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“We knew so little then. I know even less now.”
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Abstract

Pathloss and fading are unique features of wireless propagation, respectively referring to

the rapid decay in the received signal envelope with distance and to the random fades

present in the received signal power. Multi-hopping and diversity are the corresponding

countermeasures entailing the division of a longer link into shorter links and the provision

of diversified information bearing signal replicas at the destination. This thesis builds on

the fact that by letting users collaborate in relaying packets for each other they can obtain

independent propagation paths to reach their intended destinations through a series of

shorter hops; thus mitigating both pathloss and fading. In a nutshell, collaboration offers

both diversity and multi-hopping benefits at the same time. This thesis consists of two

interrelated thrusts which explore the role of user collaboration in multiple access networks

as a diversity enabler and the role of multihop routing in counteracting the rapid decrease

in average received power. Our results suggest that joint exploitation of multipath and

multi-hop links in the context of collaborative networking offers substantial improvement

in terms of capacity, coverage, power consumption and error performance. Even though

different in the principles they exploit, both thrusts commonly rely on what we purport as

a paradigm shift in wireless networks: from competition towards collaboration.

We show that user cooperation in random access networks (RA) yields a significant

increase in throughput. Specifically, we prove that for networks with a large number of

users, the throughput of a cooperative wireless RA network operating over Rayleigh fading

links approaches the throughput of an RA network operating over additive white Gaussian

noise links. The message borne out of this result is that user cooperation offers a viable

choice for migrating diversity benefits to the wireless RA regime, thus bridging the gap to

wireline RA networks, without incurring a bandwidth or energy penalty.

In the context of multi-hop routing, existing graph-theoretic approaches rely on so-called

disk models. Albeit valuable for wired networks, these models do not capture adequately

the random nature of wireless links. To this end, we introduce a novel framework for

stochastic routing in wireless multihop networks, whereby each node selects a neighbor

to forward a packet with a certain probability. A plethora of valuable criteria emerge

from this framework based on which these routing probabilities are obtained efficiently

as solutions of typically convex optimization problems. We further develop distributed

self-organizing stochastic routing via primal dual decomposition solvers, and study the

associated convergence properties.
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1

Chapter 1

From competition towards

collaboration

The importance of wireless communication networks in everyday life is difficult to overstress.

Besides the now ubiquitous cell-phones, wireless-enabled computers and the envisioned pro-

liferation of wireless sensors for monitoring and surveillance render wireless networks vital

to the growth of as diverse sectors as environmental, financial, healthcare, and manufac-

turing. However, conventional wireless networks are operating at or close to their limits,

generating a recent research spur in disruptive technologies like cognitive radio, collabora-

tive networking and wireless sensor networks, to name a few. The focus of this dissertation

is in what we purport as a paradigm shift in wireless networking: from competition towards

collaboration.

The existing wireless networking paradigm consists of groups of user terminals com-

municating with any out of a group of access points (APs). The APs may be cellular

base stations deployed in a certain city where the user terminals represent wireless phones;

or they may represent 802.11 APs in a building with the user terminals denoting wire-

less enabled computers. In one form or the other, existing protocols entail contention of

user terminals to access limited resources offered by the APs. In the coverage area of an

802.11 local area network, terminals (randomly) contend to reach the AP; in the GSM

cellular standard they compete for time slots; whereas in the IS-95 CDMA standard the
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constrained resource comprises a number of spreading codes available and a minimum ac-

ceptable signal-to-interference-plus-noise ratio. Despite arguably major differences, a star

topology is common to all these settings and collaboration among terminals goes no farther

than controlling mutual interference.

Replacing competition with collaboration is at the midst of many research areas in

wireless networking. Indeed, collaboration between terminals is the per-se enabler of mesh

and ad-hoc networks whereby terminals collaborate in relaying packets for each other. In

this way, terminals convey their information bearing signals via a route of lesser power

consumption, while at the same time improving resilience against channel fades.

In a nutshell this thesis concerns to the theory and implementation of wireless collabo-

rative networks. The reader is surely aware of somewhat independent bodies of knowledge

pertaining to wireless communications and (wired) networking. She or he thus may right-

fully wonder why these results are not directly applicable. The short answer is that they are,

but yield largely suboptimal performance in general. Indeed, the properties of a network

are not direct extensions of the properties of individual links, thus implying that results

pertaining to wireless point-to-point channels do not apply verbatim to wireless networks.

On the other hand, wireless networks are subtly yet fundamentally different from their

wired counterparts. The reasons for this are many but on a basic level they all reduce to

the fact that in lieu of a tangible connection, a link in wireless network is somewhat of an

arbitrary definition. In this chapter we present an overview of known results in networking

and wireless communications as required for the material covered in the rest of the thesis.

1.1 Wireless channels

At first sight it may not be clear why there should be such a thing as a wireless commu-

nication channel requiring an approach different than the one used for ordinary (wired)

channels. Surely enough, the physical phenomena explaining a radio channel and, say, sig-

nal propagation over copper wires are different. After all, even if Albert Einstein never said

it, it is indeed true that “The ordinary telegraph is like a very long cat. You pull the tail in

New York, and it meows in Los Angeles. The wireless is the same, only without the cat.”.
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But equally different are the physical phenomena involved in a copper wire and an optical

fiber, not preventing communication system designers to use similar models and techniques.

In fact, copper wires and optical fibers share properties that bring them close from a

communications perspective. A wireless channel, on the other hand, exhibits three features

that render it fundamentally different: pathloss, fading, and broadcast propagation1.

To be precise, consider a source S transmitting an L symbol packet sS :=

[sS(0), . . . sS(L − 1)]. The symbols are linearly modulated by a unit energy pulse p(t)

of duration Ts so that the signal transmitted by S is

xS(t) =
L−1∑

l=0

sS(l)p(t− lTs). (1.1)

This xS(t) waveform propagates through the channel and is eventually received at destina-

tion D. Denoting by h(t) the transference of the channel, we have that the received signal

zD(t) is given by

zD(t) = hDS(t)xS(t) + n(t) (1.2)

where n(t) denotes additive white Gaussian noise (AWGN) with double sided spectral den-

sity N0/2.

For simplicity, and consistent with the treatment throughout the thesis, we assume that

hDS(t) is known at the receiver side D – in practice it is estimated. Consequently, the

optimal receiver front-end is a filter matched to the equivalent pulse h(t)p(t− lTs). In other

words the optimal receiver constructs the discrete time signal

yD(l) =
∫ (l+1)Ts

lTs

zD(t)
[h(t)p(t− lTs)]∗

‖h(t)p(t− lTs)‖ dt (1.3)

and utilizes the sequence yD := [yD(0), . . . yD(L − 1)] to compute the optimal estimate ŝS

of sS . Upon defining the channel hDS(l) =
∫ (l+1)Ts

lTs
‖h(t)p(t − lTs)‖2dt we can write the

equivalent discrete-time baseband system as

yD(l) = hDS(l)sS(l) + n(l) (1.4)

where direct computations show that the noise power is E[n∗(l)n(l)] = N0.

1There is a fourth feature called shadowing that we do not consider in this thesis.
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With the model in (1.4) characterizing any communication systems in which inter-

symbol interference can be neglected, the difference between wireless channels and wired

channels is in the model of the channel transference h(l). Whereas in a wired channel it is

possible to assume that hDS(l) is a known constant in a wireless channels the transference

hDS(l) exhibits random variations. Depending on how fast these variations are with respect

to the packet duration LTs we encounter different challenges, motivating the definition of

so called fast, block, and slow varying fading channels that we discuss in the next section.

1.1.1 Fast, block, and slow varying fading

As the electromagnetic wave emitted by S propagates it is scattered, reflected, and diffracted

in the many buildings, vehicles, persons, and geographical landmarks that define the phys-

ical environment that contains S and D. Ultimately, the interference generated by the

various propagation paths creates a stationary wave with a certain interference pattern.

While it is intractable to compute this interference pattern, we can infer two things about

it: i) there is a large number of propagation paths contributing to the signal amplitude and

phase at a certain position; and ii) the maxima and minima of this interference pattern are

spaced by c/ν, where c denotes the wave speed and ν the transmitter frequency.

That there exists a large number of paths contributing to the channel transference justi-

fies the customary assumption that the random variations of h(t) have a complex Gaussian

distribution by appealing to a central limit theorem argument. In turn, this implies that the

fading coefficient hDS(l) in the discrete time model in (1.4) can be approximately modeled

as the absolute value of this complex Gaussian random variable. With E(·) denoting mathe-

matical expectation, the distribution of the squared envelope is exponential; see e.g. [69, Ch.

2]

fh2
DS

(h2
DS) =

1
E(h2

DS)
e−h2

DS/E(h2
DS). (1.5)

The randomness of the channel dictates that it is important to distinguish between instan-

taneous and average performance metrics. Consider, e.g., the signal-to-noise-ratio (SNR)

and let PS := E[s2
S(l)] denote the average power transmitted by the source. Given a real-

ization of the fading coefficient hDS , the power received at D from S is h2
DS(l)PS and the
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Table 1.1: Doppler frequencies for usual frequencies and user velocities.

5 km/h (pedestrian) 40 km/hr (street vehicle) 100 km/hr (highway vehicle)

900 MHz (GSM) 3.7 Hz 29.6 Hz 74.0 Hz

1.9 GHz (PCS) 8.8 Hz 70.4 Hz 175.9 Hz

2.1 GHz (unlicensed) 9.7 Hz 77.8 Hz 194.4 Hz

corresponding instantaneous SNR is given by

γDS(l) =
h2

DS(l)PS

N0
. (1.6)

An alternative figure of merit is the average SNR which we define as the expected value of

γDS(l) in (1.6), namely

γ̄DS := E[γDS(l)] =
E[h2

DS(l)]PS

N0
. (1.7)

Which one of the two performance metrics in (1.6) and (1.7) is relevant to a particular

problem is largely determined by how fast the variations in hDS(l) are with respect to a

block duration, taking us back to the interference pattern.

As mentioned before, the interference pattern is characterized by the wave length c/ν

in the sense that for points separated by this distance we are in a different lobe of the

interference pattern. Thus, if we consider a terminal moving with velocity v we can roughly

assess the rate of channel variations as νv/c, implying that in a unit of time, we can expect

νv/c realizations of the channel hDS . For usual frequency ranges and user velocities, this

so called Doppler frequencies range from a few Hertz to a few hundred Hertz as we show

in Table 1.1. We consider there the frequency bands used by the most popular wireless

standards namely the global system for mobile communications (GSM) operating at around

900 MHz, the personal communications systems (PCS) band at 1.9 GHz and the unlicensed

band at 2.1 GHz used by terminals in wireless local area networks (802.11x).

The relation between the Doppler frequency νv/c and the packet duration given by LTs

determines how many fading instantiations a packet – or group of packets – experiences.

This determines a classification of fading channels as follows:
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Fast fading channels. This is the case when LTsνv/c À 1 implying that every

packet experiences a large number of fading states. Interestingly, error control codes

can be used to average fading states through the packet, and fast fading channels

behave approximately like AWGN channels; see e.g., [69, ch. 14]. In this case the

relevant SNR metric is the average SNR γ̄DS in (1.7).

Block fading channels. When LTsνv/c ≈ 1, the fading coefficient remains un-

changed during the duration of a packet. In this case the instantaneous SNR does not

depend on l and we write for convenience

γDS(l) = γ(h2
DS) =

h2
DSPS

N0
. (1.8)

For block fading channels, the instantaneous SNR determines the error probability of

a given packet. The average error probability for a sequence of packets, as we will see,

can be written in terms of the average SNR in (1.7).

Slow fading channels. When LTsνv/c ¿ 1, the fading coefficient is not only

invariant over the duration of a packet but presumably for the whole length of the

communication. In this case the instantaneous SNR in (1.8) is the metric of interest.

1.1.2 Error probability

The SNR is a relevant performance metric only to the extent that it determines the

probability of correct detection, or conversely, the error probability. In an AWGN chan-

nel the symbol error probability (SEP) depends on the type of modulation used but in

general it can be written (or at least bounded) in terms of the Gaussian tail function

Q(x) := (1/
√

2π)
∫∞
x e−u2/2 du. In fact, for a large class of modulation alternatives the

SEP is given by

qG
e (γ̄DS) = Q

[√
kγ̄DS

]
(1.9)

with a properly selected k. Error probability for, e.g., binary phase shift keying (BPSK) is

obtained from (1.12) with k = 2.

To obtain the probability of error in decoding the block sS , we have to consider the

error correcting code used. For illustration purposes consider a BCH block code capable of
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correcting up to εmax errors [69, p.437]. These codes are such that a packet is incorrectly

decoded only when more than εmax bits have been incorrectly decoded and consequently

the packet error probability (PEP) for a Gaussian channel is given by

PG
e (γ̄DS) = 1−

εmax∑

ε=0

(
L

ε

)
qε(γ̄DS)[1− q(γ̄DS)]L−ε. (1.10)

For a given realization of hDS a fading channel is not different from an AWGN channel and

we can thus use (1.10) to understand PEP in slow, fast, and block fading channels.

In a slow fading channel we are interested in a single fading realization. The PEP of

interest is thus identical to (1.10) using the instantaneous γ(h2
DS) instead of γ̄DS ; i.e.,

PS
e [γ(h2

DS)] = 1−
εmax∑

ε=0

(
L

ε

)
qε[γ(h2

DS)]
[
1− q[γ(h2

DS)]
]L−ε

. (1.11)

For a fast fading channel the bit error probability changes from bit to bit. In general we

can write for the l-th bit

qF
e [γDS(l)] = Q

[√
kγDS(l)

]
. (1.12)

The packet error probability can then be obtained by considering all possible combinations

of bit error sequences with more than 5 errors. While beyond the scope of this thesis, it

can be seen that the PEP for fast fading channels PF
e [γ̄DS ] can be approximated by the

corresponding PEP for Gaussian channels PF
e [γ̄DS ] ≈ PG

e [γ̄DS ]; see e.g., [69, Ch. 14].

For block fading channels, the probability of a given packet being incorrectly decoded

coincides with that of a slow fading channel in (1.11), i.e., PB
e [γ(h2

DS)] = PS
e [γ(h2

DS)].

However, for a block fading channel the average error probability is also of interest and can

be obtained by averaging PB
e [γ(h2

DS)] over all possible fading realizations to obtain

P̄B
e (γ̄DS) =

∫ ∞

0
PB

e [γ(h2
DS)]fh2

DS
(h2

DS) . (1.13)

Assuming ergodicity of the channel process, the average PEP P̄B
e (γ̄DS) in (1.13) can be

interpreted as the probability of missing a packet when the communication S → D is

observed during long periods of time. This has to be contrasted with PB
e [γ(h2

DS)] that

represents the error probability for a given packet. Alternatively, P̄B
e (γ̄DS) can be thought

of as the error probability that S, not knowing hDS , expects to experience when transmitting

to D.
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1.1.3 Pathloss and multi-hopping

Pathloss refers to the expected value E[h2
DS(l)] of the channel transference determining the

relation between the power PS transmitted by a source terminal S and the power PDS

received at the intended destination D. Letting S and D denote the positions of S and D

respectively, we have that when S transmits with power PS , the power PDS received at D

from S is given by

PDS = PSL(D− S) (1.14)

where L(D − S) is a distance-dependent pathloss coefficient. While different models are

available for L(D − S), all of them predict a exponential decay of received power with

distance of the form L(D−S) = ξ‖D−S‖−α. Typical values of α vary between 3 and 4 and

the constant ξ depends on properties of the physical environment, e.g., the type of human

development – industrial, rural, urban, etc. – and properties of the transmitter / receiver

pair, e.g., the radiation pattern of transmitter and receiver antennas.

The effect of exponential pathloss in what pertains to this thesis is that reducing the

distance between S and D has a clear potential to reduce power consumption at the source.

To be precise assume that for guaranteeing a target error probability performance we require

a given received power PDS , and compare the power PS0 that the source needs to transmit

when its position is S0, with the power PS1 when the position is S1. The power ratio is [cf.

(1.14) with L(D− S) = ξ‖D− S‖−α]

PS1

PS0

=
(‖D− S1‖
‖D− S0‖

)α

. (1.15)

If the distance between S and D is doubled, i.e., ‖D − S1‖ = 2‖D − S0‖, in order to

maintain quality of service S has to increase its transmit power by a factor 2α, and with

a rather conservative α = 3.4 this entails a tenfold increase in PS . When the distance

from S to D increases by a factor of 10, PS increases three orders of magnitude by a factor

103.4 = 2.5× 103.

This provides a motivation to exploit user collaboration to reduce the average distance

between communicating pairs of nodes. The idea is that instead of attempting direct trans-

mission between S and D consuming power PS0 , we divide the link in successive commu-
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nications between S and a relay terminal R with power PS1 followed by communication

between R and D with power PR. For a fair comparison we require the powers PRS1 re-

ceived at R from S and PDR received at D from R in the relay assisted communication to

coincide with the power PDS0 received at D from S in the original direct link. This setup

allows for a power reduction factor of

PS1 + PR

PS0

=
(‖R− S1‖
‖D− S1‖

)α

+
( ‖D−R‖
‖D− S1‖

)α

. (1.16)

Placing, e.g., the relay in the middle point of the line connecting S and D entails a reduction

of 2α−1 = 5.3 in the power required to maintain a target SNR for α = 3.4.

1.2 Wireless networks with infrastructure

In a wireless network with infrastructure a set of J user terminals {Uj}J
j=1 communicates

with any out of a set of Jap infrastructure access points (APs) {Uj}Jap

j=J+1. The APs are

interfaces to a reliable, usually wired, telecommunications infrastructure, implying that

from a wireless networking perspective, the problem is to ensure that packets are reliably

communicated to the infrastructure.

Since a wireless network comprises a collection of links Uj → Ui with j ∈ [1, J ] and

i ∈ [J + 1, J + Jap], its properties should reduce to those of the individual links. This is

almost true for conventional wireless networks except for the necessity to separate individual

transmissions. A general model of different separation techniques is to let the signal xj(t)

transmitted by Uj be the product of the information bearing symbols sj(l) and a separation

code cj(t), i.e.,

xj(t) =
L−1∑

l=0

sj(l)cj(t− lTs). (1.17)

The signal received at any of the APs {Ui}J+Jap

i=J+1 is the superposition of the signals {xj(t)}J
j=1

transmitted by all terminals through channels hij plus AWGN noise

yi(t) =
J∑

j=1

hij(t)xj(t) =
J∑

j=1

xj(t) + n(t). (1.18)
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Whereas in a point-to-point link the destination has to discern the symbols sS(l) from the

AWGN noise n(l) [cf. (1.4)] in a multiple access network the symbols of user Uj have to be

separated from the noise n(t) and the signals transmitted by other terminals.

