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Abstract— Enabling a team of robots to self-organize into
a multi-hop ad hoc network as it simultaneously completes
a task requires a system architecture that controls both the
motion of each robot and their communication variables. In
this paper, we consider this objective and propose a hybrid
architecture composed of both centralized and decentralized
components. This novel architecture utilizes the strengths of
each component while limiting the drawbacks. The resulting
system is therefore able to operate in more complex environ-
ments than decentralized systems, requiring less coordination
overhead than centralized systems. We demonstrate through
simulation that our hybrid system has the ability to success-
fully complete a task while navigating complex environments,
simultaneously avoiding local minima commonly encountered in
decentralized systems. Furthermore, we demonstrate through
experimentation the ability of our hybrid system to achieve
equal, if not greater, end-to-end date rates in comparison to
centralized systems with lower coordination overhead.

I. INTRODUCTION

Autonomous mobile robotic teams are steadily becom-
ing viable options for various tasks, such as surveillance,
reconnaissance, and search and rescue. This increase in
viability is due to the recent advances in team behavior
[1]–[3] and multi-hop wireless network communication [4]–
[8]. For this trend to continue, such autonomous robotic
teams need to preserve communication while successfully
navigating increasingly complex environments. In certain
scenarios, preserving communication is as important, or more
important, than task completion. For instance, tasks such as
constant threat tracking for security or search and rescue
in rapidly deteriorating circumstances require transmitting
information in a timely manner. For both tasks, offloading
information at specific times, rather than throughout the task,
could render the task futile. In threat tracking, for example,
a delay in receiving information might allow the threat
to escape. Therefore, communication requirements must be
considered for the entirety of the task, not simply at specific
times, as in Rendezvous. Additionally, the computation and
communication overhead requirements of the team must
efficiently scale with the number of robots on the team so
as to allow increased team sizes.

Many systems have been proposed that seek to solve the
problem of motion control of mobile robots while preserving
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communication. These systems generally approach the prob-
lem in one of two ways, either as a decentralized optimiza-
tion problem, as in [9]–[12], or as a centralized coordination
problem, as in [7], [13], [14]. These approaches have been
shown to operate effectively in their respective situations, but
their scope is limited. For example, in the previous work done
by Zavlanos et al [9], a decentralized system that controls
inter-robot communication as well as robot motion was
proposed. In this system, Zavlanos et al successfully isolate
communication control from motion control. They define
the communication variables as the solution to a discrete-
time optimization problem. Simultaneously, they implement
the motion control portion of their system as a continuous
time gradient descent on an artificial potential function. This
leads to a system that is able to complete tasks successfully
while preserving a measurable level of network connectivity
in a completely decentralized fashion. As this system is
decentralized, it is able to scale efficiently with the number
of robots; however, it still suffers from the same shortfalls
as most other local controllers, namely, local minima. As
each robot only possesses locally available information and
sensing capabilities, these local minima appear as a global
minimum.

Typically, the response to avoiding local minima is to
develop a centralized system that can take advantage of
global knowledge [7], [13], [14]. Such global knowledge
allows the system to forgo short term benefits in order
to achieve a global minimum. This allows the system to
determine trajectories that enable the team to complete a
given task while maintaining connectivity in the presence
of local minima. However, as the number of robots on the
team increases, a greater amount of communication and
coordination between the robots is needed. Accordingly,
while a centralized system may resolve the issue of local
minima, its cost is the reduction in the ability of the system
to scale efficiently.

The main contribution of this work is to combine the two
disparate approaches described above, local and centralized,
into a hybrid system. In particular, we use a centralized sys-
tem to first determine feasible trajectories for each robot on
the team. This information is then disseminated to the robots
and used by their local controllers to guide them through the
environment. This hybrid system provides a team of robots
with the ability to move through environments that are more
complex than those navigated by a local controller. This is
done while avoiding the communication and coordination
overhead experienced by centralized controllers.

