined on graphs [1], [2], [12]. Under
the assumption that the signal properties are related to the
topology of the graph where they are supported, the goal of
graph signal processing is to develop algorithms that fruitfully
leverage this topology. A natural way to achieve this is to rely
on the so-called graph-shift operator, which is a matrix that
reflects the local connectivity of the graph [2].

We consider here that each node has a certain value, and
these values are collected across nodes to form a graph signal.
With this definition, graph filters – which are a generalization
of classical time-invariant systems – are a specific class of
operators whose input and output are graph signals. Math-
ematically, graph filters are linear transformations that can
be expressed as polynomials of the graph-shift operator [3].
The polynomial coefficients determine completely the linear
transformation and are referred to as filter coefficients. Such
transformations can be implemented via local interactions
among nodes, and may be used to model underlying processes,
e.g., diffusion or percolation dynamics in the network.

This paper investigates the problem of blind identification
of graph filters. More specifically, we are given a graph signal
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y, postulate that the observed y can be modeled as the
output of a graph filter, and seek to jointly identify the filter
coefficients h and the input signal x that gave rise to y. Since
the problem is underdetermined, we assume that the length of
h is small and that x is sparse. This is the case when e.g., a
few seeding nodes inject a signal that is diffused throughout
a network [4]. For most part of the analysis we consider
that the support of the input signal x is known, however, the
more challenging case of unknown support is also discussed.
Applications of interest include opinion formation in social
networks, inverse problems of biological signals supported on
graphs, and modeling and estimation of diffusion processes.

Notation and the formal definition of a graph filter are
introduced in Section II. Section III starts by formulating
the blind graph filter identification problem as a bilinear
optimization over h and x. Based on the ideas in [5] for
blind deconvolution of time (or spatial) domain signals and
leveraging the particular structure of a graph filter, the problem
is recast as a linear inverse problem to recover the rank-one
matrix xhT . The linear operator that maps the sought rank-
one matrix to the output signal y is shown to depend on
the spectral properties of the graph-shift operator. Conditions
under which both problems are equivalent – which depend on
the particular graph – are provided. In Section III-A, the rank
minimization problem is relaxed using the convex nuclear-
norm surrogate [8], and efficient solvers are briefly discussed.
Extensions to identify the support of the input sparse signal
x are discussed in Section III-B. Numerical tests illustrating
the performance of the proposed algorithm on synthetic and
real-world graphs are given in Section IV.1

II. GRAPH SIGNALS AND GRAPH FILTERS

Let G denote a directed graph with a set of nodes N (with
cardinality N ) and a set of links E , such that if node i is
connected to j, then (i, j) ∈ E . Since G is directed, the set
Ni : {j |(j, i) ∈ E} stands for the (incoming) neighborhood
of i. For any given G we define the adjacency matrix A ∈
RN×N as a sparse matrix with nonzero elements Aji if and
only if (i, j) ∈ E . The value of Aji captures the strength of the
connection from i to j. The focus of the paper is on analyzing
(graph) signals defined on N . These signals can be represented
as vectors x = [x1, ..., xN ]T ∈ RN , where the i-th component
represents the value of the signal at node i.

The graph G can be endowed with the so-called graph-shift
operator S [2], [3]. The shift S ∈ RN×N is a matrix whose
entry Sji can be nonzero only if i = j or if (i, j) ∈ E . The
sparsity pattern of the matrix S captures the local structure of

1Notation: Generically, the entries of a matrix X and a (column) vector
x will be denoted as Xij and xi; diag(x) is a diagonal matrix satisfying
[diag(x)]ii = [x]i; 0 is the all-zero vector; and modN (x) denotes the
modulus (remainder) obtained after dividing x by N .