It can be shown that a sufficient statistic to recover {sj}J
j=1 is a bank of filters matched

to the composite pulses hij(t)cj(t); see e.g., [69, Ch. 5]. We can thus define the discrete

time received signals

yij(l) =
∫ (l+1)Ts

lTs

zi(t)
[hij(t)cj(t− lTs)]∗

‖hij(t)cj(t− lTs)‖ dt. (1.19)

Proceeding as before we assume that the channels hij(t) do not change during the duration

of a symbol period Ts so that they can be factored out of the integral in (1.19). If we further

define Ckj(l) :=
∫ (l+1)Ts

lTs
c∗i (t− lTs)cj(t− lTs)dt as the inner product between different user-

separating codes we can write the equivalent discrete-time channel as

yij(l) = hij(l)sj(l) +
J∑

k=1,k 6=j

hik(l)Ckj(l)sk(l) + nij(l). (1.20)

Upon defining appropriate vectors and matrices (1.20) can be written in a more compact

form. Define the aggregate transmitted symbols as the vector s(l) := [s1(l), . . . , sJ(l)]T ,

the vector received signal yi(l) := [yi1(l), . . . , yiJ(l)]T , and the noise vector ni(l) :=

ni1(l), . . . , niJ(l)]T . Consider also the matrix of inner-products C(l) with (k, j)-th entry

Ckj(l) and define the channel Hi(l) := diag[hi1(l), . . . , hiJ(l)]. Using these definitions we

can write

yi(l) = C(l)Hi(l)s(l) + n(l). (1.21)

Different multiple access techniques use different sets of codes {cj(t)}J
j=1 to separate trans-

mitted signals. In time (T-) division multiple access (-DMA) the set of codes is simply a set

of pulses with disjoint temporal support; in orthogonal frequency (OF-) DMA the codes are

complex exponentials (frequency tones); and in code (C-) DMA are codes satisfying some

orthogonality (or quasi-orthogonality) conditions. Each of these multiple access techniques

finds application in different niches, but for the purpose of this thesis the fundamental

difference is whether the codes are orthonormal or not.
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When the codes {cj(t)}J
j=1 are orthonormal the correlations Cij are null for any pair of

disjoint codes and consequently the matrix C is the J×J identity matrix, i.e, C = I. In this

case the communications do not interfere with each other and the multiple access channel

becomes a simple collection of J separate channels of the form Uj → Ui. When e.g., the

channels are block fading, the relevant performance metric for each of these communications

is the average SNR given by

SNRij =
PjL(Ui −Uj)

N0
. (1.22)

When the codes are not orthogonal, the optimal detector treats s(l) as a vector signal and

performs joint detection of s(l) based on yi(l). Even though optimal, this so called multiuser

detector incurs computational complexity that grows exponentially with the number of

terminals J . Thus, more often than not, a single user detector is used. In a single user

detector, sj(l) is decoded by using yij(l) only as per the signal model in (1.20) with the

interference from users Uk 6= Uj regarded as noise. In this sub-optimal scheme the pertinent

figure of merit is the signal interference plus noise ratio (SINR) given by

SINRij =
PjL(Uj −AP)

N0 +
∑J

k=1,k 6=j CkjPkL(Ui −AP)
. (1.23)

Whether the SNR in (1.22) or the SINR in (1.23) is the pertinent figure of merit, the

important point here is that a conventional wireless network can be modeled as set of links

of the form Uj → Ui. However, this neglects the fact that signals transmitted by user

terminals are overheard by their peers. This naive observation leads naturally to consider

collaborative networks.

1.3 Collaborative networks

The model of a conventional wireless network as described in the previous section is a

collection of links between terminals {Uj}J
j=1 and infrastructure APs {Ui}J+Jap

j=J+1. Due to

broadcast propagation however, the definition of a link in a wireless network is somewhat

of a fatuous point, since the signal transmitted by Uj is overheard not only by the APs

but also by other terminals. The idea of collaborative networks is to exploit the broadcast

nature of the wireless channel by letting terminals relay packets for each other.
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Thus, the signal model coincides with the one in (1.21), but instead of considering signal

reception at the APs only, i.e., for i ∈ [J + 1, J + Jap] we also consider signal reception at

other user terminals. Repeating (1.21) for convenience we model signal reception as

yi(l) = C(l)Hi(l)s(l) + n(l). (1.24)

with the latter expression considered for i ∈ [1, J + Jap], i.e., for user terminals and APs.

Given that (1.24) coincides with (1.21) the discussion following the latter in Section 1.2

is pertinent to collaborative networks as well. In particular, if the codes used by different

terminals are orthogonal the probability Rij of Ui decoding a packet from Uj is determined

by the SNR in (1.22). If the codes are not orthogonal then the SINR in (1.23) might be of

interest. However, it is important to note that not all terminals transmit at the same time

and some random access considerations may have a role to play in this case, depending on

the number of simultaneous transmissions and the burstiness of the traffic they generate..

The difference between conventional networks considered in Section 1.2 and collaborative

networks considered here is that packets decoded at a user terminal {Ui}J
i=1 are in fact

intended for the APs {Ui}J+Jap

i=J+1. Thus, we need a mechanism to find multi-hop routes from

user terminals to infrastructure APs. Since this problem is well studied in wired networks,

why is there a need to “reinvent the wheel” for wireless collaborative networks?

In fact, as [27] correctly points out “we all have learned to draw a graph to depict a

communication network” and not surprisingly most of the research in wireless networking

concentrates on reducing the wireless network to a wired-like – i.e., graph – model. Consider,

for example, the problem of multi-hop routing that we will study in Chapters 2 and 3.

Many useful multi-hop routing algorithms adhere to the so called “disk routing models”

which typically proceed in three stages: i) define a communication radius for each node;

ii) draw the corresponding connectivity graph; and iii) utilize network optimization tools,

e.g., shortest path routing, to find the optimal route. Most of the differences in multi-hop

routing algorithms arise in the definition of the associated link metrics. These include path

reliability, transmitted power, and mutual interference, to name a few; see e.g., [34, 90]

and references therein. The problem with this approach is that since a link in a wireless

network does not entail a tangible connection, its definition can be somewhat arbitrary. As
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we increase the communication radius, link reliability decreases but should we define a link

as any communication with reliability greater than say 70%?, or should the graph with 90%

reliability be preferred? Truth is, there is no satisfactory answer to this question.

There is a growing consensus in the research community that there is a need to develop

novel models to deal with wireless networks. As no definite model is available yet, one of the

goals of this thesis is to contribute novel models towards a better understanding of wireless

collaborative networks. To this end, our contributions are in the areas of routing, random

access, and multiple access as we outline in the next section.

1.4 Roadmap

The research dealt with in this thesis contributes to the advancement of wireless collab-

orative networking (CN) aspiring to yield significant improvements in terms of capacity,

coverage and error performance with respect to existing alternatives. These improvements

stem from the diversity and pathloss reduction effected by user collaboration. On the one

hand, collaboration provides alternative routes mitigating fading effects. On the other hand,

multi-hop routes counteract the rapid decay in average received power. Accordingly, we can

divide the contributions of this thesis in two interrelated thrusts:

[T1] Multi-hop routing Common approaches to designing muti-hop routing protocols

start by building a connectivity graph of the wireless network. These approaches

yield valuable results but do not fully exploit the benefits of the broadcast wireless

channel. Our goal in this thrust is to develop routing protocols based on more accurate

probabilistic models accounting for the broadcast nature of the wireless channel.

[T2] Cooperation in ad-hoc, fixed and random multiple access networks. User

cooperation diversity has well appreciated merits in point-to-point links. Our goal

here is to develop theory and methods to understand and exploit user cooperation in

wireless networks.

Even though different in the principles they exploit, both thrusts commonly rely on

what we purport as a shift in wireless networks: from competition towards collaboration.



1.4 Roadmap 14

−1500 −1000 −500 0 500 1000 1500
−1500

−1000

−500

0

500

1000

1500

AP

AP AP

AP

−1500 −1000 −500 0 500 1000 1500
−1500

−1000

−500

0

500

1000

1500

AP

AP AP

AP

−1500 −1000 −500 0 500 1000 1500
−1500

−1000

−500

0

500

1000

1500

AP

AP AP

APAP

AP AP

APAP

AP AP

AP

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 1.1: A network of 40 user terminals (blue and green) collaborate to route packets to

any of the 4 infrastructure APs (black). The communication disk for representative nodes

(green) and the resulting graph (red) are shown when the communication radii is 400 (left)

and 500 (middle) meters, respectively. A better model is the reliability matrix R (left). The

color-encoded (i, j)-th entry Rij of R represents the probability that a packet transmitted

from the j-th user Uj is correctly received by the i-th user Ui. (Rij is generated according

to the empirical distribution in [3].)

This shift we envision to offer a step towards achieving the broader goal of collaborative

architectures which we aspire to impact ad-hoc networks, wireless sensor networks as well

as next generation cellular and tactical networks.

1.4.1 Multi-hop routing in collaborative networks

As we mentioned before, the traditional approach to routing in multi-hop networks is to

build a graph-theoretic model. If user nodes transmit over orthogonal channels it is plausible

to assume that communication from Uj to Ui is feasible if and only if the average SNR

exceeds a certain link reliability threshold. Recalling that Pj denote the transmit-power of

Uj , N0 the noise power at Ui, and Uj the position of Uj , we can express the condition for

existence of a communication link as

SNRij =
PjL(Uj −Ui)

N0
≥ T (1.25)

where T is a threshold ensuring that the link reliability is high enough.
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We can now draw a network graph with arcs connecting pairs of nodes that satisfy (2.1)

as depicted in Fig. 1.1. In order to find optimal routes from any user terminal {Uj}J
j=1 to

any of the APs {Uj}Jap

j=J+1 network optimization tools, e.g., shortest path routing, are then

utilized.

This so-called “disk model” effectively reduces wireless routing to routing over a wired

network, thus inheriting a number of attractive properties. Of particular interest is the fact

that an optimal route can be found in O(J2) steps using dynamic programming schemes

implemented with the Bellman-Ford, Dijkstra, or Floyd-Warshall algorithms [8, Chap.5].

These routing algorithms can either be implemented at a central node, say any of the APs, or

in a distributed manner relying on communication with one-hop neighbors only [9, Chap. 4].

However, Fig. 1.1 purposefully points to the arbitrary selection of the reliability threshold T
since it reveals that different communication radii give rise to considerably different graphs.

A small value of T yields a densely connected graph, and consequently routes with a small

number of hops, but may lead to the use of unreliable links. A large T on the other hand,

enforces the use of reliable links but the resultant graph entails more hops to reach the

destination possibly winding up with a disconnected graph.

1.4.2 Routing in collaborative networks

Given the unsuitability of graph models to describe wireless networks, the natural step is to

prescind of the graph model altogether and consider multi-hop routing as an optimization

problem based on the reliability (i.e., the pairwise packet-success-probability) matrix R

whose (i, j)-th entry Rij represents the probability that a packet transmitted from the j-th

user Uj is correctly received by the i-th user Ui [79]; see also Fig. 1.1.

While it is clear that R provides for a better model of the wireless network the issue

is whether it is a more useful model. That is, can we obtain better insights by using R?

and can we design routing algorithms based on R that objectively outperform those based

on graph models? This thesis contends that, indeed, using R in wireless multihop routing

protocol design offers a powerful alternative because of:

• Increased Rates. When routing matrices are chosen to optimize rate metrics, the
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use of R yields a larger set of achievable rates than those enabled by the disk model.

• Reduced Complexity. Optimization problems on a graph usually turn out to incur

combinatorial complexity. Many optimization problems involving a matrix however,

can be solved in polynomial time using convex optimization techniques [13]. The

latter will turn out to be the case with our routing protocols which promise to be also

attractive from a complexity perspective.

• Novel routing criteria. Many optimal routing criteria of practical interest are con-

sidered intractable since they entail graph optimization algorithms with combinatorial

complexity. Our approach permits re-formulation of many such criteria and renders

them tractable.

• Distributed self-organizing implementations. Even though convexity in opti-

mization ensures manageable complexity, we still require R to be available at a central

location. This entails: i) a large communication cost to collect R and percolate the

optimal routing matrix; ii) possibly considerable delay to compute the optimal routes;

and iii) lack of resilience to changes in R, a problem particularly important in mobile

scenarios. Many optimal routing problems can be solved by an iterative distributed al-

gorithm whereby i) node Uj has access only to link reliability metrics for transmission

to and from other nodes (the j-th row and column of R); ii) Uj interchanges messages

only with one-hop neighbors, defined as the set of terminals with non-zero probability

of decoding Uj ’s packets; and iii) as time progresses Uj computes its optimal routing

probabilities.

1.4.3 Diversity in random access channels

User cooperation was introduced as a diversity enabler for point-to-point wireless links

whereby a pair of cooperating terminals share their respective information packets to create

a virtual antenna array [49,51,96,97]. This way, each user is provided with two independent

paths to the intended destination, the direct path and a second path relayed through the
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Figure 1.2: Cooperative random access (RA) can close the gap between the performance of

RA over wireless Rayleigh fading and wired AWGN channels.

other user. It is not surprising that this virtual 2× 1 multiple input - single output (MISO)

channel provides second order diversity as its real i.e., non-virtual, counterpart [4, 108].

In random access (RA) networks, users access the channel at random [2]. With a

sufficiently small channel access probability, the chance that two or more users decide to

transmit in the same slot is small and we have packets successfully transmitted even when

there is no coordination among users. Interestingly, the very random nature of RA dictates

that in any time slot only a fraction of potential users is active, the others having their

transmissions deferred. But since only a few out of the total number of transmitters are

active at any given time, transmission hardware resources are inherently under-utilized in

wireless RA networks. It is thus reasonable to expect that user cooperation can exploit these

resources to gain a diversity advantage. In fact, intuition suggests that user cooperation

appears to be a form of diversity well matched to RA [84,85,89,127].

While the advantages of diversity at the physical layer are relatively well-known, the

question remains as to how much we stand to win from cooperation at the medium access

(MAC) layer. The answer is summarized in Fig. 1.2, where we plot throughput for a
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Rayleigh fading channel, an additive white Gaussian noise (AWGN) channel and fading

channels providing different orders of diversity. It comes as no surprise that throughput

over the wireless (Rayleigh) channel is miserable, being almost an order of magnitude smaller

than the throughput of the wired (AWGN) channel. This sizeable gap can be closed by

diversity techniques, as hinted by the twofold increase observed with second-order diversity

and the close-to-AWGN throughput enabled with eighth-order diversity. Eventually, as

the diversity order keeps increasing the diversity-enriched channel approaches an AWGN

channel.

While the potential gains are significant, a more relevant question is how much we

actually win from cooperation at the MAC layer. We will show in this thesis that for

“sufficiently large” networks the throughput of a cooperative RA network operating over a

wireless channel approaches the throughput of an equivalent RA network operating over a

wired channel. In other words, cooperation has the potential to render wireless channels

equivalent to wired ones. How large is “sufficiently large” will be elaborated in Chapter 5.

For now, it suffices to say that this claim is valid for moderately large networks. Fig. 1

depicts throughput for a cooperative RA network with 128 users from where we can verify

that the throughput increases by an order of magnitude with respect to conventional non-

cooperative RA protocols.

1.5 Published results

My Ph. D. work on cooperative communications and networking has resulted in the pub-

lication of 6 journals papers in the Institute of Electrical and Electronic Engineers (IEEE)

Transactions on Wireless Communications [75, 76, 83], IEEE Transactions on Signal Pro-

cessing [79], IEEE Transactions on Information Theory [85], and IEEE Journal on Selected

Areas on Communications [88]. A tutorial paper featuring work in this thesis appeared in

the European Signal Processing Society (EURASIP) Newsletter [77]. A second tutorial is

scheduled to appear in the IEEE Signal Processing Magazine [78]. The work has also been

disseminated at pertinent conferences where a total of 12 articles have been accepted for

presentation [16,73,74,80–82,84,86,87,89,120,127].
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Chapter 2

Routing in collaborative networks

As discussed in Chapter 1, multi-hopping exhibits a significant potential to enable energy

savings. Considering that received power decays exponentially with distance as d−α, with

α between 3 and 4 – depending on the environment – the numbers are staggering. Splitting

for instance a single hop in two hops can save as much as 10 dB in energy; and dividing

a route in ten hops consumes in the order of a thousandth of the energy consumed by the

original single hop [129]. Even though the former is a rough assessment, it is not difficult

to appreciate that by reducing the average distance between communicating pairs of nodes

multi-hopping secures significant power savings, if not the feasibility of the communication

link itself.

The challenges to implement multi-hopping in wireless networks are many. Among the

major ones is to find routes to the intended destinations that are optimal – in terms of for

example, offered rate or power consumption – yet at the same time provide resilience against

channel fades without requiring excessive levels of redundancy. The goal of this chapter is to

introduce a general optimization framework for finding optimal stochastic routes in wireless

multi-hop networks.



2.1 The routing problem in wireless 20

−1500 −1000 −500 0 500 1000 1500
−1500

−1000

−500

0

500

1000

1500

AP

AP AP

AP

−1500 −1000 −500 0 500 1000 1500
−1500

−1000

−500

0

500

1000

1500

AP

AP AP

AP

−1500 −1000 −500 0 500 1000 1500
−1500

−1000

−500

0

500

1000

1500

AP

AP AP

AP

Figure 2.1: A network of 40 user terminals (blue and green) collaborate to route packets

to any of the 4 infrastructure APs (black). To find routes to an AP, we can assume that

communication between pairs of nodes is possible only when their distance is small enough.

The communication disk for representative nodes (green) and the resulting graph (red) are

shown when the communication radii is 400 (left), 500 (middle), and 600 (right) meters,

respectively.

2.1 The routing problem in wireless

Consider the problem of collaborative routing to infrastructure in which a set of J wireless

user terminals {Uj}J
j=1 communicates with any out of a group of Jap access points (AP)

{Uj}J+Jap

j=J+1. An instrumental role in devising multi-hop routing algorithms is played the

model adopted to describe what constitutes a link between two nodes in the wireless network.

As [27] correctly points out “we all have learned to draw a graph to depict a communication

network” and, not surprisingly, routing algorithms for wireless networks have evolved from

the accumulated knowledge about these graph models. But since a link in a wireless network

does not entail a tangible connection, associating links with arcs on a graph can be somewhat

arbitrary. Nonetheless, if terminals transmit over orthogonal channels it is plausible to

assume that communication from Uj to Ui is feasible if and only if the average signal-

to-noise ratio (SNR) exceeds a certain link reliability threshold. Letting Pj denote the

transmit-power of Uj , N0 the noise power at Ui, and xj the position of Uj , we can express

the condition for existence of a communication link as [cf. (1.22)]

SNRij =
PjL(xj − xi)

N0
≥ T (2.1)
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where T is a threshold ensuring that the link reliability is high enough, and L(xj − xi) is

a distance-dependent path loss coefficient. A usual model for L(d) is an exponential path

loss law for which L(d) = d−α.

We can now draw a network graph with arcs connecting pairs of nodes that satisfy (2.1)

as depicted in Fig. 2.1. In order to find optimal routes from any user terminal {Uj}J
j=1 to

any of the APs {Uj}Jap

j=J+1 network optimization tools, e.g., shortest path routing, are then

utilized. Models based on the SNR threshold are generically called “disk models” due to

the fact that for exponential path loss laws Uj communicates only with nodes inside a disk

of radius [Pj/(T N0)]1/α centered at xj .