In section II, we formalize the problem of motion control



while maintaining network connectivity. In section III, we
propose a hybrid system that will combine the reactive
nature of a local controller with the global performance of a
centralized planner. In section IV, we present simulations that
demonstrate the benefits of our hybrid approach over existing
decentralized systems. Finally, in section V, we present ex-
perimental results to further prove the efficacy and robustness
of our system compared to centralized approaches.

II. PROBLEM STATEMENT

We begin by restating the problem formulated in [7].
Consider a team of N robots, and indicate their positions as
xi ∈ R2 for i = 1, . . . , N . We assume that each robot is kine-
matic and fully controllable to allow us to consider a simple
control model of the form ui(t) = ẋi(t) where ui(t) is the
control input for robot i. Also consider M access points,
APs, with positions xi ∈ R2 for i = N+1, . . . , N+M . Next
we define the vectors x = (x1, . . . , xN+M ) ∈ R2(N+M), and
ẋ = (ẋ1, . . . , ẋN+M ) ∈ R2(N+M). The team’s task is given
as a scalar convex potential function Γ(x) : R2(N+M) →
R. When the team achieves a configuration x∗ for which
Γ(x∗) = Γmin we say that team has successfully completed
the task. Combining the single integrator model of the
robots with the potential function we can write the following
optimization problem:

min
ẋ(t),t∈[ti,tf ]

Γ (x (tf ))

s.t. x(t) = x(ti) +

∫ t

0

ẋ(s)ds.
(1)

Additionally, as the robots move through the environment
they must also maintain network integrity, which we define
as simultaneously sustaining K data flows. We enumerate
each data flow by k = 1, . . . ,K. For a given data flow k
there can be multiple sources and destinations. For flow k
we define the set of sources and destinations as src(k) and
dest(k), respectively. For node i, and flow k we define the
variable aki as the rate at which node i can communicate
with any node in the set dest(k). Likewise we define aki,min
as the minimum desired rate that node i can communicate
with any node in dest(k).

Next we model the inter-agent communication though a
point-to-point rate function, R(x) = R(xi, xj) : R4 → [0, 1].
This function indicates the rate at which node i can send data
to node j, located at positions xi and xj , normalized by
the maximum inter-robot nominal communication rate. Due
to direct communication between a source and destination
not always being feasible for a given flow, the nodes must
self organize into a multi-hop wireless network to relay the
packets. To model this, we introduce K routing solutions,
αk(x) ∈ R(N+M)×(N+M). These routing solutions are used
to instruct each node as to which percent of incoming data
for flow k to send to each of its neighbors. Specifically,
0 ≤ αkij(x) ≤ 1, indicates the percentage of incoming data
for flow k that node i should send to node j. To maintain
queue stability at each node, we also require that the amount
of incoming packets not destined for node i should never

exceed the amount of outgoing packets for node i. Also
since αkij represents a percentage of time we require that∑
j,k α

k
ij(x) ≤ 1 for all i. These routing variables, αkij(x)

combined with the point-to-point model, R(xi, xj), allow us
to determine the rate at which agent i can add data to flow
k.

aki (α,x) =

N+M∑
j=0

αkijR(x)−
N+M∑

j=0,j 6∈dest(k)

αkjiR(x). (2)

where α ∈ R(N+M)×(N+M)×K and contains all K routing
solutions. Using (2) we construct a series of flow integrity
constraints,

aki (α,x) ≥ aki,min, ∀i, k. (3)

When (3) is satisfied for every i and k, given x and α, we
say that network integrity is preserved.

Since we require that network integrity be maintained for
the duration of the task we modify the control problem in (1)
to include the flow constraints in (3). To solve this problem
requires a system that attempts to control both robot motion
and packet routing in order to satisfy the constraints in (1)
and (3) while minimizing Γ(x). It is not uncommon for
the task potential function minimization and the network
preservation constraint to have conflicting requirements. Due
to this conflict we seek to find a joint solution to

min
ẋ(t),α(t),t∈[ti,tf ]

Γ (x (tf ))

s.t. x(t) = x(ti) +

∫ t

0

ẋ(s)ds

aki (α(t),x(t)) ≥ aki,min.

