
A Decentralized Prediction-Correction Method for
Networked Time-Varying Convex Optimization

Andrea Simonetto§, Aryan Mokhtari‹, Alec Koppel‹, Geert Leus§, and Alejandro Ribeiro‹
§Dept. of EEMCS, Delft University of Technology, 2826 CD Delft, The Netherlands

ta.simonetto, g.j.t.leusu@tudelft.nl
‹Dept. of ESE, University of Pennsylvania, 200 South 33rd Street, Philadelphia, PA 19104, USA

takoppel, aryanm, aribeirou@seas.upenn.edu

Abstract—We study unconstrained time-varying convex optimiza-
tion problems where the objective function is comprised of compo-
nents that are revealed to distinct nodes of a network. We propose
a distributed algorithm to find and track the solution trajectory
based which samples the problem at discrete time steps. To do so,
we develop a method based on considering prediction and gradient-
based correction steps (DePCoT), while sampling the problem data
at a constant rate of 1{h. We establish that the asymptotic error
bound behaves as Oph2

q, which outperforms the state of the art
existing error bound of Ophq for correction-only methods. Our main
technical contributions are the prediction step and a decentralized
method to approximate the Hessian inverse of the objective, which
yields quantifiable trade-offs between communication and accuracy.

I. INTRODUCTION

In this paper, we consider convex optimization problems where
the objective function changes continuously in time and its
components are available at distinct nodes of a network. The
objective function can be decomposed into two parts: the first
part is locally available at each node and the second part is
shared between neighboring nodes. To be more precise, consider
a connected undirected network containing n nodes where yiPRp
is the decision variable of node i. Define y“ry1; . . . ;ynsPRnp
as the concatenation of the decision variables. Nodes aim at coop-
eratively minimizing the global cost function F :Rnp ˆR`ÑR,
which can be written as the sum of a locally available function
Φ:RnpˆR`ÑR and a network related function G:RnpˆR`Ñ
R. Therefore, the optimization problem is

argmin
yPRnp

F py; tq :“ argmin
yPRnp

Φpy; tq `Gpy; tq . (1)

Notice that nodes can minimize the objective function Φpy; tq in-
dependently, while minimization of the objective function Gpy; tq
requires coordination and information exchange between nodes.
Problems of form (1) arise, e.g., in time-varying versions of
multiuser network optimization and resource allocation, see [1],
[2] for time-invariant distributed algorithms for these problems.

We consider using the tools of non-stationary optimization [3]–
[5] to solve problems of the form (1) by prediction-correction al-
gorithms. We begin by reformulating (1) to a manner better suited
to decentralized optimization and define a discretized version of
(1) (Section II) by sampling it at a constant rate 1{h. Then, we
discuss the Gradient Trajectory Tracking (GTT) algorithm which
uses a prediction-correction scheme for minimizing dynamic
optimization problems in centralized settings (Section II-A). GTT
predicts the optimal solution at the discrete time instance tk`1 by
approximating variation of the objective function F from tk to
tk`1 and corrects the predicted solution by executing a single
step of projected gradient descent. GTT may not be applied
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to decentralized optimization problems since the prediction step
requires inverting a global Hessian of the objective F which is not
amenable to decentralized computation. We propose a Decentral-
ized Prediction-Correction Tracking (DePCoT) algorithm which
approximates the prediction direction of GTT by truncating the
Taylor series of the objective function Hessian inverse (Section
II-B). We show a trade-off in the implementation of DePCoT
between approximation accuracy and communication cost. We
then analyze convergence properties of DePCoT (Section III) and
establish that under some specific conditions algorithm converges
linearly to a tracking error of Oph2q (Theorem 1). This result
improves the error of state-of-the art decentralized correction-
only methods (so-called running methods) [6]–[8] which is in
the order of Ophq. Finally, we present numerical simulations
of an estimation problem of a spatially distributed process and
demonstrate the algorithm properties empirically hold in practice.
The proofs of the results are available in [9].