An approach to routing based on the disk model is to define Uj ’s optimal route to reach

an AP as the one with the minimum number of hops in any of the graphs in Fig. 2.1.

More generally we can associate a link metric Mij with each arc Uj → Ui of the network

graph in Fig. 2.1 and compute the shortest path route as the one minimizing the sum of

the individual arcs along all possible routes. Choices of link metrics for multi-hop networks

abound; see e.g., [90] and [103]. We can, for example, set Mij = Pj , to obtain the routes of

minimum power consumption [48].

The disk model effectively reduces wireless routing to routing over a wired network,

thus inheriting a number of attractive properties. Of particular interest is the fact that

an optimal route can be found in O(J2) steps using dynamic programming schemes imple-

mented with the Bellman-Ford, Dijkstra, or Floyd-Warshall algorithms [8, Chap.5]. These

routing algorithms can either be implemented at a central node, say any of the APs, or in

a distributed manner relying on communication with one-hop neighbors only [9, Chap. 4].

However, Fig. 2.1 purposefully points to the arbitrary selection of the reliability threshold

T since it reveals that different communications radii give rise to considerably different

graphs. A small value of T yields a heavily connected graph, and consequently routes with

a small number of hops, but may lead to the use of unreliable links. A large T on the other

hand, enforces the use of reliable links but the resultant graph entails more hops to reach

the destination possibly winding up with a disconnected graph.

It is also instructive to consider all the factors that (2.1) does not take into account.
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These include reliability of isolated links due to fading and other factors, and interference

from other links due to the broadcast nature of the wireless channel. For instance, rapid

variations in the Uj → Ui link gain due to fading render it unlikely that the condition in

(2.1) suffices to ensure a successful communication except for very low thresholds T . The

interference when terminals transmit over non-orthogonal channels is not considered either.

The broadcast nature of the wireless channel implies that packets transmitted by Uj are not

only received at the intended destination but overheard by other nodes in its neighborhood,

thus bringing in question the link definition itself.

It is by now accepted that there is a need to develop novel models to deal with routing

information in wireless multi-hop collaborative networks; see e.g., [35] and [36]. We first

describe two representative approaches that alter the rules for defining the communication

graph and the associated link metrics.

2.1.1 Accounting for interference

An attempt to account for interference is to modify (2.1) so that instead of requiring a

sufficiently high SNR we require a sufficiently high signal-to-interference-plus-noise ratio

(SINR). Assuming all transmitters are active all the time, the Uj → Ui link is added to the

graph whenever [cf. (1.23)]

SINRij =
PjL(xj − xi)

N0 + γ
∑J

k 6=i,j PkL(xk − xi)
≥ T (2.2)

with the term
∑J

k 6=i,j PkL(xk − xi) denoting the power received at Ui from users different

than Uj (listen-while-you-talk is infeasible on the same channel) and γ is the inverse of

the processing gain of, e.g., a spread-spectrum system, scaling the effect of interference.

Depending on the orthogonality between codes used during simultaneous transmission, γ is

equal to 1 in a narrowband system, and is smaller than 1 in a broadband CDMA system.

Interestingly, the effect of interference is to deform the communication area of each node,

which instead of a disk becomes dependent on the spatial distribution and transmission

parameters (e.g., power) of nodes in its neighborhood. For the purposes of routing, while

different from the one generated by (2.1), the link model in (2.2) still gives rise to a graph,
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and the problem reduces to that of routing in a wired network.

All models discussed so far take a black / white (i.e., link / no link) approach to the

modeling of individual links thus ignoring the (possibly significant) “gray areas” with in-

termediate link reliability [59]. This limitation motivates the approaches we will focus on

in the rest of the chapter.

2.1.2 Link reliability as a metric

A first attempt to account for link reliability is to consider arc metrics given as functions

of it. Ideally, we want a metric taking small non-negative values for links with large SNR,

increasing as the SNR decreases, and eventually growing to infinity as the SNR goes to zero

– amounting to absence of a link in the graph. The inverse SNR metric, i.e., Mij = 1/SNRij ,

exhibits such a behavior thus mitigating the problem of using unreliable hops mentioned in

the previous section [128].

Since the (average) SNR measures link reliability only to the extent that it determines

the error probability of the given link, it is more natural to consider arc metrics depending

on the link packet success probability Rij . Again, we seek an inverse relation between an

arc metric and link reliability as the one provided by Mij = 1/Rij . The cost per hop in this

case ranges from one for a perfectly reliable link to infinity for a link with zero reliability.

The metric 1/Rij has an interesting interpretation. In a link with reliability Rij , out

of x transmitted packets Rijx are correctly received, meaning that to have one packet

correctly received (x = 1) an average of 1/Rij packets must be transmitted from Uj to Ui.

Furthermore, since the decoding probabilities do not depend on the history of the packet

across hops the average number of times a packet is transmitted from its source to an AP

terminal is the sum of 1/Rij over the links belonging to the route used. Thus, the shortest

path route when using the metric Mij = 1/Rij is the one that minimizes the average number

of times a given packet is transmitted [10,22].

If we neglect queuing and processing delays (possible in a lightly loaded network), these

routes also minimize the overall transmission delay [80]. Consequently, use of the 1/Rij

metric is justified for non-real time applications, for example file transfers, in which average
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Figure 2.2: Schematic representation of the reliability matrix R. The color-encoded (i, j)-th

entry Rij of R represents the probability that a packet transmitted from the j-th user Uj

is correctly received by the i-th user Ui. The reliability matrix R is a better-suited model

than the graphs in Fig. 2.1. (Rij is generated according to the empirical distribution in [22];

only arcs with Rij > 0.3 are shown.)

delay is of interest. For real time applications, for example voice and/or video conferencing,

one is interested in minimizing worst case delays and the route minimizing the average delay

is not necessarily optimal.

2.2 Stochastic routing

Given the unsuitability of graph models to describe wireless networks, the natural step is to

prescind of the graph model altogether and consider multi-hop routing as an optimization

problem based on the reliability (i.e., the pairwise packet-success-probability) matrix R

whose (i, j)-th entry Rij represents the probability that a packet transmitted from the j-th

user Uj is correctly received by the i-th user Ui [79]; see also Fig. 2.2 and [3].
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Specifically, consider the same setup discussed in Section 2.1 with Jap = 1 (extensions

are straightforward and discussed in Section 2.4). Consider thus, a wireless network with

J +1 user nodes {Uj}J+1
j=1 in which the first J users {Uj}J

j=1 participate in routing packets to

the destination D ≡ UJ+1. The physical and medium access layers are such that if a packet

is transmitted by Uj it is correctly received by Ui with probability Rij that we arrange

in the matrix R. Note that in the presence of fading the probabilities Rij are averaged

over all fading states. We first consider a per-session model of routing in which a user node

establishing a session is confronted with the routing decisions of its peers that determine the

entries Rij of R. Supposing that the probabilities in R remain invariant over the duration

of a session, our goal is to find a stochastic routing strategy that is optimal in a suitable

sense. Note that this model is also applicable in a low traffic scenario, where at any time

there is only one packet in the network.

Let ej(n) indicate the binary (0/1) event that the packet is at Uj at time n whose

probability we denote by pj(n) := Pr{ej(n) = 1}. Correspondingly, we define the vectors

e(n) := [e1(n), . . . , eJ+1(n)]T and p(n) := [p1(n), . . . , pJ+1(n)]T , where T denotes transpo-

sition. If the packet is generated at a known source Us for some s ∈ [1, J ] we have that

ps(0) = 1. In general, the packets are generated at a random source with initial distribution

p(0).

Routing is carried on according to a matrix T whose (i, j)-th entry Tij is the probability

that Uj decides to transmit (i.e., route) the packet to Ui. If Uj receives the packet at

a certain time n, i.e., if ej(n) = 1, Uj will select a random candidate destination from

the set {Ui}J+1
i=1 such that Ui is chosen with probability Tij . If the transmitted packet is

correctly decoded by Ui we have that ei(n+1) = 1; otherwise, the packet is kept by Uj , i.e.,

ej(n + 1) = 1, and the random selection and transmission process is repeated. To describe

the stochastic percolation of the packet throughout the network we define the matrix K

with (i, j)-th entry Kij := Pr{ei(n + 1)|ej(n)} denoting the probability that the packet

moves from Uj to Ui between times n and n + 1. Note that T and K are related through

R. Indeed, for i 6= j the packet moves from Uj to Ui if and only if it is routed through Ui
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and is correctly decoded; since these two events are independent we have

Kij = TijRij for i 6= j. (2.3)

Because K and T are stochastic matrices, columns must sum up to 1 implying that KT1 = 1

and TT1 = 1, where 1 denotes the all-one column vector. These two constraints and (3.1)

imply that since R is prescribed by the physical layer, K is uniquely determined by T (but

not vice versa).

Since the (J+1)-st user is the destination it will not route the packet, from which we infer

that Ti(J+1) = 0, ∀i ∈ [1, J ]; and after taking (3.1) into account we arrive at Ki(J+1) = 0,

∀i ∈ [1, J ]. Arguing similarly, it follows that R(J+1)(J+1) = T(J+1)(J+1) = K(J+1)(J+1) = 1.

Summing up, with properly defined k1 ∈ RJ and K0 ∈ RJ×J we can partition K as

K =


 K0 0

kT
1 1




(J+1)×(J+1)

, (2.4)

where 0 denotes the all-zero column vector. Let cJ+1 := [0, . . . , 0, 1] denote the (J + 1)-st

vector in the canonical basis of RJ+1. It follows easily by direct substitution that (2.4)

holds if and only if KcJ+1 = cJ+1, i.e., if and only if cJ+1 is an eigenvector of K associated

with the eigenvalue 1.

For future reference, we define the set of transmit probability matrices in R(J+1)2 as

T = {T ∈ R(J+1)2 : TT1 = 1, Tij ≥ 0, ∀i, j}. (2.5)

The constraints on K can be written as K ∈ K with

K = {K ∈ T : Kij = TijRij , for i 6= j,T ∈ T ; KcJ+1 = cJ+1}. (2.6)

Note that the set K is a convex polyhedron in R(J+1)2 .

We can characterize the evolution of p(n) in terms of K. Indeed, note that due to the

law of total probability pi(n) =
∑n

j=1 Pr{ei(n)|ej(n − 1)}pj(n − 1) =
∑n

j=1 Kijpj(n − 1),

that we can write in vector-matrix form as

p(n) = Kp(n− 1) = Knp(0). (2.7)

That is, p(n) represents the probability evolution of a Markov chain characterized by K in

which the j-th state represents the presence of the packet at user node Uj .
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2.2.1 Deliverability

A basic requirement for the routing matrix T is to ensure that packets are eventually

delivered to the destination D ≡ UJ+1, i.e.,

lim
n→∞p(n) = cJ+1, (2.8)

Since it is meaningful to focus on routing matrices that, at least, satisfy (2.8), we introduce

the following definition.

Definition 1 A routing matrix T ensures deliverability if and only if (2.8) holds for any

initial distribution p(0).

Building on (2.7), it is possible to find conditions to ensure deliverability of an SR matrix

as we describe in the following theorem.

Theorem 1 The following statements are equivalent:

(i) The routing matrix T ensures deliverability.

(ii) Matrix K describes the probability evolution of an absorbing Markov chain whose

unique absorbing state is J + 1.

(iii) The spectral radius of K0 is strictly smaller than one, i.e., with eig(K0) denoting the

set of eigenvalues of K0 we have ρ(K0) := max |eig(K0)| < 1.

(iv) The matrix K0 and the vector k1 in (2.4) satisfy kT
1 (I−K0)−1 = 1T .

Proof: Using induction we can easily show that the nth power of K can be written as [cf.

(2.4)]

Kn =


 Kn

0 0

kT
1

∑n−1
k=0 Kk

0 1


 . (2.9)

Upon defining pD(n) := [p1(n), . . . , pJ(n)]T containing the probabilities of finding the packet

at any node other than the destination, it follows from (2.7) and (2.9) that

pD(n) = Kn
0pD(0). (2.10)
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On the other hand, note that (2.8) is true if and only if limn→∞ pD(n) = 0.

To go from (i) to (ii) note that since for any K ∈ K, KcJ+1 = cJ+1, J + 1 is by

definition an absorbing state of the Markov chain defined by K. If j 6= J + 1 is another

absorbing state then Kcj = cj and for p(0) = cj we have that Knp(0) = cj for every n;

thus, limn→∞ p(n) = cj 6= cJ+1. This is a contradiction if T ensures deliverability and

consequently J + 1 is the unique absorbing state.

If (iii) is not true, then limn→∞Kn
0 6= 0. Hence, there exists a vector p(0) 6= 0 for which

limn→∞Kn
0p(0) 6= 0 implying that J +1 is not a unique absorbing state. Thus, (ii) implies

(iii).

That (iii) implies (iv) follows after noting that since 1TK = 1T , we have that 1TKn = 1T

and asymptotically limn→∞ 1TKn = 1T . But since (iii) also implies that limn→∞Kn
0 = 0,

we must have limn→∞ kT
1

∑n−1
k=0 Kk

0 = 1T . To obtain (iv), note that the geometric series is

such that
∑∞

k=0 Kn
0 = (I−K0)−1.

Finally, if (iv) is true then we can use the fact that Kn
0 is a stochastic matrix, i.e.,

(Kn
0 )T1 = 1) to conclude that limn→∞Kn = [0, . . . ,0,1]T implying that (i) is true. ¤

Theorem 1 gives necessary and sufficient conditions for an SR matrix to have guaran-

teed deliverability. None of these conditions is difficult to achieve and, in general, simple

routing algorithms, e.g., a random walk through the network with Tij = 1/J , can ensure

deliverability. A more interesting problem is how to obtain a matrix which guarantees that

the limit in (2.8) is practically achieved with n as small as possible. This motivates different

routing algorithms that we can obtain from (2.7) and analyze next.

2.2.2 Fastest convergence rate routing

The rate of convergence can be either measured on average or for the worst possible initial

distribution p(0). These metrics lead to different criteria for optimal routing. Optimal

routing in an average sense will be considered in Section 2.2.3. What we expect from an

optimal routing matrix T is for the convergence rate in (2.8) to be as fast as possible.

The distance – in some sense – between p(n) and cJ+1 can be measured by the p-norm

‖p(n)− cJ+1‖p which is to be compared with the original distance ‖p(0)− cJ+1‖p leading
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to the following expression for the worst-case convergence rate:

ξp = sup
p(0)6=cJ+1

lim
n→∞

(‖p(n)− cJ+1‖p

‖p(0)− cJ+1‖p

)1/n

. (2.11)

This cannot be computed in closed-form for any p-norm. For p = 2, corresponding to the

Euclidean norm, the argument in (2.11) is maximized by the eigenvector associated with

the second largest eigenvalue of K. A meaningful routing algorithm is thus to look for the

matrix K ∈ K such that

min
K∈K

|eig2(K)| = min
K∈K

max |eig(K0)| = min
K∈K

ρ(K0), (2.12)

where eig2(K) denotes the second largest eigenvalue of K and eig(K0) the set of eigenvalues

of K0. In establishing the first equality in (2.12) we used that all the eigenvalues of K0 are

eigenvalues of K [cf. (2.4)]; in fact, eig(K) = eig(K0) ∪ {1}. The second equality follows

from the definition of spectral radius.

Unfortunately, minimizing the spectral radius of a non-symmetric matrix is a notoriously

difficult problem, intractable except for small-medium values of J [13]. This motivates an

alternative measure of convergence rate based on the vector pD(n) := [p1(n), . . . , pJ(n)]T

containing the probabilities that the packet is at a certain node other than the destination.

The norm of pD(n) measures the probability of the packet not being delivered at time n.

This suggests the metric

ζp = max
pD(n)

‖pD(n + 1)‖p

‖pD(n)‖p
, (2.13)

which amounts to the worst-case one-step relative reduction of the vector pD(n) which we

want converging to zero [cf. (2.8)]. Similarly to ξp, we can define optimal routing in terms

of minimizing ζp.

If we further recall that pD(n+1) = K0pD(n), another class of optimal SRPs stemming

from (2.13) can be designed to achieve

min
K∈K

max
pD(n)

‖K0pD(n)‖p

‖pD(n)‖p
= min

K∈K
‖K0‖p, (2.14)

where the equality follows from the definition of the p-norm of a matrix. Different from

(2.12), the optimization in (2.14) is a convex problem for all p since: i) due to the triangle
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inequality, norms are convex functions of their arguments; and ii) the set K is a convex

polyhedron [cf. (2.6)]. For the usual norms, p = 1, 2,∞, solving (2.14) is either a simple

linear program (LP) for p = 1,∞, or, a semi-definite program (SDP) for p = 2 [13].

In general, (2.12) and (2.14) are optimized by different matrices T, and the pertinent

comparisons are discussed in the following remark.

Remark 1 Requiring the solution of convex optimization problems – indeed, canonical

optimization problems – (2.14) is tractable for networks with even a large number of users

J ; whereas (2.12) is only tractable for small-to-medium scale networks. On the other hand,

(2.12) is more meaningful than (2.14), since the former compares the asymptotic behavior

with the initial state while the latter compares two consecutive states. In practical protocol

designs, (2.14) can be viewed as a tractable approximation to (2.12).

2.2.3 Minimum expected delay routing

An alternative approach to optimal routing is to consider the packet delivery time measured

by the number of hops, and look for the matrix T that minimizes the average packet delay.

Packet delay is simply the time n at which the packet is received by D ≡ UJ+1 and is given

by:

δ = min{n : eJ+1(n) = 1} =
∞∑

n=0

[1− eJ+1(n)] (2.15)

where the second equality is true since 1 − eJ+1(n) = 1 if n < δ and 1 − eJ+1(n) = 0 for

n ≥ δ; we thus have δ terms equal to 1 in the summation in (2.15). Starting from (2.15),

the expected delay can be computed as we describe in the following theorem.

Theorem 2 For a routing matrix ensuring deliverability, the expected delay is given by

δ̄ := E(δ) = 1T (I−K0)−1pD(0), (2.16)

where pD(0) := [p1(0), . . . , pJ(0)]T is the initial distribution for the first J users.
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Proof: Taking expected value in (2.15), using the linearity of the expected value operator

and noting that pD(n) = E[eD(n)], we obtain (recall that
∑J+1

j=1 pj(n) = 1)

δ̄ =
∞∑

n=1

[1− pJ+1(n)] =
∞∑

n=1

J∑

j=1

pj(n), (2.17)

Writing the innermost summation as 1TpD(n) and recalling that pD(n) = Kn
0p(0), we

obtain

δ̄ =
∞∑

n=1

1TpD(n) =
∞∑

n=1

1TKn
0p(0) = 1T

( ∞∑

n=1

Kn
0

)
p(0). (2.18)

For routing matrices that ensure deliverability, Theorem 1 states that the spectral radius

of K0 is ρ(K0) < 1. Consequently, the matrix geometric series in (2.18) is convergent with
∑∞

n=0 Kn
0 = (I−K0)−1. Substituting this into (2.18), (2.16) follows readily. ¤

The expected delay δ̄ is a function of the routing matrix K and the initial distribution

pD(0). Using the result in Theorem 2, we can find the matrix that minimizes the expected

delay as the argument solving the optimization problem

K∗[pD(0)] = arg min
K∈K

δ̄ = arg min
K∈K

1T (I−K0)−1pD(0). (2.19)

Conceptually, (2.19) appears difficult to solve. Interestingly, it turns out that (2.19) is

equivalent to a shortest path routing algorithm as we establish in the ensuing theorem.