(4)

By solving for position control and network preservation
simultaneously, we know that if there is a solution with
Γ(x) minimized then it is achieved while preserving network
integrity for the entire duration of task execution. The prob-
lem formulation in (4) contains the motion control and path
planning complications seen in many multi-robot problems,
but the introduction of the communication requirements
dramatically increases the complexity of the problem.

III. HYBRID CONTROLLER

The complexity associated with both computing and exe-
cuting the solution to (4) has led to two distinct classes of
systems, one class that operates as a completely decentralized
system, as in [9]–[12], and one class that operates as a
completely centralized system, as in [7], [13], [15]. Both
approaches have distinct benefits and drawbacks when com-
pared to the other. The centralized systems have the ability
to exploit global knowledge in order to find solutions that
avoid local minima. Unfortunately, the reliance on global
knowledge requires a large amount of coordination and data
transfer between robots, which only grows as the number of
robots increases. This limits the number of robots that are
allowed on the team and thus the tasks that can be completed.
The decentralized systems, on the other hand, only use
locally available information to operate and thus scale more
favorably with the number of robots. By only using locally
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Fig. 1: Hybrid system with a slow centralized component responsible for path planning and a fast decentralized component
responsible of motion control and routing solutions or each robot.

available information, the system is prone to becoming
trapped in local minima. Therefore, the decentralized systems
are limited to operating in relatively simple environments.

The ability of a team of robots to operate in complex
environments while avoiding local minima without a heavy
reliance on a centralized algorithm is the motivating case
of this paper. The creation of a hybrid architecture allows
a system to leverage the desirable properties of both a
centralized and a decentralized system while avoiding their
pitfalls. The components of this architecture build upon the
previous work in [7], [9]. The hybrid architecture that we
propose decomposes the problem in (4) into a two stage
feedback process, with the output of one stage serving as
input for the other stage.

A. Global Path Planner

Stage 1 is responsible for global path planning and is
performed by only one node with the results disseminated
to the other nodes. Where stage 1 executes is irrelevant, but
since it is computationally expensive and the information
needs to be disseminated to all the other nodes, an AP is
preferable to a robot. The input to this stage is the user
generated task potential function, Γ(x), and the starting
or current positions of the robots, x(ti). This stage then
computes trajectories for each robot in such a way that
the network integrity constraint given by (3) is satisfied
throughout robot transit. From these trajectories a set of
waypoints, Xi, is generated for each robot. These waypoints
are transmitted to each robot and serve as the input to stage
2. The creation of Xi is explained later in section III-C.

In order to find trajectories that satisfy (4), we borrow
the path planning system from Fink et al [7]. This system
seeks to find trajectories for which (3) is guaranteed in
a probabilistic manner. This modification to the network
integrity constraint is due to the understanding that fading on
a wireless channel is a random variable, and thus the inter-

agent rates are also random variables. In Fink et al and in this
paper, fading is modeled as a Gaussian random variable with
zero mean and known variance. This leads (4) to become,

min
ẋ(t),α(t),t∈[ti,tf ]

Γ (x (tf ))

s.t. x(t) = x(ti) +

∫ t

0

ẋ(s)ds

P
[
aki (α(t),x(t)) ≥ aki,min

]
> ε,

(5)

where ε is the probability of network integrity being pre-
served. In Fink et al, it is shown that the network integrity
constraint for a given formation can be formulated as a
Second Order Cone Problem (SOCP). Therefore, feasible
routing solutions can be efficiently determined, if they exist
for the given formation, provided an ε > 0.5 is selected. With
the ability to efficiently evaluate the feasibility of a given
formation, the global path planner can determine trajectories
that allow the team to successfully complete the task while
maintaining network integrity. To achieve this, the system
implements a rapidly exploring random tree (RRT) algorithm
to sample the configuration space, while using the SOCP
formulation to only consider formations that satisfy the
probabilistic network integrity constraint. From the resulting
tree, trajectories can be obtained such that the constraints
from (5) are satisfied, as well as, Γ(x(tf )) = Γmin. More
information on the specifics of the global path planner and
RRTs can be found in [7].