II. PROBLEM FORMULATION AND ALGORITHM DEFINITION

Begin by considering a connected undirected network with n
nodes and define N i as the neighborhood of node i, i.e., the
nodes it can exchange information with. Associate with node i
a vector yiPRp as its decision variable and a time-varying local
function φi :Rp ˆ R`ÑR with input arguments are the local
variable yi and time t. Further, define gi,j :Rp ˆ Rp ˆ R`ÑR
as a common objective function between nodes i and j which
takes yi, yj , and t as inputs. The shared functions are symmetric
gi,jpyi,yj ; tq“gj,ipyj ,yi; tq. Nodes aim at minimizing their
local objective function φi while they collaborate with their
neighbors to minimize the shared functions gi,j : i.e., nodes aim
at cooperatively solving the problem

minimize
ty1,...,ynu

n
ÿ

i“1

´

φipyi; tq`gi,ipyi,yi; tq`
ÿ

jPN i

gi,jpyi,yj ; tq
¯

. (2)

We stack the local decision variables into a vector y“
ry1; . . . ;ynsPRnp in (1) and define the time-varying objective
functions

Φpy; tq:“
n
ÿ

i“1

φipyi; tq , Gpy; tq:“
n
ÿ

i“1

ÿ

j“i,jPN i

gi,jpyi,yj ; tq,

(3)
in order to write the problem in (2) as (1).

To solve the dynamic optimization problem in (2) or its
equivalent (1), the first step is sampling the objective function F
at time instants tk with k“0, 1, 2, . . . which leads to the problem
of finding the discrete-time globally optimal sequence

y˚ptkq :“ argmin
yPRnp

F py; tkq kě0 . (4)

We aim to generate a discrete sequence tyku which remains
close to the optimal trajectory y˚ptkq. In the following section



we study the Gradient Trajectory Tracking (GTT) algorithm as
a centralized method for solving the sequence of optimization
problems in (4).

A. Gradient Trajectory Tracking

The GTT method executes a prediction-correction scheme to
first estimate the change of optimal arguments from tk´1 to
tk and then correct the predicted solution by running a step
of gradient descent. The prediction step is built on modeling
evolution of the iso-residual trajectory yptq. For each yptq, we
can write ∇yF py; tq“rptq, where rptq is a residual vector that
is null at optimality. By perturbing this gradient condition for
variations δt and δy, we arrive at the dynamic system [10]

9y“´r∇yyF py; tqs´1∇tyF py; tq, (5)

where ∇tyF py; tqPRnp`1 and ∇yyF py; tqPRnpˆnp are the
mixed partial derivative and Hessian of the objective function F ,
respectively. By sampling at sampling times tk, for k“0, 1, 2, . . .
using a first-order forward Euler scheme for the relation in (5),
the predicted variable yk`1|k is given by

yk`1|k“yk ´ h r∇yyF pyk; tkqs
´1∇tyF pyk; tkq. (6)

The predicted variable yk`1|k computed as in (6) is corrected by
a step of projected gradient descent with stepsize γą0

yk`1“PY
“

yk`1|k ´ γ∇yF pyk`1|k; tk`1q
‰

. (7)

Based on the definition of the objective function F in (1), the
Hessian ∇yyF pyk; tkq can be written as

∇yyF pyk; tkq:“∇yyΦpyk; tkq `∇yyGpyk; tkq, (8)

where ∇yyΦpyk; tkqPRnpˆnp is a block diagonal matrix formed
by the Hessian of local functions φi. In other words, the i-th
diagonal block of ∇yyΦpyk; tkq is given by ∇yiyiφipyik; tkq.
Further, ∇yyGpyk; tkqPRnpˆnp has the sparsity pattern of the
graph, since its ij-th block r∇yyGpyk; tkqs

ij PRpˆp is not null
if and only if j“i or jPN i. Combining these observations we
obtain that the Hessian ∇yyF pyk; tkq has the sparsity pattern
of the graph, therefore, it can be computed in a decentralized
manner. Although, the objective function Hessian ∇yyF pyk; tkq
is graph sparse, the inverse ∇yyF pyk; tkq which is required for
the prediction step in (6) is not necessarily graph sparse and
computable in a decentralized manner. In the following section
we introduce a new algorithm that approximates the time varying
Hessian inverse r∇yyF pyk; tkqs

´1 by a graph sparse matrix.