Theorem 3 Define the expected delay vector δ̄ := [δ̄1, . . . , δ̄J ] := 1T (I−K0)−1 in which δ̄j

is the expected delay when the packet starts at Uj, i.e., when p(0) = cj; and let δ̄J+1 = 0.

If there exists a matrix K ensuring deliverability, there exists a matrix K† ∈ K such that

δ̄j = min
i

{
1

Rij
+ δ̄i

}
, δ̄J+1 = 0, (2.20)

which minimizes the expected delay for any initial distribution, i.e., K∗[pD(0)] = K† for

any pD(0) and its corresponding K∗[pD(0)] as in (2.19).

Proof: See Appendix A. ¤

Characterizing the solution as in (2.20) indicates that K∗
0 in (2.19) can be found as the

shortest path route (SPR) in a fully connected graph with the arc between Ui and Uj having

weight 1/Rij . Indeed, let i := (i1, . . . , ik) with k ∈ [2, J + 1], i1 = j and ik = J + 1 be
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Algorithm 1 Min. expected delay routing (Dijkstra version)
Require: The packet success probability matrix R

Ensure: The routing matrix T

1: δ̄j = 1/R(J+1)j , for j ∈ [1, J ]

2: U = {Uj}J
j=1

3: while U 6= ∅ do

4: j∗ = arg minj:Uj∈U δ̄j

5: U = U − {Uj∗}
6: for all i : Ui ∈ U do

7: if 1/Rij∗ + δ̄∗j < δ̄i then

8: δ̄i = 1/Rij∗ + δ̄∗j ,

9: Tij∗ = 1; Tij = 0 for j 6= j∗

10: end if

11: end for

12: end while

an arbitrary sequence starting at Uj and finishing at UJ+1. Proceeding recursively, we find

that (2.20) is equivalent to

δ̄j = min
i





#(i)−1∑

l=1

1
Rilil+1



 , (2.21)

where #(i) denotes the cardinality of i. By definition, (2.21) is the SPR between j and

J +1 among all the possible routes i. In fact, the relation in (2.20) is Bellman’s principle of

optimality, which is known to characterize the shortest path route [8, Chap.5]. This implies

that the solution to minimum expected delay routing can be found in O(J2) steps using

dynamic programming tools, e.g., Bellman-Ford, Dijkstra, or Floyd-Warshall algorithms;

see e.g., [8, Chap.5].

Also important, and contrary to what (2.19) suggested, minimum expected delay routing

does not depend on the initial distribution. The average delays δ̄[p(0)] for different initial

distributions p(0) are different, but there exists a matrix that minimizes δ̄[p(0)] for all p(0).
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Figure 2.3: For a simple connectivity graph (top) the minimum expected delay routing

algorithm in (2.19) tends to select short routes (left), while fastest convergence rate routing

as per (2.12) selects longer routes with more reliable hops (right).

Among other optimization problems, such a matrix is the solution of the problem

K∗ = arg min
K∈K

1T (I−K0)−11 (2.22)

obtained by making pD(0) = 1/J in (2.19). Note that for a given p(0) there might exist

alternative solutions to (2.19), but none will outperform K∗ in (2.22). The matrix K∗

in (2.22) can be obtained using Algorithm 1, a fact that we will later exploit in making

pertinent comparisons between different routing algorithms.

2.2.4 Numerical examples and simulations

The fastest convergence rate SR algorithm in (2.12) maximizes the packet delivery proba-

bility for a given, sufficiently large, time index n. On the other hand, minimum expected

delay routing as per (2.19) minimizes the expected time elapsed until packet delivery. The

subtle differences between these two approaches are exemplified in Figs. 2.3 and 2.4.

The resulting routing matrices for minimum expected delay and fastest convergence rate

routing are shown in Fig. 2.3. We can see that the former algorithm tends to select short

routes sometimes containing unreliable hops (left) as verified by the link U2 → U5 used to
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Figure 2.4: Convergence rate for the network in Fig. 2.3. For a fixed time delay fastest

convergence rate routing yields a smaller packet error probability.

route U1 and U2’s packets. Whereas, the latter uses longer routes but tends to use more

reliable hops (right), as we can see from the use of the U2 → U3 link to route U1 and U2’s

traffic. This is a manifestation of the different optimization criteria. The expected delay

for routing U2’s packets is 1.67 for minimum expected delay routing and 3.33 for fastest

convergence rate routing. The difference in convergence rate is shown in Fig. 2.4. To achieve

a packet error probability of 1−pD(n) = 10−4, U2’s delay is 7.2 for fastest convergence rate

routing and 13.1 for minimum expected delay routing.

Similar conclusions are reached for the more realistic example in Fig. 2.5 representing

a randomly generated network with 20 nodes. In this figure, we depict the connectivity

graph as well as the result of the minimum expected delay, fastest convergence rate, and

minimum 2-norm SRP obtained from (2.14) with p = 2. Here it is also true that minimum

expected delay prefers shorter routes, while fastest convergence rate prefers longer routes

containing more reliable hops. Minimum 2-norm routing is the only algorithm considered

that yields routing matrices implying non-deterministic routing, i.e., having Tij 6= 1, 0 for

some i, j.
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Figure 2.5: A randomly generated network with 20 nodes, the color scale represents the

elements of the matrix K. Note how fastest convergence rate routing selects routes with

large values of Kij .
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Figure 2.6: Convergence rate of the least favored user for the network in Fig. 2.5 (top) and

histogram of packet delivery times for a randomly chosen user (bottom). Fastest convergence

rate routing is favored for time sensitive traffic.
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Figure 2.7: Queue balance equations.

For real time delay-sensitive applications, e.g., audio and/or video conferencing, fastest

convergence routing is a better alternative. This is corroborated by Fig. 2.6 (top) showing

the convergence rate for the network in Fig. 2.5. For a delay of 14 hops, fastest convergence

rate routing yields a packet error probability of 10−4 for the least favored user; for the same

delay, minimum expected delay routing achieves a packet error probability of 10−2. For

delay-tolerant applications, e.g., file transfers, the average delay metric is better suited since

to deliver a large number of packets, the total number of required hops is significantly smaller

– and consequently, the total energy required for the session also is. This is illustrated in

Fig. 2.6 (bottom) where we see that for minimum expected delay routing most packets

are delivered in a few hops and a few packets take a long time to be delivered. For fastest

convergence rate routing, none of the packets took more than 8 hops to be delivered but

the total number of hops required to deliver all the packets was larger.

2.3 A Saturated system approach

The approach in Section 2.2 ignores the effect of packet queuing at individual terminals.

To incorporate this effect for heavily loaded networks, we consider that each user has an

infinite-long queue. Packets arrive at random according to a Poisson process with rate

ρj ∈ (0, 1] to be delivered from terminal Uj to the destination UJ+1. We assume every user

can transmit 1 packet per slot which implies that the service process is Poisson with rate

µj = 1. Our goal is to find conditions for the arrival rates ρj to yield stable queues and to

design routing matrices T that maximize the sustainable ρj in some sense.

Besides its own packets, Ui receives packets from other nodes for an aggregate arrival
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rate λi. A necessary condition for stable queues is λi ≤ µi = 1 in which case the departure

process is also Poisson with rate λi (different from the service process whose rate is 1). If, as

in Section 2.2, we let Kij denote the probability that a packet moves from Uj to Ui between

times n and n + 1 we have that (see also Fig. 2.7)

λi = ρi +
J∑

j=1

Kijλj , (2.23)

where we used that a sum of Poisson processes is also a Poisson process. Notice that the

sum in (2.23) includes the packets that fail to leave Ui in the term Kiiλi. Upon defining

the vectors of (external) arrival rates ρ := [ρ1, . . . , ρJ ]T and aggregate arrival rates λ :=

[λ1, . . . , λJ ]T , we can express (2.23) in vector-matrix form as

λ = ρ + K0λ, (2.24)

with K0 denoting the J × J upper left corner of K as in (2.4). From a routing perspective,

packets leave the network when they reach UJ+1, something that happens at a rate

λJ+1 =
J∑

j=1

K(J+1)jλj = kT
1 λ. (2.25)

Interestingly, we do not need the last column of K to describe this queuing model. For the

remaining columns it is easy to see that the constraints are as in Section 2.2 and we thus

look for routing matrices T ∈ T for which we have K ∈ K with T and K as in (2.5) and

(2.6).

The first problem of interest is to find conditions under which pairs (T, ρ) of routing

matrices and arrival rates are stable. Such a condition is given by the following theorem.

Theorem 4 Suppose that arrivals adhere to Poisson processes with strictly positive rates

given by ρ and the queue service rates are µ = 1. The queues at every user are stable if

and only if I−K0 is invertible and

λ = (I−K0)−1ρ ¹ 1, (2.26)

with ¹ denoting componentwise inequality.



2.3 A Saturated system approach 38

Proof:Each individual queue is M/M/1 with rates λj and µj = 1. For M/M/1 queues,

time reversibility implies independence of arrival and departure processes. We thus have

that all arrival and departure processes are independent, the network of queues decouples

and we have stability if and only if

λj ≤ µj = 1, ∀j. (2.27)

To show that (2.27) is equivalent to (2.26) it suffices to solve for λ in (2.24). This can be

done when I −K0 is invertible. To complete the proof we have to show that if I −K0 is

not invertible the queues are unstable.

To prove the latter note that since ρ Â 0 is componentwise strictly positive and all

components Kij of K0 are non-negative, then either K0 = 0 or K0ρ 6= 0. In the first case

I − K0 = I is invertible; so, it must be that K0ρ 6= 0. But if this is the case recursive

application of (2.24) yields

λ =

( ∞∑

n=0

Kn
0

)
ρ. (2.28)

But non-invertibility of I−K0 implies 1 is an eigenvalue of K0 and consequently ρ(K0) ≥ 1;

thus, the series in (2.28) diverges and we have that λ is arbitrarily large implying unstable

queues. ¤

Theorem 4 provides a condition for having stable queues and in that sense it is the

counterpart of (2.8). Given a routing matrix T and a vector of arrival rates ρ, (2.28) can

be used to check stability. For any candidate routing matrix T, we can find the stability

region S of arrival rate vectors leading to stable queues as

S = {ρ ∈ RJ : ρ = (I−K0)λ, with 0 ¹ λ ¹ 1}. (2.29)

Perhaps more important than the stability region for a given routing matrix T is to design

this matrix so that ρ is maximized in some sense. We pursue this problem in the next

section.
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2.3.1 Physical/medium-access/network layer interaction

Because the framework so far as well as the SRPs of the ensuing section rely on knowledge

of R, we delineate here how this matrix is determined depending on the access scheme

(orthogonal or non-orthogonal) used at the physical layer.

If terminals transmit over orthogonal channels as when frequency (F-), time (T-), or

code (C-) division multiple access (DMA) is utilized at the physical layer, R clearly de-

pends on the power transmitted by individual users. Indeed, for the SNR in (2.1) and a

given modulation and error control code pair one can readily obtain a certain packet success

probability Rij(Pj) for the link Uj → Ui. Depending on how fast fading varies with respect

to packet lengths channels are classified as fast, slow, or block fading [31]. If fading is invari-

ant over several packet transmissions, Rij(Pj) is given by the instantaneous packet success

probabilities for the given fading state. If fading is fast, so that any packet experiences a

sufficiently large number of independent channel realizations, the receiver can collect the

available time diversity and Rij(Pj) can be approximately obtained from the error prob-

ability for additive white Gaussian noise channels. In a block fading model, the channel

changes from packet to packet, and the transmitter is confronted with an unknown fading

state. In this case Rij(Pj) can be computed from the average of the instantaneous error

probabilities over all fading states. In all three cases, Rij(Pj) is expressible as a function of

Pj .

For contention- or interference-limited networks as is respectively the case for random

access and CDMA with pseudo-noise spreading sequences R and λ are coupled in the sense

that R(p, λ) is a function of the transmitted powers p := [P1, . . . , PJ ]T and the departure

rates λ. Indeed, reducing the transmission rate λj of Uj decreases the interference to other

terminals consequently increasing the probability Rik of Ui to successfully decode any Uk

other than Ui. Since this coupling complicates matters substantially, a common approach

is to assume for the purposes of accounting for interference that λ = 1, which implies that

the SINR is given by (2.2). Note that this eliminates λ as a variable determining R(p,1)

that now depends only on p. Decoupling R from λ is an approximation tantamount to

decoupling the networking from the medium access control (sub-) layer. The approximation
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can be justified by noting that any rate ρ achievable in a network with reliability matrix

R(p,λ) is also achievable in a network with reliability R(p,1) and in that sense the latter

represents an upper bound on the stability region of the former.

2.3.2 Maximum arrival rate routing

Different optimization criteria can be devised to obtain routing algorithms maximizing the

arrival rate vector. A first approach is to maximize a weighted sum of rates
∑J

j=1 ρj =

wT ρ with w º 0. The sum-rate optimal matrix can be obtained as the solution of the

optimization problem

K∗ = arg max
K∈K,0¹λ¹1

wT ρ = max
K∈K,0¹λ¹1

wT (I−K0)λ. (2.30)

A concern with the formulation in (2.30) is that it tends to favor terminals close to the

destination. An alternative approach is to maximize minj ρj , the rate of the least favored

user. We refer to this as max-min optimal routing; the corresponding routing matrix can

be obtained as the solution to

K∗ = arg max
K∈K,0¹λ¹1

min
j

ρj = max
K∈K,0¹λ¹1

min
j

[(I−K0)λ]j . (2.31)

The optimization problems in (2.30) and (2.31) are bilinear in K0 and λ, and as such,

notoriously difficult to solve in general. Enticingly, we can capitalize on the structure of the

problem to reduce them to simple linear programs. The main result allowing this reduction

is stated in the following theorem.

Theorem 5 Consider a maximization problem of the form

v∗ := max
K∈K,0¹λ¹1

g[(I−K0)λ], (2.32)

where g : RJ → R is a function monotonically non-decreasing in each component, i.e., for

vectors v(1),v(2) with v
(1)
j ≤ v

(2)
j and v

(1)
i = v

(2)
i for i 6= j, we have that g[v(1)] ≤ g[v(2)].

Then, there exists a matrix K ∈ K such that

v∗ = max
K∈K

g[(I−K0)1]. (2.33)
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Proof: Reasoning by contradiction, let (λ(1),T(1)) be a solution with λ
(1)
j < 1. Consider

the alternative solution (λ(2),T(2)) with λ
(2)
j = 1 and

T
(2)
ij = T

(1)
ij λ

(1)
j , i 6= J + 1; T

(2)
(J+1)j = 1−

J∑

i=1

T
(2)
ij . (2.34)

Since 0 ≤ T
(1)
ij ≤ 1 and 0 ≤ λ

(1)
j ≤ 1, we have that 0 ≤ T

(1)
ij ≤ 1; furthermore, T

(2)
(J+1)j are

chosen so that
∑J+1

i=1 T
(2)
ij = 1 implying that

[
T(2)

]T
1 = 1. Thus, the matrix K(2) obtained

from T(2) by (3.1) is such that K(2) ∈ K. Since by construction we also have 0 ¹ λ(2) ¹ 1,

we infer that (λ(2),T(2)) is a feasible point of the optimization problem in (2.32). The proof

relies on the following lemma.

Lemma 1 Let (λ(2),T(2)) with λ
(2)
j = 1 be obtained from (λ(1),T(1)) with λ

(1)
j < 1 from

(2.36). If K(1)
0 and K(2)

0 denote the J × J upper left blocks of K(1) and K(2), then

g[(I−K(1)
0 )λ(1)] ≤ g[(I−K(2)

0 )λ(2)]. (2.35)

Proof: See Appendix B. ¤

If the inequality in (2.35) holds strictly, i.e., g[(I −K(2)
0 )λ(2)] > g[(I −K(1)

0 )λ(1)], then

Lemma 1 implies that (λ(1),T(1)) does not maximize the argument of (2.32) since at least

one feasible point (λ(2),T(2)) yields a larger argument. In this case the proof follows by

contradiction.

If equality holds, i.e., g[(I − K(2)
0 )λ(2)] = g[(I − K(1)

0 )λ(1)], we distinguish between

λ(2) = 1 and λ(2) 6= 1. In the first case (λ(1),T(1)) may be an optimum solution, but if it

is (λ(2),T(2)) = (1,T(2)) also is and the proof follows.

If λ(2) 6= 1, consider (λ(3),T(3)) with λ
(3)
k = 1 and

T
(3)
ik = T

(2)
ik λ

(2)
k , i 6= J + 1; T

(3)
(J+1)k = 1−

J∑

i=1

T
(3)
ik . (2.36)

For this new solution, λ
(3)
k = λ

(3)
j = 1, and applying Lemma 1 we have

g[(I−K(3)
0 )λ(3)] ≥ g[(I−K(2)

0 )λ(2)] ≥ g[(I−K(1)
0 )λ(1)]. (2.37)

Repeating this argument, we build a succession of feasible points (λ(j),T(j)) such that

g[(I −K(j)
0 )λ(j)] ≥ g[(I −K(1)

0 )λ(1)], for all j in which the number of components of λ(j)
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equal to one is at least j. If at least one equality holds strictly, then (λ(1),T(1)) is not an

optimum point. If no equality holds strictly, g[(I−K(j)
0 )λ(j)] = g[(I−K(1)

0 )λ(1)], for all j,

and for some j ≤ J , λ(j) = 1. In this latter case, if (λ(1),T(1)) is an optimum point, then

(λ(j),T(j)) = (1,T(j)) also is. ¤

Theorem 5 establishes that routing algorithms involving component-wise non-decreasing

objective functions can be solved by setting λ = 1 in the argument function to be optimized.

Clearly, this is the case for max-min rate optimal and sum-rate optimal routing in which

the functions are g(v) = mini(vi) and g(v) = 1Tv, respectively. Furthermore, with λ = 1,

the bilinear arguments in (2.38) and (2.42) become linear functions of K0 implying the

following corollary.