B. Local Controller

This stage executes locally on each node in the network,
including APs, and is individually responsible for motion
control and packet routing. The input of the local controller
for robot i is the set of waypoints that it should visit, Xi,
which is generated by stage 1. For APs, no waypoints are
given since they are assumed to be fixed. The set of way-
points serve as guideposts that are used by a local controller



to drive each robot to a configuration that approximates the
feasible configuration verified by the SOCP in stage 1. The
local controller simultaneously determines the direction and
velocity as well as the routing solution of the robot in order
to reach the current waypoint while maintaining the network.
This is achieved by only requiring a robot to exchange
information with its immediate neighbors. This leads to a
system that is able to scale with the number of robots because
even as N gets very large the number of immediate neighbors
does not increase very much.

The local controller that we are using comes from Za-
vlanos et al [9]. In that paper it is shown that by using
the process of dual decomposition one can construct a local
controller that is able to maneuver a team of robots to
complete a simple task while preserving network integrity.
This is achieved by having the robots share their information
with their immediate neighbors. The channel model used by
the local controller is simpler than the one in the global
path planner in order to reduce computation load. With the
reduction of the computational load, the local controller is
able to operate at higher frequency, and thus react more
quickly to changes in the environment. Specifically, the
model used is the deterministic function:

R(xi, xj) = a‖xij‖3 + b‖xij‖2 + c‖xij‖+ d. (6)

With R(xi, xj) = 1 when ‖xij‖ < xl and R(xi, xj) = 0
when ‖xij‖ > xu, where xij , xi − xj . The resulting local
controller solves the following in real time via dual descent

max
ri,Tij

N∑
i=1

Ui(ri) +

N∑
i=1

N+M∑
j=1

Vij(Tij)

s.t ri +

N∑
j=1

TjiR(xj , xi) ≤
N+M∑
j=1

TijR(xi, xj),

ri ≥ ri,min,
N+M∑
i=1

Tij ≤ 1, ∀i ∈ {1 . . . N}

(7)
where Tij =

∑K
k=1 α

k
ij , and ri,min =

∑K
k=1 a

k
i,min. Ad-

ditionally the motion of robot i is controlled by means of
a navigation function that seeks to minimize φi(x) while
avoiding physical obstacles and loss of network integrity.
More information on the dual decomposition and navigation
function can be found in [9].

C. Integration

The integration of the centralized planner from Fink et
al and the local controller from Zavlanos et al allows us to
create a hybrid architecture that allows a team of robots to
navigate more complex environments with less coordination
overhead than the two systems separately. A diagram of this
architecture can be seen in fig. 1. In this system stage 1, the
centralized portion, runs only when a new user-defined task
is given, thus implying a long time between iterations. This
means that the computationally expensive and communica-
tion heavy process in stage 1 executes infrequently, possibly
only once. Conversely, since stage 2 operates in real time it
runs at a higher fixed frequency.

For the hybrid system to operate effectively, stage 1 must
generate beneficial waypoints from the trajectories generated
by the global path planner. These waypoints need to allow the
local controller the freedom to locally optimize the resulting
robot motion while still providing ample guidance to avoid
local minima. In order to achieve this, we developed a
process by which the generated paths are simulated and the
robot positions are sampled at time intervals, τt. Such a
sampling results in a set of waypoints Xi = {xi(τt)}Tt=1,
with xτti = xi(τt). The set of configurations are then used
in stage 2 as intermediate waypoints for each robot. These
waypoints are used to define the goal function, φi(x(t)) =
‖xi − xτti ‖, for the local controllers. When φi(x(t)) < κ, t
is incremented and φi(x) is updated, the robot proceeds to
the next waypoint. On the last waypoint, the support robots
set φi = 1, while the lead robot keeps the last waypoint in
order to maintain the objective.

Notice that as τt+1 − τt = ∆τt → 0 the local controller
is increasingly required to follow the exact path prescribed
by the global path planner. While this may prevent the local
controller from becoming stuck in local minima, it foregoes
the advantage of a reactive controller that is able to locally
optimize the paths taken. Also, since an RRT is used to
generate the paths, there is no guarantee on either optimality
or smoothness, only feasibility. On the contrary, as ∆τt →
∞, the system approaches the completely decentralized con-
troller used by Zavlanos et al and is given complete freedom
to optimize the paths taken. Unfortunately, the probability of
becoming trapped in a local minima dramatically increases
as the spacing between waypoints increases.