B. Decentralized Prediction-Correction tracking

To implement the prediction step in (6), the Hessian inverse
r∇yyF pyk; tkqs

´1 is required, however, it is not necessarily
graph sparse. This means that it cannot be computed only by
1-hop communication. To overcome this difficulty, we gener-
alize a recently proposed distributed algorithm to approximate
Hessian inverses up to an arbitrary accuracy [11], [12]. The
approximations are obtained by truncating the Taylor expansion
of the Hessian inverse. To be more precise, let Hk be the
objective function Hessian ∇yyF py; tq computed at time tk for
yk, i.e., Hk“∇yyF pyk; tkq. Further, define L as the largest
eigenvalue of the positive semi-definite matrix ∇yyGpyk; tkq
[cfr. Assumption 3]. We write the Hessian as Hk :“Dk ´ Bk,
where matrices Dk and Bk are defined as

Dk :“∇yyΦpyk; tkq ` L I, Bk :“L I´∇yyGpyk; tkq. (9)

By assuming strong convexity of the function Φ [cfr. Assump-
tion 2], the matrix Dk is a positive definite block diagonal
matrix and encodes the local effects; the matrix Bk is positive
semidefinite by construction and has the same structure of the
graph. By definition Hk“Dk ´Bk, given that Dk is a positive
definite block diagonal matrix, the objective function Hessian
Hk can be written as Hk“D

1{2
k pI´D

´1{2
k BkD

´1{2
k qD

1{2
k . To

compute the Hessian inverse H´1
k we can use the Taylor series1

pI´Xq´1“
ř8
τ“0 X

τ for X“D
´1{2
k BkD

´1{2
k to obtain

H´1
k “D

´1{2
k

8
ÿ

τ“0

´

D
´1{2
k BkD

´1{2
k

¯τ

D
´1{2
k . (10)

We introduce the Decentralized Prediction-Correction Tracking
(DePCoT) as a decentralized algorithm that approximates the
Hessian inverse H´1

k in (6) by truncating the series in (10). The
approximate Hessian inverse Ĥ´1

k,pKq for DePCoT with K level
of approximation is defined by the first K+1 terms in (10) as

Ĥ´1
k,pKq“D

´1{2
k

K
ÿ

τ“0

´

D
´1{2
k BkD

´1{2
k

¯τ

D
´1{2
k . (11)

The Hessian inverse approximation in (11) follows that the
prediction step of DePCoT can be written as

yk`1|k“yk ´ h Ĥ´1
k,pKq∇tyF pyk; tkq:“yk ´ hdk,pKq, (12)

where dk,pKq :“Ĥ´1
k,pKq∇tyF pyk; tkq is defined as the prediction

direction of DePCoT for K level of approximation.
The predicted variable yk`1|k of DePCoT at step k ` 1 is

corrected by descending through the negative objective function
gradient ∇yF pyk`1|k; tk`1qPRnp. Therefore, the correction step
of DePCoT is identical to (7) and given by

yk`1“PY
“

yk`1|k ´ γ∇yF pyk`1|k; tk`1q
‰

, (13)

where γą0 is the stepsize and PY is the projection operator to
the convex set Y “Y 1 ˆ ¨ ¨ ¨ ˆ Y n [cfr. Assumption 1].