Corollary 1 Max-min optimal routing and sum-rate optimal routing can be obtained as

solutions of linear programs (LP) in K:

(i) For max-min optimal routing

K∗ = arg max
K∈K

min
i

[(I−K0)1]i . (2.38)

(ii) For sum-rate optimal routing

K∗ = arg max
K∈K

wT (I−K0)1. (2.39)

Proof:The functions g(v) = mini(vi) and g(v) = 1Tv are component-wise non-decreasing

in the sense considered in Theorem 5. This proves the equivalence of (2.38) with (2.31) and

(2.42) with (2.30), respectively. That (2.42) is an LP follows after noting that the argument

to be maximized is linear and recalling that the set K is a convex polyhedron. To prove

that (2.38) is an LP introduce the auxiliary variable w ≥ [(I−K0)1]i, for all i and rewrite

the maximization as

max w

s.t. K ∈ K, w1 ≤ (I−K0)1. (2.40)

In (2.43), the argument and the constraints are linear entailing, by definition, an LP. ¤
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Corollary 1 demonstrates that sum-rate and max-min optimal routing can be efficiently

solved by convex optimization techniques, e.g., interior point methods [13]. Solving an LP

incurs complexity O(J3.5) [13, Ch. 11] in the number of nodes J and in that sense it is only

moderately more complex than finding a traditional shortest path route whose complexity

is O(J2) [8, Ch. 5].

Remark 2 For (2.33) to be true, every terminal must operate with aggregate departure

rate λj = 1. The proof of Theorem 5 considers an operating point with λ
(1)
j < 1 and shows

that increasing λ
(1)
j to λ

(2)
j = 1 entails a larger set of stable arrival rates S(2) > S(1), or, at

the very least S(2) = S(1). Comparing T(1) with T(2), we see that the strategy used by the

proof is to send all the extra traffic λ
(2)
j − λ

(1)
j = 1− λ

(1)
j to the destination UJ+1. Indeed,

writing T
(·)
(J+1)j = 1−∑J

i=1 T
(·)
ij and using T

(2)
ij = T

(1)
ij λ

(1)
j from (2.36), it follows after direct

manipulation that

T
(2)
(J+1)jλ

(2)
j − T

(1)
(J+1)jλ

(1)
j = λ

(2)
j − λ

(1)
j . (2.41)

The right hand side of (2.41) is precisely the traffic increase while the left hand side is

the increase in traffic routed directly to the destination. This strategy will not increase

the amount of traffic handled by other terminals Ui 6= Uj ; while if R(J+1)j > 0, it will

increase the amount of traffic delivered by Uj . Furthermore, this argument also shows that

S(2) = S(1) if and only if R(J+1)j = 0 – see also (2.71).

2.3.3 Commonly used rate optimality criteria

Requiring f(ρ) to be monotonically non-decreasing in each component is a mild condition

which ensures that an increase in the rate of one user does not decrease the value of the

objective function to be maximized. Thus, the applicability of Theorem 5 is fairly broad,

implying that we can propose different routing algorithms and expect them to yield tractable

optimization problems. This include many “workhorse” optimality criteria that we describe

next.

Optimal weighted sum with guaranteed rate. A variation of the weighted sum-rate

criterion is to require a minimum acceptable rate ρmin
j per terminal Uj . Upon defining the
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vector ρmin := [ρmin
1 , . . . , ρmin

J ]T , the optimal routing matrix is obtained as

K∗ =arg max αT (I−K0)1

s.t. K ∈ K, ρmin ¹ (I−K0)1. (2.42)

Since K is a convex polyhedron, the constraint ρmin ¹ (I−K0)1 is a set of linear inequalities

and the objective αT (I−K0)1 is linear, the optimization in (2.42) is a linear program (LP)

in K and T.

A solution K∗ to (2.42) may not exist for some values of ρmin – in such cases interior

point methods return an infeasibility certificate. When it exists, K∗ ensures the minimum

acceptable rate ρmin
j to every user with the excess traffic distributed to the most favored

users with large values of αj and/or reliable connections to one of the APs.

Max-min optimal rate. As we established in Corollary 1 and repeat here for reference

purposes the problem in (2.31) can also be rewritten as an LP. Indeed, note that w ≤
[(I−K0)λ]j for all j if and only if w ≤ minj [(I−K0)λ]j ; that is, the auxiliary variable w

is smaller than the minimum rate if and only if it is smaller than all rates. Using this and

the fact that minj ρj is monotonically non-decreasing in each component (so that λ can be

set to 1 without loss of generality) problem (2.31) can be recast as

max w

s.t. K ∈ K, w1 ≤ (I−K0)1 (2.43)

which is an LP in the auxiliary variable w and the problem variables K and T. Max-min

routing is fair in the sense that nodes in the network collaborate to optimize the rate of the

worst user, pretty much along the spirit of max-min flow control [8, Section 6.5.2].

In the same way we added extra constraints to the optimal weighted sum-rate criterion

[cf. (2.30) and (2.42)] we can add convex constraints to the rate vector ρ without altering

the convexity of the problem. Another example of a convex constraint is a cooperation

constraint whereby terminals require their own rate to be at least a certain percentage

βj ∈ [0, 1] of their total outgoing rate. The latter is given by the rate of packets successfully
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transmitted to any terminal
∑J+Jap

i=1,i6=j Kij = 1−Kjj . The limit on the amount of cooperation

can thus be enforced by adding the (convex) constraint βj

(
1−∑J

i=1 Kji

)
≥ 1−Kjj .

Optimal rate with relays. In a relay network a group of terminals collaborate in relaying

traffic on behalf of a designated active user. Let Uj0 denote this active user and terminals

{Uj}J
j=1,j 6=j0

be the relays. The optimal relay network maximizing the rate of Uj0 can be

found as

K∗ =arg max [(I−K0)1]j0

s.t. K ∈ K, [(I−K0)1]j = 0, j 6= j0. (2.44)

Indeed, notice that the constraints [(I−K0)1]j = 0 for j 6= j0 set the relay’s traffic to zero,

while the argument [(I−K0)1]j0 is the rate of the designated active user. The problem in

(2.42) is, again, an LP in K and T.

Optimal product of rates. Maximizing the product of rates constitutes a more fair

alternative to the maximum sum-rate criterion in (2.30) since it prevents solutions in which

some users receive a very small packet delivery rate. The function to be maximized in this

case is f(ρ) =
∏J

j=1 ρj and the corresponding optimal routing matrix is obtained as

K∗ = arg max
K∈K,0¹λ¹1

J∏

j=1

ρj = arg max
K∈K,0¹λ¹1

J∑

j=1

log [(I−K0)λ]j , (2.45)

with the second equality following because the logarithm function is monotonically in-

creasing. Notice that the argument in (2.45) is also monotonically non-decreasing in each

component which allows one to set λ = 1 without loosing optimality in the solution:

K∗ = arg max
K∈K

J∑

j=1

log [(I−K0)1]j . (2.46)

Since the logarithm is a concave function, (2.46) is a convex optimization problem in K and

T. Thus, globally convergent interior point methods can be readily applied here too.

2.3.4 An overall constraint in the total traffic

Imposing individual traffic constraints, the requirement 0 ¹ λ ¹ 1 does not impose an

overall traffic constraint, something that is sometimes reasonable and sometimes not. In
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certain cases we may want to limit the total traffic in the network, e.g., to leave room for

critical traffic, or, to ensure a fixed power consumption per time unit. In any event, the

total traffic constraint can be written, without loss of generality, as λT1 = 1 – any constant

other than 1 could be used. In this context, we can consider different optimization criteria

as in Section 2.3.2 yielding routing algorithms of the form

K∗ = arg max
K,λ

g [(I−K0)λ]

s.t. K ∈ K, 0 ¹ λ, λT1 = 1. (2.47)

The added constraint λT1 = 1 prevents application of Theorem 5 and, in general, problems

of the form (2.47) will be difficult to solve. However, for the specific case of max-min optimal

routing with an overall traffic constraint, i.e., g(v) = mini(vi) in (2.47), we can establish a

quite surprising connection with shortest path routing.

To study this connection note that since the constraints in λ and K0 are decoupled we

can solve the optimization in two separate steps

K∗ = arg max
K∈K





maxλ mini [(I−K0)λ]i

s.t. 0 ¹ λ, λT1 = 1



 . (2.48)

If K0 is fixed, then the innermost optimization is a simple linear max-min problem widely

studied in a variety of contexts, e.g., game theory [63, chap.2]. The important point here

is that the solution to this problem is well known, and in some cases computable in closed-

form. This allows us to obtain the following theorem.

Theorem 6 For consistent routing matrices, max-min optimal routing with a global traffic

constraint as defined by (2.48) is equivalent to

K∗ = arg min
K∈K

1T (I−K0)−11. (2.49)

Proof: Consider the innermost maximization in (2.48) and let u∗ denote the optimum value

u∗ = max
λ

min
i

[(I−K0)λ]i

s.t. 0 ¹ λ, λT1 = 1, (2.50)



2.3 A Saturated system approach 47

that is achieved by the vector λ∗. The maximum u∗ can be found in closed-form, and for

that matter consider a vector λ† such that

(I−K0)λ† = u†1. (2.51)

In order for λ† to be a feasible point of the problem in (2.50), it is necessary to have

1T λ† = 1 from where we obtain

u† =
1

1T (I−K0)−11
. (2.52)

The corresponding λ† can then be found as

λ† =
(I−K0)−11

1T (I−K0)−11
. (2.53)

The key observation now is that for consistent routing matrices all the components of

(I−K0)−1 are positive. Indeed, if K0 is consistent then (I−K0)−1 =
∑∞

n=1 Kn
0 . But since

Kij ≥ 0 for all i, j, we have that all the components of (I−K0)−1 also are. We thus infer

that λ† º 0, a fact that combined with 1T λ† = 1 [which was enforced in deriving (2.52)]

implies that λ† is a feasible point of the problem in (2.50). For this feasible point, we have

that

min
i

[
(I−K0)λ†

]
i
= u†, (2.54)

since [(I−K0)λ†]i = u†, for all i.

Consider now the dual optimization problem of (2.50) which can be obtained by writing

the Lagrangian function or simply recalling Von-Neumann’s min-max theorem. Either way,

we obtain

v∗ = min
µ

max
i

[
(I−K0)T µ

]
i

s.t. 0 ¹ µ, µT1 = 1, (2.55)

with the corresponding maximizing argument denoted by µ∗. But note that (2.50) and

(2.55) are quite similar, the only differences being the inversion of the maximum and min-

imum operators and the transposition of (I −K0). We thus find that the vector µ† given
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by

µ† =
(I−K0)−T1

1T (I−K0)−T1
, (2.56)

is a feasible point of the problem in (2.55) such that

max
i

[
(I−K0)µ†

]
i
=

1
1T (I−K0)−T1

=: v†. (2.57)

Note that v† = u† and that both values are achieved by respective feasible points λ† and

µ† of the primal problem in (2.50) and the dual problem in (2.55). Moreover, note that the

problem in (2.50) is convex; it thus follows from the duality principle that v∗ = u∗. On the

other hand, the fact that u∗ maximizes (2.50) and v∗ minimizes (2.55) respectively imply

that u† ≤ u∗ and v∗ ≤ v†. Taken together, these yield

u† ≤ u∗ = v∗ ≤ v† (2.58)

where the first inequality follows because u∗ maximizes (2.50), the second equality from the

duality principle for convex optimization problems, and the third inequality is true because

v∗ solves (2.55).

Upon comparing (2.52) with (2.57) we can see that u† = v†; hence, it must hold that

v∗ = v† = u† = u∗ [cf. (2.58)] and we can now rewrite (2.48) as

K∗ = arg max
K∈K

u∗ = arg max
K∈K

1
1T (I−K0)−11

(2.59)

But since u∗ is always positive – all components of (I − K0)−1 are –, maximizing u∗ is

equivalent to minimizing 1/u∗ and (2.49) follows. ¤

Even though Theorem 6 transforms the problem in (2.48) into a conceptually simpler

form, it is not yet clear how (2.49) might be solved. However, recalling (2.22) we see that

quite surprisingly, max-min rate routing with a global traffic constraint as per (2.48) is

equivalent to minimum delay routing as defined in (2.19). Since the solution to the latter,

as we have already seen, is given by the shortest path in a fully connected graph with

arc weights 1/Rij , so is the solution to (2.48); a fact that we summarize in the following

corollary.
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Corollary 2 The matrix K† ∈ K satisfying Bellman’s principle of optimality in (2.20)

solves the max-min routing problem with a global traffic constraint defined by (2.48).

Proof:If K† ∈ K satisfies (2.20), it solves (2.22) [cf. Theorem 3]. But (2.22) is identical

to (2.49) which we know solves (2.48) [cf. Theorem 6]. Thus, if K† ∈ K satisfies (2.20), it

solves (2.48). ¤

Corollary 2 implies that in order to find the matrix optimizing (2.48) it suffices to run

Algorithm 1. On the other hand, the proof of Theorem 6 provides interesting insights on

the optimal solution that we discuss in the following remarks

Remark 3 The proof establishes that for any K0, the optimal λ = λ† is given by (2.53).

The corresponding rate offered to each user is subsequently given by ρj = 1/1T (I−K0)−11

as stated in (2.52) showing that every user gets the same rate. In particular, this is true for

K0 = K∗
0 implying that the vector of optimal offered rates is

ρ∗ =
[
1T (I−K∗

0)
−11

]−1
1. (2.60)

Eq. (5.99) reveals that max-min routing is fair in the sense that it evenly divides the traffic

resources available.

Remark 4 Strong duality applied to the innermost optimization over λ in (2.48) proves

the equivalence of (2.50) with (2.55). We can thus rewrite (2.48) as

K∗ = arg max
K∈K





minµ maxi

[
(I−KT

0 )µ
]
i

s.t. 0 ¹ µ, µT1 = 1



 (2.61)

where we used that (I−K0)T = I−KT
0 . The formulation in (2.61) corresponds to min-max

optimal routes for a multi-hop cooperative downlink subject to a constraint in the total

traffic delivered by D ≡ UJ+1. The interpretation is that of a group of terminals competing

to receive information from D ≡ UJ+1 that can transmit at a rate of 1 packet per packet

slot [cf. µT1 ≤ 1]. The access point (D) is interested in a fair formulation that minimizes

the rate of the greediest user node while still using its own resources to a full extent [cf.

µT1 = 1]. This problem turns out equivalent to max-min optimal routing for a multi-hop
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cooperative uplink [cf. (2.48) and (2.61)]. In particular, we deduce that every node is served

with the same rate given by (5.99).

2.4 Infrastructure with multiple APs

For the most part of this chapter we have worked with a single AP. This is more a matter

of notational simplicity than of real necessity, since extensions to a network with multiple

APs, i.e., with Jap > 1, are straightforward.

Consider a network with Jap APs and utilize K to capture the evolution of packets

through the network as in Section 2.2. Repeating the steps leading to (2.4) we can see that

none of them relies in the existence of a single AP. The only modification to the argument

is that instead of requiring Ti(J+1) = 0, ∀i ∈ [1, J ] we require this to be true for all of the

APs, consequently, we have that Tij = 0, ∀i ∈ [1, J + Jap], i 6= j, with the latter equation

valid ∀j ∈ [J + 1, J + Jap]. Thus, the matrix K can be partitioned as

K =


 K0 0

KT
1 I




(J+Jap)×(J+Jap)

, (2.62)

where, as before K0 denotes the J ×J upper left submatrix of K, K1 the Jap×J lower left

submatrix of K, and I the Jap × Jap identity matrix. We would now have Jap absorbing

states and Theorem 1 has to be modified accordingly. The formulation of optimal routing

algorithms depends on K0 only [cf. (2.11), (2.14), and (2.22)] and applies verbatim when

Jap > 1.

For the saturated system approach of Section 2.3 the extension is even simpler. Note

that in deriving (2.24) we did not make use of the existence of a single AP. Thus arrival

rates and aggregate arrival rates are related as in (2.24) that we repeat here for convenience,

λ = ρ + K0λ (2.63)

The change is in the rate at which packets are delivered to the AP that in this case is given

by

λap = K1λ (2.64)
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Figure 2.8: Schematic representation of the reliability matrix R for the network used in

the simulations in Section 2.4.1. (Rij is generated according to the empirical distribution

in [22]; only arcs with Rij > 0.3 are shown.)

with K1 as in (2.62). Note that the stability condition, as well as all routing problems

formulated depend on K0 only and thus also apply verbatim to a network with Jap > 1.

The existence of many APs enters the problem formulations in (2.42)-(2.46) and (2.47)

through the definition of the set K.

2.4.1 Simulations and numerical examples

To illustrate the differences between the various routing protocols we consider the network

with J = 40 nodes and K = 4 APs schematically represented in Fig. 2.8. The results of

sum-rate optimal routing in (2.30) and max-min optimal routing as per (2.31) are shown

in Figs. 2.9 and 3.1, respectively.

Sum-rate optimal routing yields a matrix K in which the nodes with reliable links to

the destination are allocated most of the rate. Actually, a possible solution maximizing

the sum-rate is for all the Uj ’s that are decoded by some AP with non-zero probability to
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Figure 2.9: Sum-rate optimal routes with minimum acceptable rate as given by (2.42) for the

network in Fig.2.8; matrices T (left) and K (right) are shown for w = 1 and ρmin = 0.11.

Nodes with good connections to the destination get most of the total rate available.

send their traffic to that AP without forwarding any traffic belonging to other users. To

this end, we add the constraint ρ ≥ ρmin, which ensures that every user has a guaranteed

rate ρj = ρmin
j with the excess traffic assigned to the most favored users. The result of this

approach is shown in Fig. 2.9 with ρmin = (0.1)1.

The optimal routes for the max-min criterion are depicted in Fig. 3.1. We see that

most users divide their traffic between many different neighbors to avoid the formation of

bottlenecks. The fairness of this approach is illustrated in Fig. 2.11 where instances of the

arrival processes of the best and worst users are shown. For the network considered, the

offered rates were 0.12 and 0.17, respectively. We see that the simulated arrival processes

are accurately modeled by (2.23). We also plot the sum-rate for this case which is to be

compared with 7.23 achieved by sum-rate optimal routing.
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Figure 2.10: Max-Min routes obtained as the solution of (2.31) for the network in Fig.2.8;

matrices T (left) and K (right) are shown. Compromised nodes divide their traffic among

many different neighbors to avoid the formation of bottlenecks.
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Figure 2.11: Instances of the arrival rate processes for the max-min optimal routes in Fig.

3.1. The fairness of the protocol is manifested in the not so different rates offered to the

best and worst nodes.
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2.5 Summary

We introduced a general framework for stochastic routing in wireless multi-hop networks.

Deviating from the traditional graph models, we considered a general framework based on

the packet delivery probability matrix and showed that different routing algorithms can be

either described by the evolution of a properly defined Markov chain – per session model

of routing –, or by a network of backlogged queues – saturated system. These connections

permit characterization of properly defined deliverability and stability conditions in terms

of the spectral radius of a stochastic routing matrix.

For the per-session model of routing we introduced stochastic routing algorithms that

maximize the convergence rate of the Markov chain, entailing a maximization of the packet

delivery probability for a fixed, sufficiently large delay n. This routing approach is meaning-

ful in the context of delay sensitive traffic involved in, e.g, voice and/or video conferencing.

We further found an expression for the average packet delay measured by the number of

hops and identified the corresponding optimal routing scheme that minimizes it. Inter-

estingly, we proved that the optimum routing matrix in this case can be obtained as the

shortest path route in a fully connected graph with the arc between users having a weight

inversely proportional to the corresponding delivery ratio.