There are various ways in which the τt can be selected.
One method involves equally spacing the τt in the time
domain. Two other methods involve choosing τt such that
sampling occurs after a specified robot has traveled a certain
distance, or the total distance traveled by the team is above
some threshold. All three of these sampling methods will
produce different sets of waypoints. In this paper, we elected
to implement a fixed time spacing method since it is most
resilient to local minima. This is due to the distance between
two consecutive waypoints for every robot being limited
to the product of the sampling interval and the maximum
allowed velocity. The other two methods have the possibility
of one robot having to travel a very long distance between
waypoints. This is analogous to the situation above where
∆τt → ∞, as such the likelihood of becoming trapped
in a local minima is dramatically increased. While the
two distance methods are useful in certain scenarios, the
robustness to local minima was paramount in our decision
of sampling methods.

For the simulations in section IV and the experiments in
section V, the following parameters were used. For the global
path planner, K = 1, α1

1,min = 0.5, ε = 0.75. For the local
controller, xl = 0.01, xu = 0.2, r1,min = 0.5. Since the
values chosen for the channel model in the local controller
result in very small separating distance, we introduced a
scale factor , δ = 75. The purpose of δ is to scale the small
distances used in the previous work to ones more consistent



(a) Environment that was used.
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(b) The waypoints used in section V-A.
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(c) The waypoints used in section V-B.

Fig. 2: The environment for all the tests and waypoints used in the experiments in section V. In figures (b) and (c) the
circles indicate the starting location, and the stars indicate the waypoint associated with that robot. The black diamond in
figure (c) is the location at which Scarab43 stalls in section V-B
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(a) Waypoint is straight ahead, no obsta-
cles. Local controller is able to achieve
the goal.
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(b) Waypoint is around a corner. Local
controller fails to achieve the goal.
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(c) Waypoint is around a corner. Hybrid
system is able to achieve the goal.

Fig. 3: Simulation results for local and hybrid systems. For all tests the goal location is 19 meters away.

with the Scarab platform. The scaling factor is used in two
places; first, to translate the physical positions to the system’s
units and second, to amplify the control law output. The
entire hybrid system is implemented in the Robotic Operating
System (ROS) so that it can be simulated using kinematically
accurate models as well as executed on robotic platforms.

The benefits of this hybrid approach are twofold. First, by
leveraging the global knowledge of a centralized planner,
the team is not only able to avoid local minima but is
also able to find feasible trajectories, if they exist. Second,
by allowing the robots to deviate from the global plan in
between waypoints, the system is able to achieve higher
successful transmission rates. This is due to the robots
reacting to the changes in the configuration and dynamically
adjusting both positions and routing probabilities to optimize
the input rates ri.

IV. SIMULATIONS

In this section we present a series of simulations that
show how the local controller from [9] performs in different
environments. We also show how our hybrid system allows
the team to complete objectives that are unachievable when
only the local controller is used.

A. Test Environment

The test environment used in both this section and section
V is the 5th floor of the Graduate Research Wing at the
University of Pennsylvania, shown in Fig. 2a. The number of
robots, 4, and their starting positions were the same for all of
the simulations and experiments. The access point is located
in the lower left corner, with the robots spaced 1 meter apart
going up the hallway, as indicated by the green and red axis
in the image. The order of the robots in increasing distance
from the access point are Scarab43, Scarab42, Scarab45,
Scarab40, with Scarab40 being the lead robot. The blue
square in the upper right corner indicates the goal location
used in the majority of the tests.