G, but we make no specific assumptions on the values of its
nonzero entries The intuition behind S is to capture a linear
transformation that can be computed locally at the nodes of
the graph. More rigorously, if y is defined as y = Sx, then
node i can compute yi provided that it has access to the value
of xj at j ∈ Ni. Widely-used choices for S are the adjacency
matrix A [2], [3] and the graph Laplacian [1]. We assume
henceforth that S is diagonalizable, so that S = VΛV−1 with
Λ ∈ RN×N being diagonal. The shift S can be used to define
graph-signal operators of the form

H :=
∑L−1

l=0 hlS
l, (1)

which are called graph filters [2]. For a given input x, the
output of the filter is simply y = Hx. The coefficients
of the filter are collected into h := [h0, . . . , hL−1]T , with
L− 1 denoting the filter degree. Graph filters are of particular
interest because they represent linear transformations that can
be implemented locally [4].

Leveraging the spectral decomposition of S, graph filters
and signals can be represented in the frequency domain. To be
precise, let us use the eigenvectors of S to define the N ×N
matrix U := V−1, and the eigenvalues of S to define the N×L
Vandermonde matrix Ψ, where Ψi,j := (Λii)

j−1. Using these
conventions, the frequency representation of a signal x and of
a filter h is defined as x̂ := Ux and ĥ := Ψh, respectively.

Lemma 1 The output y=Hx of a graph filter in the frequency
domain is given by

ŷ = diag
(
Ψh
)
Ux = diag

(
ĥ
)
x̂. (2)

Proof : We first use y = Hx to write Uy = UHx.
Given the spectral decomposition of S, it holds that H =∑L−1

l=0 hlS
l = V

(∑L−1
l=0 hlΛ

l
)
U. Combining both expres-

sions yields Uy = UHx =
(∑L−1

l=0 hlΛ
l
)
Ux. Since the

diagonal matrix
∑L−1

l=0 hlΛ
l can be written as diag(Ψh), it

holds that Uy = diag(Ψh)Ux. Using the definitions of ŷ, x̂
and ĥ, (2) follows.

Lemma 1 shows that, similar to what happens in the
classical time domain, ŷ is the product of x̂ and ĥ. To establish
further connections with time-varying signals, let us consider
the directed cycle graph whose adjacency matrix Adc is zero,
except for entries Ai,j such that i = modN (j) + 1, which are
one. If S = Adc, it is easy to check that: i) y = Hx can be
found as the circular convolution of h and x, and ii) both U
and Ψ correspond to the Discrete Fourier Transform (DFT)
matrix. Hence, while in the time domain U = Ψ, this is not
true in the more general graph domain.

III. BLIND IDENTIFICATION OF GRAPH FILTERS

Suppose we observe the output signal y = Hx, and the
shift operator S as well as the degree of the filter L − 1
are given. The present paper deals with blind identification
of the graph filter (and its input signal), which in this context
amounts to estimating x and the filter coefficients h from the
given information. Such a challenging problem is a natural
extension to graphs of classical blind system identification, or
blind deconvolution of signals in the time or spatial domains.

As stated the problem is ill-posed, since the number of
unknowns N + L in {x,h} exceed those N observations in
y. To make the problem feasible one could impose further
structural constraints on x, thus reducing the effective degrees
of freedom. To that end we will henceforth assume that: (As)
the input graph signal x is S-sparse, with known support
supp(x) := {i |xi 6= 0}. We will briefly discuss the unknown
support case in Section III-B, but a thorough treatment is
beyond the scope of this paper and will be reported elsewhere.
Next, collect the S nonzero entries of x in the vector x̄ ∈ RS ,
and denote by Ū ∈ RN×S the matrix formed by the columns
of U indexed by supp(x). Under (As) the frequency repre-
sentation of the sparse input signal is x̂ = Ux = Ūx̄, and
recovery of {x,h} is equivalent to the recovery of {x̄,h}.

Lemma 2 Under (As) the graph filter output y = Hx is

y = V
(
ΨT � ŪT

)T
vec
(
x̄hT

)
(3)

where � denotes the Khatri-Rao (i.e., columnwise Kronecker)
product, and vec(·) is the matrix vectorization operator.