The prediction and correction steps of DePCoT in (7) and
(13), respectively, are implementable in a decentralized man-
ner. To study this statement define the components dik,pKqPR

p

of DePCoT’s prediction direction dk,pKq“rd1
k,pKq; . . . ;d

n
k,pKqsP

Rnp. The important observation is that node i can compute
its prediction direction dik,pKq by exchanging information with
its neighbors. To be more precise, the sequence of DePCoT
prediction directions satisfies

dk,pτq“D´1
k

`

Bkdk,pτ´1q `∇tyF pyk; tkq
˘

. (14)

Considering the graph sparse structure of Bk and block diago-
nally of Dk, the local components of the prediction directions
are related to each other as

dik,pτq“pD
ii
k q
´1

´

ÿ

jPN i,j“i
Bij
k d

j
k,pτ´1q`∇tyF pyk; tkq

i
¯

. (15)

Therefore, node i can compute its prediction direction dik,pτq by
having access to the prediction directions dik,pτ´1q of itself and
its neighbors. By initializing the prediction directions at step k as
dik,p0q“rĤ

´1
k,p0qs

ii∇tyF pyk; tkq
i“pDii

k q
´1∇tyF pyk; tkq

i, nodes
can compute their K level prediction direction dk,p0q by K times
recursively computing (15). Notice that according to (2), the local

1As part of the convergence analysis, we show that }X}ă1, and therefore the
series converges as indicated.



Algorithm 1 Approximate prediction direction for node i
Input: Gradient ∇tyF pyk; tkqi, matrices Di

k and Bijk for jPN i, j“i

aaaa

0: Compute the initial prediction directiondi
k,p0q“pDii

k q´1∇tyF pyk; tkqi
for τ“0, 1, . . . ,K ´ 1

aaaa
1: Exchange the prediction direction di

k,pτq with neighbors jPN i

2: Compute the updated prediction direction di
k,pτ`1q as in (15)

end
Output: Return the approximate prediction direction di

k,pKq

Algorithm 2 DePCoT at node i
Require: Initial variable yi0PRp
for k“0, 1, 2, . . .

aaaa

1: Compute the block: Dii
k “∇yyΦpyk; tkq ` L I

2: Exchange the decision variable yik with neighbors jPN i

3: Compute the blocks Biik and Bijk as in (18) and (19)
4: Compute the mixed derivative ∇tyF pyk; tkqi as in (16)
5: Compute the prediction direction di

k,pKq by Algorithm 1
6: Execute the prediction step: yi

k`1|k“yik ´ hdik,pKq.
7: Exchange the predicted variable yi

k`1|k with neighbors jPN i

8: Compute the gradient ∇yF pyk`1|k; tk`1qi as in (21)
9: Execute the correction step:

yik`1“PY i ryik`1|k´γ∇yF pyi,k`1|k; tk`1qis
end

component of mixed derivative ∇tyF pyk; tkq
i“∇tyΦpyk; tkq

i`

∇tyGpyk; tkq
i can be computed as

∇tyF pyk; tkq
i“∇tyiφipyik; tkq `∇tyigi,ipyik,y

i
k; tkq

` 2
ÿ

jPN i

∇tyjgi,jpyik,y
j
k; tkq, (16)

which requires access to the decision variables yik of the neigh-
boring nodes jPN i. Moreover, the local blocks of matrices Dk,
which is locally available, can be computed as

Dii
k :“∇yiyiφipyik; tkq ` L I, (17)

where IPRpˆp is the identity matrix. By exchanging information
with neighbors the diagonal block Bii

k is computable as

Bii
k :“L Í ∇yiyigi,ipyik,y

i
k; tkq´

ÿ

jPN i

∇yiyigi,jpyik,y
j
k; tkq, (18)

and the non-zero off-diagonal blocks are given by

Bij
k :“L I´ 2∇yiyjgi,jpyik,y

j
k; tkq, for jPN i. (19)

Observe that nodes can compute (17), (18), and (19) only by
access to the local yik and neighboring yjk variables jPN i.