For the saturated system we defined different routing algorithms corresponding to differ-

ent maximization criteria of the arrival rate vector. These approaches include maximization

of the rate of the least favored user (max-min), maximization of the sum of rates (max-

sum) and of the product of rates (max-prod). We showed that all these problems can be

efficiently solved using convex optimization techniques. Rather unexpectedly, we also estab-

lished equivalence between max-min routing with a global traffic constraint and minimum

average delay routing.

A problem the reader may have foreseen is that in order to obtain optimal routes the

matrix R has to be collected at a central location and the optimal routing matrix T per-

colated through the network. An interesting problem is to develop distributed algorithms

that find optimal routing probabilities without the burden of collecting R at a central node

and then percolating the resulting routing probabilities through network nodes. We say an
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algorithm is distributed if: i) terminal Uj has access only to the j-th row and column of

R; and ii) Uj interchanges variables only with those “one-hop neighbors” having positive

probability of decoding its packets. The distributed algorithms can be built by recasting the

optimization problems and applying dual decomposition techniques as in, e.g., [18, 57, 95].

Such algorithms are pursued in the next chapter.
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Appendix

2.5.1 Proof of Theorem 3

Given δ̄i for i 6= j we solve (2.16) for δ̄j to obtain,

δ̄j =
1 +

∑J+1
i=1,i 6=j Kij δ̄i

1−Kjj
. (2.65)

Since
∑J+1

i=1 Kij = 1 we have that 1 −Kjj =
∑J+1

i=1,i6=j Kij ; if we also replace Kij = TijRij

valid for i 6= j we obtain

δ̄j =
1 +

∑J+1
i=1,i 6=j TijRij δ̄i∑J+1

i=1,i6=j TijRij

. (2.66)

Now, replace the 1 in the numerator by
∑J+1

i=1,i 6=j Tij = 1 and rearrange terms to arrive at

δ̄j =

∑J+1
i=1,i6=j

(
1/Rij + δ̄i

)
TijRij∑J+1

i=1,i6=j TijRij

. (2.67)

It also follows by definition that (1/Rij) + δ̄i ≥ mini

(
1/Rij + δ̄i

)
which allows us to bound

δ̄j in (2.69) by

δ̄j ≥ min
i

(
1

Rij
+ δ̄i

) ∑J+1
i=1,i 6=j TijRij∑J+1
i=1,i 6=j TijRij

= min
i

(
1

Rij
+ δ̄i

)
. (2.68)

The matrix satisfying (2.20) for all j achieves the lower bound in (2.68) and thus minimizes

δ̄j for all j. This proves that if a matrix satisfies (2.20) it minimizes δ̄j for all j. That such

a matrix exists follows from the construction in Algorithm 1 that yields a matrix satisfying

(2.20) as long as ensuring deliverability is possible.

For an arbitrary initial distribution we have that

δ̄[p(0)] =
J∑

j=1

Pr{ej(0)}δ̄j = pT (0)δ̄. (2.69)

But since all components pj(0) of p(0) are non-negative, δ̄[p(0)] is minimized if all compo-

nents of δ̄ are minimum. The latter is true if (2.20) is valid for all j [cf, (2.68)], completing

the proof. ¤
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2.5.2 Proof of Lemma 1

To see why (2.35) is true note that (λ(2),T(2)) is such that the product K
(2)
ij λ

(2)
j = K

(1)
ij λ

(1)
j

for i 6= J + 1 and i 6= j. Indeed,

K
(2)
ij λ

(2)
j = K

(2)
ij = RijT

(2)
ij = K

(1)
ij λ

(1)
j , i 6= J + 1, i 6= j, (2.70)

where in the first equality we used that λ
(2)
j = 1.

For i = J + 1 we have that the respective products are related by

K
(2)
(J+1)jλ

(2)
j = R(J+1)j

[
1−

J∑

i=1

T
(2)
ij

]
λ

(2)
j

= R(J+1)j

[
λ

(2)
j −

J∑

i=1

T
(1)
ij λ

(1)
j

]

≥ R(J+1)j

[
λ

(1)
j −

J∑

i=1

T
(1)
ij λ

(1)
j

]

= K
(1)
(J+1)jλ

(1)
j (2.71)

where: i) in the first equality we substituted K
(2)
(J+1)j = R(J+1)jT

(2)
(J+1)j and T

(2)
(J+1)j for its

expression in (2.36); ii) in the second one, we used T
(2)
ij λ

(2)
j = T

(1)
ij λ

(1)
j that follows from

(2.36) and λ
(2)
j = 1; iii) the inequality follows from λ

(1)
j < λ

(2)
j = 1; and iv) the last equality

reverses the steps in i) by using T
(1)
(J+1)j = 1−∑J

i=1 T
(1)
ij and K

(2)
(J+1)j = R(J+1)jT

(2)
(J+1)j .

Consider the ith component of the bilinear product in (2.70) [(I−K(2)
0 )λ(2)]i. Since for

k 6= j, λ
(2)
k = λ

(1)
k and K

(2)
ik = K

(1)
ik , we have that

[(I−K(2)
0 )λ(2)]i = λ

(2)
i −

J∑

k=1,k 6=j

K
(2)
ik λ

(2)
k −K

(2)
ij λ

(2)
j

= λ
(2)
i −

J∑

k=1,k 6=j

K
(1)
ik λ

(1)
k −K

(2)
ij λ

(2)
j . (2.72)

For i 6= j we can use (2.70) to show that [(I − K(2)
0 )λ(2)]i = [(I − K(2)

0 )λ(1)]i, i.e., that

the ith component of the bilinear product is invariant in the transformation (λ(1),T(1)) →
(λ(2),T(2)). Indeed, according to (2.70), when i 6= j, K

(2)
ij λ

(2)
j = K

(1)
ij λ

(1)
j yielding [cf.
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(2.70), (2.72), and λ
(2)
i = λ

(1)
i for i 6= j]

[(I−K(2)
0 )λ(2)]i = λ

(1)
i −

J∑

k=1,k 6=j

K
(1)
ik λ

(1)
k −K

(1)
ij λ

(1)
j

= [(I−K(1)
0 )λ(1)]i, (2.73)

thus proving the former claim.

For i = j, we can reorder terms in (2.72) to obtain

[(I−K(2)
0 )λ(2)]j = −

J∑

k=1,k 6=j

K
(1)
jk λ

(1)
k + λ

(2)
j

(
1−K

(2)
jj

)

= −
J∑

k=1,k 6=j

K
(1)
jk λ

(1)
k +

J+1∑

k=1,k 6=j

K
(2)
kj λ

(2)
j , (2.74)

where in the second equality we used that
∑J+1

k=1 K
(2)
kj = 1. But note that in the second

summation in (2.72) we have that: i) for k 6= J + 1, K
(2)
kj λ

(2)
j = K

(1)
kj λ

(1)
j as stated in (2.70);

and ii) for k = J + 1 K
(2)
(J+1)jλ

(2)
j ≥ K

(1)
(J+1)jλ

(1)
j as stated in (2.71). Using these in (2.74)

we obtain

[(I−K(2)
0 )λ(2)]j ≥ −

J∑

k=1,k 6=j

K
(1)
jk λ

(1)
k +

J+1∑

k=1,k 6=j

K
(1)
kj λ

(1)
j . (2.75)

We now use again that
∑J+1

k=1,k 6=j K
(1)
kj = 1−K

(1)
jj to reduce (2.75) to

[(I−K(2)
0 )λ(2)]j ≥ λ

(1)
j −

J∑

k=1,k 6=j

K
(1)
jk λ

(1)
k −K

(1)
jj λ

(1)
j

= [(I−K(1)
0 )λ(1)]j . (2.76)

The expressions in (2.73) and (2.76) imply that the vectors v(1) := [(I − K(1)
0 )λ(1)] and

v(2) := [(I−K(2)
0 )λ(2)] are such that v

(1)
j ≤ v

(2)
j and v

(1)
i = v

(2)
i for i 6= j. We thus use the

componentwise monotonicity of g(·) to obtain (2.35).
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Chapter 3

Self-organizing stochastic routing

Unlike the crude connectivity graph, the reliability matrix R – whose (i, j)-th entry Rij

represents the probability that a packet transmitted from the j-th user Uj is correctly

received by the i-th user Ui – takes link reliability into account. It thus provides for a

more accurate model of the wireless channel; however, the usefulness of a model based on

R hinges on the relative communication efficiency and algorithmic complexity of finding

optimal routes. Enticingly, among the routing protocols introduced in Chapter 2, the rate

maximizing approaches of Section 2.3.2 lead to optimal routing algorithms in the form of

convex optimization problems.

Recapitulating the results in Section 2.3 consider a wireless network with J+1 user nodes

{Uj}J+1
j=1 in which the first J users {Uj}J

j=1 participate in routing packets to a destination

D ≡ UJ+1. The physical and medium access layers are such that (s.t.) if a packet is

transmitted by Uj it is correctly received by Ui with probability Rij that we arrange in

the matrix R. Packets are stochastically routed according to probabilities Tij collected

in a matrix T. When a user terminal Uj decides to transmit a packet it selects a random

terminal as the intended destination with Ui chosen with probability Tij . If the transmission

is successfully received – something that happens with probability Rij – the packet moves

to Ui’s queue; otherwise it is kept by Uj that attempts transmission, possibly to a different

node, at a later time. To capture the evolution of packets through the network we define

a matrix K whose elements Kij represent the probability that a packet moves from Uj ’s
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queue to Ui’s queue. For i 6= j the packet moves from Uj to Ui if and only if it is routed

through Ui and is correctly decoded; since these two events are independent we have,

Kij = TijRij for i 6= j, KT1 = 1, TT1 = 1 (3.1)

where the last two constraints come from the fact that K and T are stochastic matrices.

To complete the formulation of the routing problem let ρ := [ρ1, . . . , ρJ ]T denote the

vector of packet arrival rates and λ := [λ1, . . . , λJ ]T the rate of departures that we constrain

by 0 ¹ λ ¹ 1. Defining K0 as the J × J upper left submatrix of K it is not difficult to see

that we can relate ρ and λ by [cf. (2.24)]

ρ = (I−K0)λ (3.2)

With R available at a central location, the stochastic routing protocols outlined in Section

2.3.2 yield routes maximizing a measure of the arrival rate vector ρ. Specifically, letting

f(ρ) : RJ → R be a function used to compare arrival rate vectors ρ, the optimal routing

matrix T∗ is given as the solution of the generic optimization problem:

(K∗,T∗) = arg max f [(I−K0)λ]

s.t. Kij = RijTij for i 6= j, KT1 = 1, TT1 = 1, 0 ¹ λ ¹ 1. (3.3)

Finding efficient methods to solve (3.3) is challenging for general f(ρ). Remarkably though,

for any f(ρ) that is concave and monotonically non-decreasing in each component Theo-

rem 5 established that the problem in (3.3) can be transformed to an equivalent convex

optimization problem for which globally convergent solution methods are available.

In fact, the basic result in Theorem 5 is that for functions that are monotonically non-

decreasing per each component there exists an optimal solution of (3.3) with λ = 1, thus

implying that (3.3) can be rewritten as

(K∗,T∗) = arg max f [(I−K0)1]

s.t. Kij = RijTij for i 6= j, KT1 = 1, TT1 = 1. (3.4)

The concavity of f(ρ) further implies that the argument in (3.4) is concave, which together

with the fact that the constraints are linear equalities imply that (3.4) is a convex optimiza-

tion problem that can be solved in polynomial time using interior point methods [13, Ch. 11].
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We emphasize that λ = 1 is not the unique optimal solution of (3.3) but among the set of

optimal pairs (K∗,λ∗) there exists one with λ∗ = 1. In this sense the equivalence of (3.3)

and (3.4) does not imply that λ = 1 is necessarily optimal, but that for finding an optimal

routing matrix T it suffices to solve the convex optimization problem in (3.4).

As discussed in Section 2.3.3 requiring f(ρ) to be monotonically non-decreasing in each

component is a mild condition ensuring that an increase in the rate of one user does not de-

crease the value of the objective function to be maximized. Many practical rate-maximizing

criteria rely on concave functions f(ρ) that are monotonically non-decreasing in each com-

ponent [79]. These include “workhorse criteria” such as optimal α-weighted sum-rate with

f(ρ) = αT ρ, max-min rate with f(ρ) = minj∈[1,J ] ρj , and max-product rate criterion with

f(ρ) =
∏

j∈[1,J ] ρj .

Finding optimal routes as solutions of (3.4) incurs manageable complexity, yet, it re-

quires the reliability matrix R to be available at the access point (AP - or any designated

node for that matter) so that (3.4) can be solved and the optimal routing matrix T∗ can

then be distributed through the network. This entails: i) a large communication cost to

collect R and percolate T∗; ii) considerable delay to compute T in a “batch” mode; and

iii) lack of resilience to changes in R, a problem particularly important in highly dynamic

(e.g., mobile) scenarios.

Distributed on-line routing algorithms, whereby nodes operate in adaptive mode and

iteratively exchange variables only with one-hop neighbors tackle precisely these problems.

Indeed, in a distributed iterative algorithm it is assumed that Uj has access only to the

link reliabilities for transmission to and from other nodes, i.e., the j-th row and column of

R, respectively. Consequently, distributed algorithms neither require R to be available at

a central node, nor percolation of the routing matrix T∗. Thus, they can afford reduced

communication cost, and gain robustness to changes in topology due to fading and/or

mobility; see e.g., [18, 28,57,95,119].

The main goal of this chapter is to show that the optimization problem in (3.4) can

be solved by an iterative distributed algorithm whereby i) node Uj has access only to the

j-th row and column of R; ii) Uj interchanges messages with one-hop neighbors, defined
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as the set of terminals with positive probability of decoding Uj ’s packets; and iii) as time

progresses Uj computes its optimal routing probabilities, i.e., the j-th column of T.

Notation: For a vector v := [v1, . . . , vJ ]T and a set of indices c = (i1, . . . , ic) with 1 ≤ i1 <

. . . < ic ≤ J we define the vector vc := [vi1 , . . . , vic ]T . Likewise, for the matrix M := (Mij)

we define the vectors Mcj := [Mi1j , . . . , Micj ]T and Mjc := [Mji1 , . . . , Mjic ]T containing

subsets of the j-th column and row of M respectively. Note that even if Mjc contains a

subset of M’s j-th row it is defined as a column vector. For brevity, the all-zero vector of

appropriate dimension is denoted by 0, and likewise 1 is a vector with all elements equal

to one.

3.1 A separable problem

The optimization problem in (3.4) is not in a form that facilitates distributed solution.

Towards this end, we first outline in this section equivalent reformulations, whose solution

coincides with (3.4) for a given f(ρ). The reformulated problems can be separated via a dual

decomposition, and lend themselves to distributed solution. For simplicity of exposition let

us adopt as optimality criterion the rate of the worst user f(ρ) = minj∈[1,J ] ρj , leading to

the problem

(K∗,T∗) = arg max min
j∈[1,J ]

[(I−K0)1]j

s.t. Kij = RijTij for i 6= j, KT1 = 1, TT1 = 1. (3.5)

In order to reduce the number of variables we will eliminate the equality constraints in (3.5).

To this end, define the set c(j) := {i : Rij > 0; i 6= j, i ∈ [1, J + 1]} containing the indices of

terminals Ui that can decode Uj ’s transmission with non-zero probability. Likewise, define

r(j) := {i : Rji > 0; i 6= j, i ∈ [1, J + 1]} as the set of nodes that Uj decodes with non-zero

probability. Using these definitions we can write the rate of the j-th user as

ρj = [(I−K0)1]j = 1−Kjj −
∑

i∈r(j)

Kji =
∑

i∈c(j)

Kij −
∑

i∈r(j)

Kji (3.6)
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where in the second equality we used the constraint KT1 = 1. Upon substituting Kij =

RijTij , (3.6) becomes

ρj =
∑

i∈c(j)

RijTij −
∑

i∈r(j)

RjiTji. (3.7)

For a more compact notation we define the vectors s̄j := Tc(j)j and s̄′j = Tjc(j) containing

the non-zero elements of the j-th column and row of T, respectively. We further define the

vectors rj := Rc(j)j and sj := Rjc(j) so that

ρj = rT
j s̄j − sT

j s̄′j . (3.8)

Vectors rj , and sj are constant and known at node Uj . Indeed, rj := Rc(j)j contains the

probabilities of other nodes Ui 6= Uj decoding Uj ’s packets that Uj can easily estimate by

counting acknowledgments of packets sent to these terminals. The probabilities of Uj decod-

ing other nodes required to construct sj := Rjc(j) can be fed-back from the corresponding

(one-hop) neighbors. We assume that estimation of success probabilities and associated

feedback among neighboring nodes are perfect.

Using (3.8) and noting that the constraint TT1 = 1 is equivalent to the set of constraints

{s̄T
j 1 = 1}J

j=1, we can rewrite the max-min optimal routing problem in (3.5) as

T∗ = arg max w

s.t. w ¹ rT
j s̄j − sT

j s̄′j = ρj , s̄T
j 1 = 1, 0 ¹ s̄j . (3.9)

Even though (3.9) is written in terms of local variables (s̄j), local constants (rj , sj), and

neighboring variables (s̄′j), it is not yet in a separable form. Indeed, note that i) the variable

w is constrained to be smaller than the rates ρj of the J terminals and in that sense its

optimization requires access to all the variables; and ii) computing ρj requires access to

the local variables s̄j and neighboring variables s̄′j . While s̄j contains Uj ’s transmission

probabilities (the variable that Uj is interested to optimize), s̄′j contains the probabilities of

other terminals Ui routing their packets through Uj , a variable that Uj ’s (one-hop) neighbors

are interested to optimize.

To overcome these hurdles we introduce local variables wj and uj that we regard as

Uj ’s estimates of (the global variable) w and (the neighboring variable) s̄′j , and introduce
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equality constraints uj = s̄′j and w = wj , ∀j ∈ [1, J ]. Using these (local) variables we can

write the constraint in (3.9) as

wj ≤ ρj = rT
j s̄j − sT

j uj ; uj = s̄′j , w = wj . (3.10)

The last step is to replace w in (3.9) by the weighted sum w = (
∑J

j=1 wj)/J . Furthermore,

if we assume that there is a non-zero probability for a multi-hop route connecting any pair

of nodes, the set of constraints {wj = wi ∀i ∈ c(j)}J
j=1 is equivalent to requiring wi = wj ,

∀ i, j ∈ [1, J ]. We can now reformulate (3.9) as

T∗ = arg max
1
J

J∑

j=1

wj

s.t. wj ¹ rT
j s̄j − sT

j uj , s̄T
j 1 = 1, 0 ¹ s̄j ,

s̄′j = uj , wj = wi ∀i ∈ c(j) (3.11)

where the maximization is over T, {uj}J
j=1, and w := [w1, . . . , wJ ]T .

We summarize the equivalence of (3.9) and (3.11) in the following proposition.

Proposition 1 If there exists a non-zero probability multi-hop route between any pair of

nodes the matrix T∗ is a solution of (3.9) if and only if it is a solution of (3.11).