Proof : Let ūT
i denote the i-th row of Ū, and likewise let

ψT
i be the i-th row of Ψ. Since x̂ = Ūx̄, it follows from

(2) that ŷi = (ψT
i h)(ūT

i x̄) =
(
ψT

i ⊗ ūT
i

)
vec
(
x̄hT

)
, where

⊗ denotes the Kronecker product. Upon stacking the entries
ŷi for i = 1, . . . , N to form ŷ and then using y = Vŷ, the
result follows by identifying ψT

i ⊗ ūT
i with the i-th row of(

ΨT � ŪT
)T

.

While the filtered graph signal y is a bilinear function of x̄
and h, Lemma 2 also shows that y is a linear combination of
the entries of the rank-one matrix Y := x̄hT ∈ RS×L. In other
words, there exists a linear mapping M : RS×L 7→ RN such
that y =M(Y). Note that M can be expressed in terms of a
matrix multiplication with M := V

(
ΨT � ŪT

)T ∈ RN×LS ,
since y = Mvec(Y) as per (3). Building on the ideas in [5],
one can thus pose the blind graph filter identification problem
as a linear inverse problem, where the goal is to recover a
rank-one S × L matrix Y from observations y = M(Y). A
natural formulation to tackle such inverse problem is

min
Y

rank(Y), s. to y = V
(
ΨT � ŪT

)T
vec
(
Y
)
. (4)

A basic question is whether (4) is equivalent to the original
blind identification problem. To give a rigorous answer, some
definitions are introduced next. Given a set of row indices
I, define the complement set of indices Ī := {1, . . . , N}\I
and the matrix ŪI formed by the rows of Ū indexed by I.
Moreover, for a given graph-shift operator S and supp(x) –
fixed V, Ψ, and, Ū – define the set Oy of matrix minimizers
of (4) as a function of y. Then, the following result on the
validity of the matrix problem formulation in (4) holds.

Proposition 1 Let | · | denote the number of non-repeated
elements of a set and IS−1 be the set of the row indices such
that rank(ŪIS−1

) ≤ S − 1. Then

Oy =
{
x̄hT

∣∣y =
∑L−1

l=0 hlS
lx
}
, (5)

for all y if and only if

min
IS−1

∣∣{λi}i∈ĪS−1

∣∣ > L− 1. (6)



Proof: If we show that (6) is violated if and only if there exists
a rank-1 matrix Y = x̄hT such that V

(
ΨT�ŪT

)T
vec
(
Y
)

=
0, then Corollary 1 in [6] completes the proof. Leveraging
the fact that V is full-rank, the above equality can be written
elementwise as (ψT

i h)(ūT
i x̄) = 0 for i = 1, . . . , N , where

ψT
i denotes the i-th row of Ψ and similarly for Ū. Since

rank(ŪIS−1
) ≤ S − 1, there exists x̄ 6= 0 such that the

elementwise equality holds for i ∈ IS−1. Exploiting the
Vandermonde structure of Ψ, it follows that h 6= 0 satisfying
the equality for i ∈ ĪS−1 can be found if and only if (6) is
violated, concluding the proof.

Ideally, when solving (4) for some output y one should
recover the set of outer products of all possible combinations
of inputs x̄ and filter coefficients h that can give rise to
such output [cf. (5)]. This is not true in general [6, Theorem
1], however, Proposition 1 states conditions on the signal
support and the graph-shift operator [cf. (6)] for the desired
equivalence to hold. For the particular case of the directed
cycle graph, we may select the support of x so that every
choice of S rows of Ū forms a full-rank matrix. Consequently,
the cardinality in (6) is equal to N − S + 1 entailing the
following corollary.

Corollary 1 If S = Adc and the support of x consists of
either S adjacent or S equally spaced nodes then (5) holds if
and only if N > L+ S − 2.

Notice that condition (6) does not guarantee that the
solution of (4) is unique, but rather that the outer product of the
desired sparse signal and filter coefficients is contained in Oy.
Conditions that guarantee identifiability of (4), i.e. uniqueness
of solution, are left as future work.