The correction step (13) is also decentralized given the as-
sumption on Y [cfr. Assumption 1]. In particular, By defining
components ∇yF py; tqiPRp of the objective function gradient
∇yF py; tq“r∇yF py; tq1; . . . ;∇yF py; tqnsPRnp, the update in
(13) can be decomposed into local components as

yik`1“PY i

”

yik`1|k ´ γ∇yF pyk`1|k; tk`1q
i
ı

. (20)

Based on the relations in (1) and (3), the local component
∇yF pyk`1|k; tk`1q

i of gradient is given by

∇yF pyk`1|k; tk`1q
i“∇yiφipyik`1|k; tk`1q

`
ÿ

j“i,jPN i

∇yjgi,jpyik`1|k,y
j
k`1|k; tk`1q. (21)

The DePCoT method is summarized in Algorithm 2, while
in Algorithm 1 we have summarized the approximate prediction
direction computation. As for Algorithm 2, steps 1-4 as well

as 7-8 are preliminary communication and computation steps in
order to compute the prediction and correction steps. Steps 5-6
contain the approximate prediction step, while step 9 implements
the correction step. As for Algorithm 1, steps 0-1 are preliminary
computation and communication steps, while step 2 computes the
approximate prediction direction per node.

III. CONVERGENCE ANALYSIS

In this section, we study the convergence properties of DeP-
CoT. We show that as time passes the sequence of variable yk
approaches a neighborhood of the optimal argument y˚ptkq. In
proving the results we make the following assumptions.

Assumption 1: There exists a set Y “Y 1 ˆ ¨ ¨ ¨ ˆ Y nĎRnp
whose interior contains the optimal argument trajectory y˚ptq
of (1) for each t, i.e., y˚ptqP intpY q, for tě0.

Assumption 2: The local functions φi are twice differentiable
and the eigenvalues of the Hessians ∇yiyiφipyi; tq are bounded
by constants 0ăm and Mă8. Therefore, the eigenvalues of
the aggregate function Φpy; tq :“

řn
i“1 φ

ipyi; tq are bounded uni-
formly as

mI ĺ ∇yyΦpy; tq ĺ MI. (22)

Assumption 3: The functions gi,jpyi,yj ; tq are twice differ-
entiable and the eigenvalues of the aggregate function Hessian
∇yyGpy; tq are bounded by constants 0 and Lă8,

0 ĺ ∇yyGpy; tq ĺ L I. (23)

Assumption 4: The derivatives of the global cost F py; tq de-
fined in (1) are bounded for all yPY , @t as

}∇tyF py; tq}ďC0, }∇yyyF py; tq}ďC1, }∇ytyF py; tq}ďC2.
(24)

Assumption 1 is a weak assumption and for the case that the
set Y is Rnp, we only assume the existence of a solution for (1)
at each time t. However, it is very useful in practice, when we
know a priori that the solution trajectory has to be, for instance,
positive. The bounds on the eigenvalues of Hessians ∇yyΦpy; tq
and ∇yyGpy; tq in Assumptions 2 and 3, respectively, follow
that the eigenvalues of the global cost Hessian ∇yyF py; tq are
uniformly bounded as m I ĺ ∇yyF py; tq ĺ pL `Mq I. This
bound besides guaranteeing that Problem (1) is strongly convex
and has a unique solution for each time instance, implies that
the Hessian ∇yyF py; tq is invertible. Conditions imposed on the
higher order derivatives of F in Assumption 4 are often required
in time-varying optimization to prove convergence [5], [7], [8].

In the following theorem we show linear convergence of the
sequence of variables yk to a neighborhood of y˚ptkq.

Theorem 1: Consider the DePCoT algorithm defined in (9)-
(20). Let Assumptions 1-4 hold and define ρ and σ as

ρ:“
`

1` γ2pL`Mq2 ´ γm
˘1{2

, σ:“1`h

ˆ

C0C1

m2
`
C2

m

˙

. (25)

If the sampling increment h and the stepsize γą0 are chosen
properly to satisfy the condition ρσă1, then the sequence yk
converges Q-linear to y˚ptkq up to a bounded error as