B. Pure Local System

In the first simulation, Scarab40 is provided a goal that is
19 meters straight down the hallway. The distance of each
robot from the access point is plotted in fig. 3a. The robots
begin moving 10 seconds into the simulation and the lead
Scarab reaches the goal in less than 90 seconds. Since no
goal is given to the supporting robots, they move in order to
maximize the rate of the lead robot, r1.
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Fig. 4: These figures show a series of formations and the resulting routing probabilities experienced during the experiments
in section V-A. Figures (a)-(b) correspond to the centralized system experiments and figures (c)-(d) correspond to the hybrid
system experiments. The darkness of the lines connecting the robots indicate the routing probabilities used for that link.

In the next simulation, the goal is still 19 meters away, but
this time in order to reach the goal the robot needs to turn
a corner. The walls and corner prevent the lead robot from
heading directly towards the goal and therefore introducing
a local minimum. This local minimum is enough to prevent
the lead robot from reaching the goal. This can be seen
in fig. 3b by the plateauing of the blue line well below
the goal distance. The local minimum is due to the forces
from maximizing network integrity and obstacle avoidance
canceling out the force of the goal function. The added force
caused by the team’s attempt to maximize network integrity
only increases the number of local minima. As with most
local controllers, when the goal changes, so does the local
minima. This, unfortunately, introduces a dependence for
task completion on the selection of goals, which might not
be well understood in some environments. This simulation
highlights the limitations of a purely local system and
suggests the need to design a system that is more robust
to local minima.

C. Hybrid System

Since the purely local system is unable to successfully
reach the goal around the corner, the hybrid system is used
in the next simulation. The global planner validated that the
goal location for the lead robot was in fact achievable and
moreover, network integrity could be preserved throughout
execution. The results of the simulation are in fig. 3c, where
again the distance of each robot from the access point is
plotted. Notice that the team is now able to successfully
navigate the complex environment and reach the goal. In this
simulation, the lead robot is able to reach the goal in roughly
the same amount of time as the straight ahead case shown in
Fig. 3a. This shows that in the scenarios where local minima
prevent the purely local system from achieving the goal, a
hybrid approach is able to pull the team out of such minima
and eventually reach the goal.

V. EXPERIMENTAL VALIDATION

This section focuses on the series of experiments that first
compare the performance of the hybrid system to the central-
ized system, then highlight the benefits of a hybrid system
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Fig. 5: Experimental results for centralized and hybrid sys-
tems. The solid line is the average performance and the
dashed colored lines are +/- 1 σ bounds. The black dashed
line is the minimum input data rate for the lead robot.

over a centralized system when a robot has a temporary
motor failure.

For this paper we use Scarabs [16], a custom built robot
designed at the University of Pennsylvania, as our robotic
platform. For more information on the exact configuration
of the Scarab platform used in the experiments see [15].
The only change made to the configuration in [15] is that
each Xbee is configured to transmit at -10 dBm to limit the
signal propagation between robots.

A. System Performance

The performance of the hybrid and centralized systems is
shown in fig. 5. We measure the performance of the system
by computing the percentage of messages, sent by Scarab40,
that are successfully received at the AP. Both systems are
tasked with maintaining the same level of successful packet
transmission, r1,min, for Scarab40. In these experiments the
same set of waypoints were used for both the centralized and
the hybrid systems to remove any planning bias, shown in
fig. 2b. Also 10 sets of data were collected for both systems.
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Fig. 6: These figures show a series of formations and the resulting routing probabilities experienced during the experiments
in section V-B. Figures (a)-(b) correspond to the centralized system experiments and figures (c)-(d) correspond to the hybrid
system experiments. Figures (a) and (c) show a snapshot of the formation when Scarab43 has stalled. The darkness of the
lines connecting the robots indicate the routing probabilities used for that link.
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(a) The centralized system fails to adjust to the motor failure
and the network suffers greatly.
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(b) The hybrid system is able to adjust the motion of the robots
to overcome the motor failure.

Fig. 7: Experimental results highlighting the hybrid systems ability to dynamically adjust to motor failures. The green and
blue lines indicate the experienced data rate for tests where the robot’s motor does and does not fail.

This allows the random perturbations caused by fading and
the environment to be smoothed out.