A. Algorithmic approach via convex relaxation

Albeit natural, the rank minimization problem in (4) is NP-
hard to optimize; see also [7]. The nuclear norm ‖Y‖∗ =∑

k σk(Y), where σk(Y) denotes the k-th singular value of
Y, is typically adopted as a convex surrogate to rank(Y) [7],
[8]. Accordingly, a convex heuristic is to solve

min
Y
‖Y‖∗, s. to y = V

(
ΨT � ŪT

)T
vec
(
Y
)
, (7)

hoping that the optimal solution has rank one, so that we
can recover x̄ and h up to scaling. Being convex (7) is
computationally appealing, in fact it can be shown that (7) is a
semidefinite program (SDP) for which off-the-shelf solvers are
available. Scalable algorithms for large-scale problems have
also been developed; for instance the solver implemented to
run the numerical tests in Section IV leverages the method of
multipliers iterations described in [7, Sec. 5.3], and recently
adopted in [5] for blind deconvolution of (non-graph) signals.

B. Unknown support

In various timely applications such as opinion formation in
social networks, the challenge is not only the joint recovery of
h and the non-zero coefficients x̄, but also the identification
of supp(x). Recovery of sparse x (which here also involves
support identification) from the graph signal y is critical to
unveil e.g., those influential actors or “seeds” leading to the

network state represented by the observed graph signal y. Here
we briefly discuss such problem and outline a preliminary
formulation that we are currently pursuing.

Going back to Lemma 2, the graph signal domain input-
output relationship (3) can be rewritten in terms of the full
signal x as y = V

(
ΨT �UT

)T
vec
(
xhT

)
. While this again

suggests recovery of Y = xhT via rank minimization, sparsity
of x translates into row-wise sparsity of Y, i.e., rows yT

i
indexed by {1, . . . , N} \ supp(x) are identically zero. To
leverage this dual structure in the sought matrix, we can solve

min
Y
‖Y‖∗ + λ‖Y‖2,1, s. to y = V

(
ΨT �UT

)T
vec
(
Y
)
,

(8)
where ‖Y‖2,1 :=

∑N
i=1 ‖yT

i ‖2 is the `2/`1 mixed norm
encouraging row-wise (vector) sparsity in Y, and λ is a tuning
parameter. Proximal-splitting algorithms can be adopted to
minimize the composite, non-differentiable cost in (8).

Recovery of simultaneously low-rank and row-sparse ma-
trices from noisy compressive measurements was also pro-
posed in [9] for hyperspectral image reconstruction. Recent
theoretical results on recovery of simultaneously structured
matrix models suggest that other (possibly nonconvex) criteria
could be appealing as well [10]. In any case, existing results
should be reexamined in the graph signal processing setting
advocated here.

IV. NUMERICAL RESULTS

Here we illustrate the performance of the blind graph filter
identification algorithm, by solving (7) for different graphs G
and varying the parameters N , L and S. Obtained estimates
will be henceforth denoted as {x̃, h̃}. In all cases we define the
graph-shift operator S = A, where A is the adjacency matrix
of G. For given signal dimensionality parameters, synthetic
observations y are generated according to the model (3). The
“true” vectors x̄0 and h0 are drawn from standard multivariate
Gaussian distributions, and are normalized to unit length.
The root-mean-square error RMSE := ‖x̃h̃T − x̄0h

T
0 ‖F is

adopted as figure of merit to assess recovery performance,
and the median error over 100 graph signal and topology
realizations is reported in the plots. In all test cases, the
rank-minimization algorithm is compared against a naive least-
squares (LS) solution of the linear system of equations (3).
Random graphs. For 40 ≤ N ≤ 200, shift operators are
generated from the adjacency matrices of Erdös-Rényi (with
edge presence probability p = 0.1) and scale-free preferential
attachment (Barabási-Albert) random graphs [12]. We explic-
itly check that the resulting network graphs are connected.
For each N , we generate graphs signals under two settings
of increasing problem difficulty, namely: (i) L = 5, S = 20;
and (ii) L = 5, S = 40. Figures 1a and 1b depict the RMSE
as a function of N for the rank minimization algorithm and
LS, respectively. While LS is expected to succeed only for
N ≥ N0 := S×L, Fig. 1b shows this is (tightly) the case for
the Erdös-Rényi random graph, whereas for scale-free graphs
there is a nontrivial gap between N0 and the value of N
for which the RMSE first vanishes. This suggests that for
increasingly structured graphs, matrix M := V