}yk ´ y
˚ptkq}ďpρσqk}y0 ´ y

˚pt0q} ` ρ
hΓ p%q `Oph2q

1´ ρ
, (26)

where the function Γ and the parameter % are defined as

Γ p%q“
C0%

K`1

mpm` Lqp1´ %q
, %“

L

m` L
. (27)



Theorem 1 states that the sequence of variables yk generated
by DePCoT converges linearly to a neighborhood of yptkq where
the error bound is proportional to Γ p%qh`Oph2q. Hence, for any
level K of Hessian inverse approximation in DePCoT the error
bound of order Ophq is achievable. In addition, by choosing large
enough approximation level K we can decrease Γ p%q in (27) and
push towards the order of h to get the error bound of order Oph2q.
In particular, if K is chosen as Kěrlog h{log %´ 1s , we obtain
Oph2q asymptotical error bound, which is smaller relative to the
Ophq error bound of running algorithms.

IV. NUMERICAL EVALUATION

We consider a wireless sensor network estimating the intensity
of a two dimensional spatial circular wave. The location of the
source is ξ0“r1.2; 1.2s, while its space-time intensity at any
location and at any time is

cpξ; tq“cosp2πωpt´ }ξ ´ ξ0}{vqq{p4π}ξ ´ ξ0}q, (28)

where ξ is the space location in R2, while ω and v are the
frequency and velocity of the wave, respectively. Each sensor
node is located in the position ξi and estimates the intensity of
the wave as,

ĉpξi; tq“cpξi; tq ` ηi, ηi„N p0, qq, (29)

with q is a given noise covariance. We formulate the estimation
as a least-squares problem with spatial regularizer,

minimize
ty1,...,yNu

n
ÿ

i“1

´ 1

2q
}yi ´ ĉpξi; tq}22 `

β

q

ÿ

jPN i

wij

2
}yi ´ yj}22

¯

(30)

for which, βą0 is a tuning parameter, and the regularization
term serves to push closely located sensors to estimate similar
intensities. For this purpose the weight wij is chosen as wij“
expp´α}ξi ´ ξj}q{δ, where the parameter δ is the maximum
degree of the nodes of the network, and α“´ logp0.5q{d, where
d is the maximum communication range distance.

In this numerical example, we consider n“500 sensor nodes
located in the square r´1, 1s2. We set d“2

?
2{
?
n. We notice

that the communication graph does not have to be connected.
The other parameters are: ω“0.1, v“0.05,

?
q“h3, and δ“13.

To see (30) as an instance of (2), it is sufficient to equate

f ipyi, tq“
1

2
p1´ βwiiq}yi}22 ´ ĉpξ

i; tqyi, wii“
ÿ

jPNi

wij

gi,ipyi; tq“β
wii

2
}yi}22, g

i,jpyi, yj ; tq“β
wij

2
}yi ´ yj}22,

and it can be seen that Assumptions 1 till 4 hold. In the
simulations, we use β“0.25, and with this mě1´ β“.75, Lď
1`2β“1.5, C0“.1768, C1“0, C2“0, C3“0.1111. We use the
problem (30) to test the performance of different time-varying
optimization algorithms. In particular, (i) A running gradient
method (meaning Algorithm 2 without the prediction step); (ii)
Our Algorithm 2 with backward approximate time derivative and
K communication steps for the computation of the approximate
Hessian inverse; (iii-iv) The running dual decomposition method
and the running ADMM algorithm of [7] and [8], respectively,
adapted to our networked scenario, where we perform dual de-
composition/ADMM instead of gradient descent in the correction
step (and no prediction).

Figure 1 displays the error w.r.t. the time instance for the
different methods, with h“1{320. We noticed that the tracking
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methods, even if approximate, have significant better performance
than the running methods.

Figure 2 depicts the worst case error floor size, defined
as maxkěk̄ }yk´y˚ptkq} with k̄“2000. In particular, we retrieve
the theoretical results of Theorem 1. We have also plotted vertical
lines to indicate which K would ensure an Oph2q error bound:
as soon as our approximate algorithms pass the threshold they
regain the basic Ophq bound.
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