The first item of import is that the hybrid system always
maintains network integrity, r1 ≥ 0.5, throughout the exper-
iment. Conversely, the centralized system fails to preserve
network integrity during portions of the experiment. This is
shown by its rate, the blue line, falling below the dotted black
line. Another important feature to notice is that the hybrid
system consistently outperforms the centralized system. This
is due to the hybrid system optimizing the robot motion in
between the waypoints while the centralized system is only
executing a prescribed path for each robot. The final item
to note is the tight σ bounds, as indicated by the colored
dashed lines, in the centralized system when compared to the
hybrid system. This can be attributed to two causes. First,
the hybrid system locally optimizes the paths, thus increasing
the variability of the intermediate formations. Second, the
formulation of the routing optimization problem is different
between the two systems. Specifically the centralized system
considers both the fading and expected value of the channel

rates, while the hybrid system only considers the later. This
can be seen in fig. 4 where snapshots in time of the formation
and routing probabilities are shown for both the centralized
and the hybrid systems. Even though the formations are
similar notice that the centralized system prioritizes link
diversity over data rate. This results in the tighter σ bounds
at the expense of the mean data rate.

B. Robustness to Failures

The design of the hybrid system leverages the reactive
nature of a local planner to create a system that is robust
to various types of failures. This can be seen in a scenario
where there is an issue with the motion of the robots. The
experiments in this section highlight such a scenario.

The two systems are run, as in the previous experiments,
but with a different set of waypoints, show in fig. 2c. As
with the previous experiments the same waypoints are used
for both systems to remove planning bias. Also in these
experiments one of the support robots, Scarab43, stalls for
2 minutes at a specified point in the path. Even though



the same waypoints are used for the centralized and the
hybrid system the results are very different. The performance
of the centralized system and hybrid system are plotted
in fig. 7a and fig. 7b, respectively. On the left y-axis, the
blue and green lines represent the average successful packet
transmission for the lead robot in an experiment where the
Scarab43 stalls and an experiment where there is no stalling.
Also a dashed line representing the minimum rate, r1,min =
0.5, is included. On the right y-axis, the distance of the lead
and stalled robots from the access point are plotted. Notice
that when the support scarab stalls in fig. 7a, at t = 140,
the lead robot continues to the goal, as indicate by the red
line reaching its maximum value at t = 160. This is due
to the centralized system executing the path as prescribed
with no feedback. The result is a drop in the performance
of the transmission success rate since the support robot is
not in the expected location. This is evident by the blue
and green line tracking each other for the initial part of the
experiment. When Scarab43 stalls the two line diverge. The
green line increases because in that experiment Scarab43 is
in the correct location. Conversely, the blue line continues to
decrease because the actual robot formation differs greatly
from the expected robot formation, shown in fig. 6a. When
the robot recovers, the success rate returns to the higher value
because Scarab43 finally reaches its expected location.

In contrast, notice that when the support robot stalls in
fig. 7b, at t = 120, the lead robot continues to a point but
itself stalls due to network integrity beginning to suffer. This
is also seen in fig. 6c. Eventually, when the support robot
recovers, the lead robot resumes its motion and reaches the
goal. In this set of experiments the blue and green line track
during the initial part, similar to the centralized case, and
again diverge when the support robots stalls. Fortunately,
even though the two lines diverge they both stay above the
dotted line indicating that network integrity is maintained.
The performance of the hybrid system highlights the benefits
of a reactive motion controller.

VI. CONCLUSIONS

We considered the problem of controlling a team of robots
that seek to complete a task while maintaining network
integrity. We propose a hybrid system that builds on the
previous work to provide advantages beyond what a local
or global controller can provide individually. The results of
this paper demonstrate that by designing a hybrid system, the
benefits of a decentralized system can be combined with the
benefits of a global path planning system. Specifically, the
hybrid system combines the lower communication overhead
and reactive motion planning from the decentralized system,
with the guarantee of task completion from the global

system.
In future work, we plan to focus on including more

complex forms of the channel reliability function, R(xi, xj),
such as using the instantaneous received signal strength
indicator included in every receive packet in order to model
the expected reliability of the current communication link.
This work focused on the design and implementation of a
hybrid system that allows a team of robots to successfully
complete a task while preserving the integrity of a wireless
network.
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