(
ΨT � ŪT

)T
is prone to losing rank. Fig. 1a shows the performance of the
nuclear-norm minimization algorithm, which is less sensitive to
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Fig. 1: Recovery performance for different graphs, filters and input signals. The adopted figure of merit is the RMSE := ‖x̃h̃T − x̄0h
T
0 ‖F .

(a) Results for the nuclear-norm minimization in (7) using an Erdös-Rényi (ER), a Scale-Free (SF) Barabási-Albert graph and two different
combinations of (L, S). Perfect recovery is obtained when N ≥ 2(L + S). (b) Counterpart of (a) when the recovery is performed using LS.
Note that for SF graphs perfect recovery is not guaranteed even if N > LS. (c) Results for the brain network in [11]. The approach in (7)
outperforms LS, is robust to the sampling scheme and yields good results even when the number of observations is close to L + S.

the graph topology. Most importantly, the algorithm accurately
recovers the graph filter coefficients and the input signal even
when the signal length N is markedly below N0. By inspection
of Fig. 1a one can also examine how far is the recovery
threshold from the fundamental lower bound of L+S required
observations, which is dictated by the degrees of freedom in
the blind graph filter identification problem.
Brain graph. In this test case we consider a weighted undi-
rected graph G of the human brain, consisting of N = 66 nodes
or regions of interest (ROIs) and whose edge weights are given
by the density of anatomical connections between regions [11].
The level of activity of each ROI can be represented by a
graph signal x, where larger values represent higher levels
of activity. Successive applications of S thus model a linear
evolution of the brain activity pattern. Supposing we observe
a linear combination (filter) of the evolving states of an
originally sparse brain signal (i.e., where only a few regions are
active), then blind identification amounts to jointly estimating
the original brain signal and the coefficients of the linear
combination. Since the graph topology – hence N – is fixed
here, for L = 6 and S = 6 we sample the filtered signal
y ∈ R66 and vary the sampling rate so that the number of
observations fed to the algorithms is 6≤Nobs ≤ 42. In other
words, the sampled output signal processed by the algorithm is
yc = Cy ∈ RNobs , where C ∈ RNobs×N is a sampling matrix
that selects Nobs entries from the vector y. We consider two
sampling schemes: (i) the elements of yc are selected randomly
from y; and (ii) we (deterministically) select those entries of
y indexed by supp(x), and the other Nobs−S elements in yc

are selected at random from the remaining N−S entries in y.
Figure 1c depicts the recovery error attained by the nuclear-
norm minimization algorithm and LS as a function of Nobs,
under both aforementioned sampling schemes. Once more, the
proposed method markedly outperforms the naive LS solver,
in the sense that it exactly recovers the unknown vectors even
when Nobs < N0 = 36 and not too far above L + S = 12.
Also notice that, in contrast to LS, the developed algorithm is
quite robust to the sampling scheme adopted.

V. CONCLUSIONS

We studied the problem of blind graph filter identification,
which extends blind deconvolution of time (or spatial) domain
signals to graphs. The developed rank minimization approach

is robust to sampling and outperforms naive LS. It also offers
satisfactory performance even when the number of observa-
tions is close to L + S, i.e., the fundamental lower bound
dictated by the degrees of freedom in the problem. Ongoing
research addresses the questions left open with regards to
identifiability and theoretical guarantees of the convex nuclear-
norm relaxation. Also of interest will be to investigate stable
recovery in the presence of noise.
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