Comparing (3.9) with (3.11) we recognize that the latter does not contain any intrinsi-

cally global variable and that the sole coupling between terminals is through the equality

constraints s̄′j = uj and wj = wi for all i ∈ c(j). An important feature of (3.11) is that

the constraints on the problem variables can be classified into local constraints involving

only variables kept at the j-th terminal and coupling constraints enforcing the equality with

neighboring variables of interest. Indeed, note that wj ≤ rT
j s̄j − sT

j uj , s̄T
j 1 = 1, and 0 ≤ s̄j

involve the variables xj := (wj , s̄j ,uj) only, and can thus be locally enforced, meaning that

it is possible for Uj to find values of xj satisfying these constraints. The equality constraints

cannot be enforced locally but it is important to note that they relate neighboring variables

only. Readers familiar with dual decomposition techniques – see, e.g., [9, Sec. 3.4.2] [42,67]

– may notice that the form of (3.11) lends itself to distributed optimization of the type we

will elaborate on in Section 3.2.
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Remark 5 The terms rT
j s̄j and sT

j s̄′j in (3.8) respectively represent the packets successfully

transmitted from and to Uj . Their difference is the rate ρj available to Uj ’s own packets.

This interpretation of (3.8) is reminiscent of the one encountered in flow control optimiza-

tion, [9, Sec. 5.1]. Different from flow control, the optimization here over the probabilities

Tij has to account for the joint constraint s̄T
j 1 = 1 that outgoing flows from Uj must adhere

to. Notwithstanding, flow control is about deterministic splitting of traffic for load balanc-

ing purposes, and the optimization of network flows is implemented at the transport layer

where optimal routes are assumed available.

3.1.1 Generic problem formulation

The equivalence of (3.5) and (3.11) is not unique to max-min optimal routing since the

same steps can be applied to reformulate many optimization problems. To clarify this point

consider a given packet success probability matrix R of which node Uj only knows the

non-zero elements of its j-th column and row rj := Rc(j)j and sj := Rjc(j). Terminal Uj is

interested in finding the vector s̄j := Tc(j)j that determines its probability of routing packets

through neighboring nodes. Introduce the matrix U with the same sparsity pattern of T and

denote as uj := Ujc(j) the non-zero components of the j-th row of U. Node Uj maintains

locally the variables wj , s̄j , and uj that we arrange in the vector xj := [wj , s̄T
j ,uT

j ]T .

Also, define the vectors w := [w1, . . . , wJ ]T containing the variables wj of all terminals

and vj := wc(j) containing the variables wj of Uj ’s neighbors. Finally, abbreviate by

X := (w,T,U) the triplet of problem variables.

Our goal in this chapter is to find distributed algorithms converging to the optimal

solution of the problem

X∗ := (T∗,U∗,w∗) = arg max
X

wT1

s.t. xj := (wj , s̄j ,uj) ∈ Xj , s̄′j = uj , vj = wj1 (3.12)

where Xj is a set that defines the specific routing optimality criteria. Note that the con-

straint s̄′j = uj implies that T∗ = U∗ so that after obtaining the optimal solution Uj knows

the (optimal) probabilities s̄j with which to route its packets through its neighbors and the
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probabilities s̄′j = uj with which its neighbors route packets through himself.

To find the optimal solution to (3.12) we require the following assumptions to hold true:

(a1) The set Xj is convex.

(a2) There is a non-zero probability multi-hop route connecting any pair of nodes.

(a3) Node Uj can communicate with its one hop neighbors {Ui : i ∈ c(j)} (it does not have

access to variables of other nodes).

(a4) The probability that Uj decodes Ui is non-zero if and only if the probability that Ui

decodes Uj is non-zero. This implies c(j) = r(j) for all j ∈ [1, J ].

Assumption (a1) ensures that the problem in (3.12) is convex; (a2) is required so that

the constraints {wj = wi ∀i ∈ c(j)}J
j=1 imply wi = wj , ∀i, j ∈ [1, J ]; (a3) is in line with

the distributed setup; and (a4) guarantees that if Uj has access to Ui’s variables then Ui

has access to Uj ’s variables, which is natural in a peer-to-peer setting, and will be exploited

later on.

The formulation in (3.12) encompasses all the routing problems defined in [79], with the

set Xj specifying the corresponding optimality criterion. In particular we have:

Max-min optimal rate. This is the problem considered in detail in Section 3.1 and can

be obtained from (3.12) by defining the set

X 1
j =

{
xj : wj ≤ rT

j s̄j − sT
j uj , 0 ¹ s̄j , s̄T

j 1= 1
}

. (3.13)

Additional convex constraints can be added to the definition of Xj . Since we know that uj

is a vector of probabilities using the set Xj = X 1
j ∩ {xj : 0 ¹ uj ¹ 1} is equivalent to using

X 1
j because the constraint 0 ¹ uj ¹ 1 is implicit in uj = s̄′j . Preventing the components of

uj to become too large contributes to the numerical stability of the problem.

Optimal weighted sum-rate. We want to maximize a weighted sum of the rates, i.e.,

f(ρ) = αT ρ with α := [α1, . . . , αJ ]T º 0. In this case we define the set

X 2
j :=

{
xj : wj = αj(rT

j s̄j − sT
j uj), 0 ¹ s̄j , s̄T

j 1 = 1
}

(3.14)
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and consider the optimization problem

T∗ = arg max wT1

s.t. xj := (wj , s̄j ,uj) ∈ X 2
j , s̄′j = uj (3.15)

which amounts to dropping the constraint vj = wj1 in (3.12). Note that for this criterion

wj = αjρj .

Extra convex constraints can be dealt with by modifying the set X 2
j as in the previous

example. A case of interest is to consider a minimum acceptable rate ρmin
j for terminal Uj

that can be managed by considering the set Xj := X 2
j ∩ {wj/αj ≥ ρmin

j }. A solution T∗ to

(3.15) with a minimum acceptable rate constraint may not exist for some values of ρmin –

in such cases interior point methods return an infeasibility certificate. When it exists, T∗

ensures the minimum acceptable rate ρmin
j to every user with the excess traffic distributed

to the most favored users with large values of αj and/or reliable connections to one of the

APs.

Optimal product of rates. Maximizing the product of rates constitutes a more fair

alternative to the maximum sum-rate criterion in (3.15) since it prevents solutions in which

some users receive a very small packet delivery rate. The function to be maximized in this

case is f(ρ) =
∏J

j=1 ρj . Equivalently, since the logarithm is monotonically increasing the

concave function f(ρ) =
∑J

j=1 log(ρj) can be used instead. To cast this problem under the

distributable formulation in (3.12) it suffices to define the set

X 3
j :=

{
xj : wj ≤ log[rT

j s̄j − sT
j uj ], 0 ¹ s̄j , s̄T

j 1 = 1
}

(3.16)

and replace X 2
j by X 3

j in (3.15). The local components of the argument wj denote the

logarithm of the local rate.

Another example of a convex constraint is a cooperation limit whereby terminals require

their own rate to be at least a certain percentage βj ∈ [0, 1] of their total outgoing rate

rT
j s̄j . To add this constraint define the set Xj := X 3

j ∩ {xj : rT
j s̄j − sT

j uj ≥ βj(rT
j s̄j)}. This

constraint guarantees that at least βj of the packets that Uj transmits were generated at

Uj .
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Optimal rate with relays. In a relay network a group of terminals collaborate in relaying

traffic on behalf of a designated active user. Let Uj0 denote this active user and terminals

{Uj}J
j=1,j 6=j0

be the relays. The optimal relay network maximizing the rate ρj0 can be found

by solving (3.12) with

X 3
j =

{
xj : 0 = rT

j s̄j − sT
j uj , 0 ¹ s̄j , s̄T

j 1 = 1
}

, j 6= j0

X 3
j0 =

{
xj0 : wj0 = rT

j0 s̄j0 − sT
j0uj0 , 0 ¹ s̄j0 , s̄T

j01 = 1
}

. (3.17)

In this example, wj is the local estimate of the source’s rate ρj0 at terminal Uj .

3.2 Distributed implementation via dual decomposition

Problems of the form (3.12) or (3.15) can be solved using the so called dual decomposition

methods [9, Sec. 3.4.2], [67]. Since (a1) guarantees convexity of the problem the basic idea

is to optimize the dual function that, as we will show in this section, exhibits a separable

structure. Associate, thus, Lagrange multipliers λj with the constraints s̄′j − uj = 0 and

µj with the constraints vj − wj1 = 0 to form the Lagrangian

L(X,Λ,M) = −wT1 +
J∑

j=1

[
(s̄′j − uj)T λj + (vj − wj1)T µj

]
(3.18)

which is defined over the feasible region of the primal variables {xj ∈ Xj}J
j=1. Matrices Λ

and M are defined to have the same sparsity pattern of T (and thus U); the dual variables

(multipliers) in (3.18) are respectively given by the non-zero elements of the j-th row of Λ,

and the j-th column of M; i.e., λj = Λjc(j) and µj = Mc(j)j . We assume that λj and µj

are kept by terminal Uj .

The Lagrangian in (3.18) is used to obtain the dual function

g(Λ,M) = min
{xj∈Xj}J

j=1

L(X,Λ,M) (3.19)

which in turn leads to the dual problem defined as the unconstrained maximization of

g(Λ,M) – note that we do not impose non-negativity constraints on the multipliers because

this is an equality-constrained problem. For convex optimization problems strong duality
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holds, implying that the maximum in (3.12) coincides with the negative of the maximum

of g(Λ,M); i.e.,

1Tw∗ = −max
Λ,M

g(Λ,M). (3.20)

The problem in (3.20) is an unconstrained optimization problem that can be solved with a

gradient ascent algorithm. However, since the dual function g(Λ,M) is not always differ-

entiable a generalization of the gradient, the so called subgradient is used instead.

Definition 2 Consider a concave function f(Λ) : RM → R. If ∇Λ(Λ) satisfies

f(Λ̃) ≤ f(Λ) +∇Λ(Λ)(Λ̃−Λ) (3.21)

for all Λ̃ ∈ RM we say that ∇Λ(Λ) is a subgradient of f(Λ) at Λ. Given a subset of

components λ of Λ we denote as ∇λ(Λ) the corresponding components of ∇Λ(Λ).

The subgradient is any vector ∇Λ defining a supporting hyperplane of the concave function

f(Λ). When a gradient exists, i.e., when f(Λ) is differentiable, it is the unique subgradient

of f(Λ). A subgradient of g(Λ,M) is presented in the next proposition [9, Sec. 3.4.2].

Proposition 2 For given multipliers Λ and M, let X†(Λ,M) denote the optimal argument

of the Lagrangian, i.e.,

X†(Λ,M) := arg min
{xj∈Xj}J

j=1

L(X,Λ,M) (3.22)

with L(X,Λ,M) given by (3.18). Then, a subgradient ∇Λ,M of g(Λ,M) has components,

∇λj (Λ,M) = s̄′†j (Λ,M)− u†j(Λ,M)

∇µj (Λ,M) = v†j(Λ,M)− w†j(Λ,M)1. (3.23)

Proof: Consider the value of the dual function at an arbitrary point (Λ̃, M̃)

g(Λ̃, M̃) = min
{xj∈Xj}J

j=1

−wT1 +
J∑

j=1

[
(s̄′j − uj)T λ̃j + (vj − wj1)T µ̃j

]
(3.24)

≤ −w†T1 +
J∑

j=1

[
(s̄′†j − u†j)

T λ̃j + (v†j − w†j1)T µ̃j

]
(3.25)
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where for notational simplicity we omit the arguments of s̄′†j , u†, v†j , and w†j . The equality

in (3.24) follows from the definitions of the dual function in (3.19) and the Lagrangian in

(3.18); and the inequality in (3.25) is true since {x†}J
j=1 = X† cannot yield a value smaller

than the optimal argument of (3.24).

Subtracting g(Λ,M) = −w†T1+
∑J

j=1

[
(s̄′†j − u†j)

T λj + (v†j − w†j1)T µj

]
from both sides

of the inequality in (3.25) yields

g(Λ̃, M̃)− g(Λ,M) ≤
J∑

j=1

[
(s̄′†j − u†j)

T (λ̃j − λj) + (v†j − w†j1)T (µ̃j − µj)
]

(3.26)

Comparing (3.26) with (3.21) we see that the constraint violations in (3.23) satisfy the

definition of a subgradient of g(Λ,M) [cf. (3.21)]. ¤

Proposition 2 tell us that for general multipliers (Λ,M) the Lagrangian is optimized by

variables X†(Λ,M) that violate the equality constraints in (3.12). Interestingly, the amount

by which the equality constraints are violated is a subgradient of the dual function. Indeed,

the multiplier λj (µj) is associated with the constraint s̄′j − uj = 0 (vj − wj1 = 0); the

optimal arguments of the Lagrangian violate this constraint by an amount ∇λj (Λ,M) =

s̄′†j (Λ,M)− u†j(Λ,M) (∇µj (Λ,M) = v†j(Λ,M)− w†j(Λ,M)1).

A important property of the optimal arguments of the Lagrangian is that they can be

computed locally at each node. To be precise define the vectors λ′j = Λc(j)j and µ′j = Mjc(j)

containing the dual variables of the one hop neighbors {Ui : i ∈ c(j)}, and construct the

local Lagrangian Lj(xj ; λj , µj , λ
′
j , µ

′
j) by grouping the terms that depend only on the local

variable xj [cf. (3.18)]

Lj(xj ; λj , µj , λ
′
j ,µ

′
j) = −wj + s̄T

j λ′j − uT
j λj + wj1T (µ′j − µj). (3.27)

By construction L(X,Λ,M) =
∑J

j=1 Lj(xj ; λj , µj , λ
′
j ,µ

′
j) [cf. (3.18) and (3.27)]. If we

further note that the primal variables xj appear only in Lj(xj ;λj , µj ,λ
′
j , µ

′
j) we conclude

that the optimal arguments in (3.22) can be found as

x†j := arg min
xj∈Xj

Lj(xj ,λj , µj ,λ
′
j , µ

′
j). (3.28)

The ultimate reasons enabling a distributed implementation of a subgradient ascent algo-

rithm can be read out from Proposition 2 and (3.28): i) a subgradient of the dual function
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is obtained from the arguments optimizing the Lagrangian L(X,Λ,M) [cf. (3.23)]; ii) the

subgradients ∇λj (Λ,M) and ∇µj (Λ,M) depend only on local and neighboring variables

[cf. (3.23)]; and iii) the optimization of the Lagrangian L(X,Λ,M) separates into the opti-

mization of J local Lagrangians Lj(xj , λj , µj , λ
′
j , µ

′
j), furthermore, these local Lagrangians

depend only on local and neighboring variables [cf. (3.27) and (3.28)].

Consequently, subgradient ascent for g(Λ,M) can be implemented by the following

distributable iteration:

[I1] Compute subgradient. Given local multipliers λj(n) and µj(n), and neighboring mul-

tipliers λ′j(n) and µ′j(n), minimize the local Lagrangian with respect to the local

primal variables,

xj(n) = arg min
xj∈Xj

Lj [xj , λj(n), µj(n), λ′j(n), µ′j(n)] := arg min
xj∈Xj

Lj(xj , n) (3.29)

where we defined Lj(xj , n) := Lj [xj ,λj(n), µj(n),λ′j(n), µ′j(n)] and the primal iter-

ates are xj(n) := [wj(n), s̄j(n),uj(n)].

[I2] Subgradient ascent step. Using local primal variables [wj(n), s̄j(n),uj(n)] and neigh-

boring primal variables [vj(n), s̄′j(n),u′j(n)] update local multipliers

λj(n + 1) = λj(n) + cn[s̄′j(n)− uj(n)]

µj(n + 1) = µj(n) + cn[vj(n)− wj(n)1] (3.30)

where cn is a properly selected step size.

Algorithm 2 details the distributed implementation of [I1]-[I2]. Given the local multipliers

λj(n) and µj(n), and the one-hop-neighbors’ multipliers λ′j(n) and µ′j(n), user terminal Uj

solves a (local) convex optimization problem to find the primal variables xj(n) that optimize

the (local and global) Lagrangian; step 3. In turn, these primal variables are used in the

gradient ascent steps 6 and 7 to obtain the updated multipliers λj(n + 1) and µj(n + 1).

Steps 6 and 7 represent the subgradient ascent step for the dual function g(Λ,M) and

as such are the steps guaranteeing convergence of the iterates {λj(n)}J
j=1 and {µj(n)}J

j=1

obtained from (3.29)-(3.30) to {λ∗, µ∗}J
j=1 := arg max g(Λ,M) as n → ∞ (convergence
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Algorithm 2 Dual decomposition solver
Require: Packet success probabilities to and from neighbors Rc(j)j and Rjc(j)

Ensure: Optimal multipliers λ∗j and µ∗j

1: for n = 1 to ∞ do {repeat for the life of the network}
2: Receive multipliers λij(n) and µji(n) from one hop neighbors {Ui : i ∈ c(j)}
3: Minimize Lagrangian [cf. (3.29)]: xj(n) =

arg minxj∈Xj Lj [xj , λj(n),µj(n), λ′j(n),µ′j(n)]

4: Transmit wj(n), tij(n), and uji(n) to neighbor Ui; repeat for all {Ui : i ∈ c(j)}.
5: Receive wi(n), tji(n), and uij(n) from one hop neighbors {Ui : i ∈ c(j)}
6: Subgradient ascent iteration for λj [cf. (3.30)]: λj(n+1) = λj(n)+ cn[s̄′j(n)−uj(n)]

7: Subgradient ascent iteration for µj [cf. (3.30)]: µj(n+1) = µj(n)+cn[vj(n)−wj(n)1]

8: Transmit multipliers λji(n + 1) and µij(n + 1) to neighbor Ui; repeat for all {Ui : i ∈
c(j)}

9: end for

of (3.29)-(3.30) requires some qualifications that we discuss in the next subsection). The

remaining steps ensure that the variables are properly communicated. Steps 8 and 2 ensure

that the updated multipliers are sent to and received by the corresponding neighboring

node, while steps 4 and 5 guarantee the same for the primal variables.

3.2.1 Discussion of convergence properties

The goal of Algorithm 2 is for Uj to obtain the optimal routing probabilities s̄j . We

are thus interested in having limn→∞ s̄j(n) = s̄∗j , with s̄j(n) obtained from the iteration

(3.29)-(3.30) and s̄∗j the solution of (3.12). Since the iteration (3.29)-(3.30) implements

subgradient ascent for the dual function, convergence of the primal variables cannot be

always guaranteed. Relevant convergence properties of subgradient descent are summarized

next (see e.g., [9, Sec. 3.4.3] and [18]).

Property 1 Consider the iteration (3.29)-(3.30) and let {λ∗,µ∗}J
j=1 := arg max g(Λ,M)

denote the optimal solution of the dual problem in (3.20). We then have that
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(a) if the step size is constant, i.e., cn = c ∀n,

lim
n→∞

1
n

∞∑

n=0

λj(n) = λ∗j lim
n→∞

1
n

∞∑

n=0

µj(n) = µ∗j (3.31)

implying that the average value of the dual iterates converges to the optimal dual

variables; and

(b) if the step size sequence is non-summable,
∑∞

n=0 cn = ∞ but square summable,
∑∞

n=0 c2
n < ∞

lim
n→∞λj(n) = λ∗j lim

n→∞µj(n) = µ∗j (3.32)

implying that the sequence of dual iterates converges to the optimal dual variables.

Convergence of the dual iterates in the sense described in Property 1, does not imply that

the same holds true for xj , and in practice limn→∞ s̄j(n) 6= s̄∗j for many practical optimality

criteria. This is particularly true when (3.12) amounts to a linear program, a class that

includes max-min optimal rate, optimal weighted sum-rate, and optimal rate with relays

as defined in Section 3.1.1 – for these problems the sets Xj are convex polygons. Many

regularization approaches are known to guarantee convergence of the primal iterates xj(n)

to the primal optima x∗j . One of them, the method of multipliers, is discussed in the next

section.

Remark 6 Avoiding a large variance of the iterates (i.e., large fluctuations around the

mean) when cn = c ∀n as in Property 1 - (a) requires a small value of c. However, this

entails a slow convergence rate. This can be alleviated by adjusting cn as per Property

1 - (b), but this is difficult to implement in a distributed setting. These complementary

drawbacks provide another motivation for the approach in Section 3.3.

3.3 The method of multipliers

While useful as a first approach, the dual decomposition method summarized in Algorithm

2 does not always lead to a satisfactory solution of (3.12). As discussed previously, when the
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dual function is non-differentiable and the step size cn is fixed (3.29) - (3.30) converges only

on an average sense. Perhaps more important, recovering the primal variables optimizing

(3.12) from the dual variables optimizing (3.20) cannot always be guaranteed.

A common regularization approach is the so called method of multipliers (MOM). The

MOM is based on modifying the optimization argument in (3.12) by adding (hence the

term regularization) a quadratic term corresponding to the squared norm of the equality

constraints,

T∗ = arg min
X

−wT1 +
c

2

J∑

j=1

[‖s̄′j − uj‖2 + ‖vj − wj1)‖2
]

s.t. xj := (wj , s̄j ,uj) ∈ Xj ; s̄′j = uj ; vj = wj1. (3.33)

Due to the triangle inequality, norms are convex functions of their arguments, and conse-

quently the problem in (3.33) is convex. Furthermore, the solutions of (3.12) and (3.33)

coincide since the terms ‖s̄′j − uj‖2 and ‖vj − wj1‖2 are null at any feasible point. The

Lagrangian associated with (3.33) is known as the augmented Lagrangian of (3.12) and is

given by

A(X,Λ,M) = L(X,Λ,M) +
c

2

J∑

j=1

[‖s̄′j − uj‖2 + ‖vj − wj1)‖2
]

(3.34)

with L(X,Λ,M) as in (3.18).

Mimicking steps (3.19) and (3.20) we can define the dual function h(Λ,M) :=

min{xj∈Xj}J
j=1

A(X,Λ,M) and conclude that finding the optimal value of (3.33) – which

coincides with the optimal value of (3.12) – is equivalent to solving the corresponding dual

problem

−1Tw∗ = max
Λ,M

h(Λ,M) := max
Λ,M

min
{xj∈Xj}J

j=1

A(X,Λ,M) (3.35)

Recalling Proposition 2 we can obtain a subgradient of h(Λ,M) from the arguments mini-

mizing the augmented Lagrangian; (re-) defining

{x†j(Λ,M)}J
j=1 = arg min

{xj∈Xj}J
j=1

A(X,Λ,M)

= arg min
{xj∈Xj}J

j=1

L(X,Λ,M) +
c

2

J∑

j=1

[‖s̄′j − uj‖2 + ‖vj − wj1)‖2
]

(3.36)
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we have that the subgradient components ∇λj
(Λ,M) and ∇µj (Λ,M) of h(Λ,M) are given

as in (3.23).

Recapitulating the fundamental motives leading to a distributed implementation of sub-

gradient ascent for g(Λ,M) we see that: i) the arguments minimizing the augmented La-

grangian A(X,Λ,M) lead to a subgradient of h(Λ,M) [cf. (3.23) and (3.36)]; and ii) the

subgradients ∇λj
(Λ,M) and ∇µj (Λ,M) depend only on local and neighboring variables

[cf. (3.23)].

Unlike the case of L(X,Λ,M), the minimization of A(X,Λ,M) cannot be separated

into local independent optimizations due to coupling between s̄′j and uj and vj and wj

introduced by the quadratic terms [cf. (3.36)]. Note, however, that the coupling is between

neighboring variables only, and consequently we can - again - devise a distributed algorithm

to solve the minimization in (3.36). To be precise, our goal is a distributed algorithm that

for given multipliers Λ(n) and M(n) at the n-th iteration converges to the optimal value of

the augmented Lagrangian

{xj(n)}J
j=1 := arg min

{xj∈Xj}J
j=1

A(X,Λ(n),M(n)) := arg min
{xj∈Xj}J

j=1

A(X, n) (3.37)

A separable iteration converging to {xj(n)}J
j=1 can be obtained using coordinate descent as

described in the following proposition.

Proposition 3 For fixed n consider iterations in a second index m. With Lj(xj , n) as in

(3.29) define the local augmented Lagrangian at the (n,m)-th iteration as

Aj(xj , n, m) = Lj(xj , n) +
c

2
[‖s̄′j(n,m)− uj‖2 + 2‖vj(n,m)− wj1)‖‖2 + ‖s̄j − u′j(n, m)‖2

]

(3.38)

and consider iterates {xj(n,m + 1)}J
j=1 satisfying

xj(n, m + 1) = arg min
xj∈Xj

Aj(n,m). (3.39)

Then, xj(n,m) converges to the optimal value of (3.37), i.e., limm→∞ xj(n,m) = xj(n), ∀
j ∈ [1, J ].
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Proof: The only terms of the augmented Lagrangian A(X, n) in (3.37) that depend on local

primal variables xj are those contained in the local augmented lagrangian Aj(xj , n, m) in

(3.38). Thus, the optimal arguments in (3.39) are such that

xj(n,m + 1) = arg min
xj∈Xj

A[x1(n,m), . . . ,xj−1(n,m),xj ,xj+1(n,m), . . . ,xJ(n,m), n].

(3.40)

That is, (3.40) minimizes A(X, n) along the coordinates corresponding to xj . By definition

this is a coordinate descent algorithm for minimizing A(X, n) and we thus have

lim
m→∞xj(n,m) = arg min

{xj∈Xj}J
j=1

A(X, n) =: xj(n). (3.41)

where the first equality follows from convergence results for coordinate descent, see e.g., [9,

Sec. 3.2.1]; and the second one from the definition in (3.37). ¤

The coordinate descent iteration (3.38)-(3.39) depends only on local and neighboring

variables and it can thus be implemented in a distributed fashion to obtain the arguments

{xj(n)}J
j=1 minimizing the augmented Lagrangian [cf. (3.37) and (3.41)]. In turn, these

optimal {xj(n)}J
j=1 can be used to implement the subgradient ascent iteration in (3.30).

The resulting Algorithm 3 embeds an outer iteration (indexed by n) implementing sub-

gradient descent as per (3.30) and an inner iteration (indexed by m for fixed n) imple-

menting coordinate descent as per (3.38)-(3.39) to minimize the augmented Lagrangian.

Indeed, steps 4-8 implement (3.38)-(3.39) with steps 6 and 7 representing the interchange

of primal variables between neighbors. Strictly speaking step 9 is only true as M →∞, but

even for finite M it provides a reasonable approximation to (3.37) that can be used to find

the subgradients in (3.23) and implement the gradient ascent iteration in steps 10 and 11.

Steps 12 and 2 communicate the dual variables and step 3 initializes the coordinate descent

(inner) iteration.

Different from the dual decomposition in Algorithm 2 convergence of the primal iterates

{xj(n)}J
j=1 to the optimal primal arguments {x∗j}J

j=1 as n →∞ can be guaranteed for the

MOM in Algorithm 3 as we summarize in the following property; e.g., [9, Sec. 3.4.4].



3.3 The method of multipliers 77

Algorithm 3 Method of multipliers
Require: Packet success probabilities to and from neighbors Rc(j)j and Rjc(j)

Ensure: Routing probabilities s̄j

1: for n = 1 to ∞ do {repeat for the life of the network}
2: Receive multipliers λij(n) and µji(n) from one hop neighbors {Ui : i ∈ c(j)}
3: Initial value for coordinate descent: xj(n, 0) = xj(n− 1)

4: for m = 1 to M do

5: Coordinate descent iteration for xj(n,m): xj(n,m) = arg minxj∈Xj Aj(n,m)

6: Transmit wj(n,m), tij(n,m), and uji(n,m) to neighbor Ui. Repeat for all {Ui : i ∈
c(j)}.

7: Receive wi(n,m), tji(n, m), and uij(n,m) from one hop neighbors {Ui : i ∈ c(j)}
8: end for

9: Argument minimizing augmented Lagrangian: xj(n) = xj(n, M)

10: Subgradient ascent iteration for λj : λj(n) = λj(n− 1) + c[s̄′j(n)− uj(n)]

11: Subgradient ascent iteration for µj : µj(n) = µj(n− 1) + c[vj(n)− wj(n)1]

12: Transmit multipliers λji(n + 1) and µij(n + 1) to neighbor Ui. Repeat for all {Ui :

i ∈ c(j)}.
13: end for

Property 2 Consider implementation of the MOM in Algorithm 3 to solve the optimization

problem in (3.12) and let {x∗j}J
j=1 denote the arguments minimizing (3.12). Then, for any

value of M , limn→∞ xj(n) = x∗j ; in particular

lim
n→∞ s̄j(n) = s̄∗j . (3.42)

Property 2 guarantees that the optimal routing probabilities can be obtained by running

Algorithm 3. It also establishes that the convergence in (4.16) holds for any number of inner

iterations M . A particularly interesting algorithm is obtained by making M = 1 leading to

the so-called alternating direction MOM. For this algorithm we define the local augmented

Lagrangian at time n as

Aj(xj , n) = Lj(xj , n) +
c

2
[‖s̄′j(n)− uj‖2 + 2‖vj(n)− wj1)‖‖2 + ‖s̄j − u′j(n)‖2

]
(3.43)
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Algorithm 4 Alternating direction method of multipliers
Require: Packet success probabilities to and from neighbors Rc(j)j and Rjc(j)

Ensure: Routing probabilities s̄j

1: for n = 1 to ∞ do {repeat for the life of the network}
2: Receive multipliers λji(n) and µji(n) from one hop neighbors {Ui : i ∈ c(j)}
3: Coordinate descent iteration for xj(n): xj(n) = arg minxj∈Xj Aj(n)

4: Transmit wj(n), tij(n), and uji(n) to neighbor Ui. Repeat for all {Ui : i ∈ c(j)}.
5: Receive wi(n), tji(n), and uij(n) from one hop neighbors {Ui : i ∈ c(j)}
6: Subgradient ascent iteration for λj : λj(n + 1) = λj(n) + c[s̄′j(n)− uj(n)]

7: Subgradient ascent iteration for µj : µj(n + 1) = µj(n) + c[vj(n)− wj(n)1]

8: Transmit multipliers λij(n + 1) and µij(n + 1) to neighbor Ui. Repeat for all {Ui :

i ∈ c(j)}.
9: end for

and define the iteration of the primal variables as

xj(n + 1) = arg min
xj∈Xj

Aj(xj , n) (3.44)

with the iteration of the dual variables (multipliers) given as in (3.30). Due to Property

2 the iteration (3.43)-(3.44) and the corresponding Algorithm 4 leads, as n → ∞, to the

optimal routing probabilities s̄∗j .

Remark 7 The algorithms considered in this section assume that packets interchanged for

computing the routing matrix T are received error-free. While it is certainly possible to

protect the critical routing information (with, e.g., a powerful error control code) so that

this is approximately true, it is not fully with the problem setup consider in this chapter,

wherein packets are correctly decoded according to the probabilities in R. An alternative

assumption is to assume that routing variables sent from Uj are correctly received by Ui

with probability Rij as would be the case if they were included in packet headers. This

falls beyond the scope of the present chapter, but it is worth mentioning that there exist

asynchronous distributed optimization results that may be used to prove convergence of 2-4

even in this case, under certain conditions [9, Ch. 6].
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Figure 3.1: Optimal routes for the max-min criterion.

Remark 8 In Algorithms 2-4 node Uj solves a convex optimization problem to minimize

the (augmented) Lagrangian at each iteration [cf. (3.29), (3.39), and (3.44)]. The number

of variables in these problems is the sum of the dimensions of wj , s̄j , and uj which amounts

to 1 + 2#[c(j)] – with #[c(j)] denoting the cardinality of c(j). If, as expected, the number

of neighbors #[c(j)] is small, the minimizations in (3.29), (3.39), or (3.44) entail a small

computational burden.

3.4 Simulations

Simulations in this section are for a network with J = 40 nodes randomly placed on a

disc of radius 1.5 km, at whose center is the common access point UJ+1. The elements of

the packet success probability matrix R are chosen according to the empirical distribution

in [3]. The network considered in the coming experiments is represented in Fig. 3.3. The

optimality criterion is max-min rate with corresponding optimal routes given as in Fig. 3.1.

The algorithm ran by individual nodes is the alternating direction method of multipliers
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Figure 3.2: Convergence of Algorithm 1 to the max-min optimal routes in Fig. 3.1. After

70 iterations the rate of the most compromised user is within 90% of the optimal rate.

outlined in Algorithm 4.

Alternating direction MOM. We will neglect transmission errors and assume that com-

munication of routing variables between neighbors is always successful. The results of this

experiment are summarized in Figs. 3.2-3.5. In Fig. 3.2-(top) we show the smallest and

largest value of the local variables wj . As expected, these variables quickly approach each

other due to the constraints vj = wj1; and the minimum rate ρj := rT
j s̄j − sT

j s̄′j is also

closely approximated by the local variables wj . The rate of convergence is reasonable, since

after n = 150 iterations the distributed algorithm has converged to the optimal value. Fur-

thermore, we can see that after 70 iterations the rate of the most compromised user is

within 90% of the optimal rate. In practice, this last number can be regarded as the time

required for convergence. We also plot in Fig. 3.2-(bottom) the path followed by the rate

of 10 different representative users with similar conclusions.

Two more interesting experiments shown in Figs. 3.4 and 3.5 illustrate the effect of

“topological” changes in the network. In Fig. 3.4 we consider the effect of removing a

user from the network. The effect after the first iteration is that the rate of the worst user
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Figure 3.3: Connectivity graph for a network with 40 nodes. The color index represents the

value of Rij that is generated according to the empirical distribution in [3].
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Figure 3.4: Effect of removing a user from the network.
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Figure 3.5: Effect of adding a user to the network.

becomes negative corresponding to packets dropped in the routes that were passing through

the node removed from the network. The algorithm quickly reroutes the packets leading to

positive rates ρj in the second iteration, in about 12 iterations Algorithm 2 is again within

90% of optimality and converges to the new optimal throughput after 20 iterations. Similar

behavior is observed when we add a new user to the network as shown in Fig. 3.5. We again

have a negative rate ρj when the new user attempts to send traffic through a congested

route. After 8 iterations Algorithm 2 has already found near-optimal routes and converges

to a new stable point in about 20 iterations.

Effect of communication errors. Taking into account communication errors as described

in Remark 7 leads to Fig. 3.6. Except for the fact that convergence to the optimal solution

is slower, taking in the order of 200 iterations for convergence and 90 to reach 90% of

the optimal value, the behavior is as with perfect communication links. Omitted to avoid

repetition are the experiments showing the effect of adding and dropping terminals in the

presence of communication errors. The corresponding simulations are similar to Figs. 3.4

and 3.5. The corresponding number of iterations to attain 90% of optimality are 17 for

dropping a user node and 10 for adding a new one.
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Figure 3.6: Effect of communication errors.
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Figure 3.7: Users move 150 meters at random.
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Figure 3.8: Max-min optimal routes for the network in 3.7.
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Figure 3.9: Response of Algorithm 1 to user mobility.
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Figure 3.10: Response of Algorithm 1 to user mobility in the presence of communication

errors.

Mobility. Among the main motivating reasons behind a distributed implementation is

adaptability to a mobile environment. To illustrate this we modify the network in Fig. 3.3

by letting each node move at random with uniform distribution in a square with 300 meter

side centered at the original position. This leads to the network in Fig. 3.7. The effect

of mobility can be simulated by running Algorithm 2 to find the optimal routes for the

network in Fig. 3.7 using the optimal routes in Fig. 3.1 as a initial condition. The results

are depicted in Fig. 3.9 for perfect communication of routing variables and in Fig. 3.10

when accounting for communication errors.

In both cases, convergence to the new optimal routes is surprisingly fast taking approx-

imately 8 iterations when communication of routing variables is error-free and 14 when we

account for possible communication errors. Intuitively, this happens because optimal routes

are robust with respect to modest topology changes.
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3.5 Summary

Multi-hop routing in wireless networks holds great promise to improve performance of wire-

less networks. Building on the results in Chapter 2 that formulate routing problems as con-

vex optimization problems based on the pairwise error probability matrix R, this chapter

developed distributed routing algorithms to find rate-optimal routes. Since routing algo-

rithms developed in Chapter 2 cannot be implemented in a distributed fashion we introduced

equivalent problems amenable to distributed implementations. Many problems can be cast

in the latter formulation including max-min rate, sum-rate, maximum product-rate, and

rate-optimal relay networks. In all of these problems additional convex constraints, e.g.,

minimum acceptable rate or cooperation limit, can be easily incorporated to our framework.

Distributed routing algorithms were obtained via dual decomposition, leading to an

iterative algorithm based on communication with one-hop neighbors only. Since in many

cases of interest dual decomposition iterates do not necessarily converge to the optimal

routing matrix, we adopted two well-known regularization approaches, namely the method

of multipliers (MoM) and the alternating direction MoM. Convergence of the MoM and the

alternating direction MoM algorithms to the optimal routing matrix is guaranteed under

mild conditions. Of particular practical importance is the guaranteed convergence in the

presence of communication errors.

Simulations corroborated that the MoM is a robust algorithm quickly converging to the

optimal routes. We further showed that the resulting algorithms are fast to respond to

addition and removal of terminals as well as to changes in the pairwise error probability

matrix brought in by, e.g., node mobility.
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Chapter 4

Cooperative diversity in multiple

access channels

Rich scattering of electromagnetic waves propagating through physical environments gener-

ates complex interference patterns. As such patterns go through maxima and minima, large

variations in energy adversely affect wireless reception and thus deteriorate error probabil-

ity performance of wireless communication systems. By providing multiple channels with

independent (or at least uncorrelated) variations in time, frequency and/or space, diversity

techniques offer well-appreciated countermeasures mitigating such (so called fading) effects.

With the deployment of multiple antennas effecting space diversity we create copies of the

transmitted signal either at the receiver, at the transmitter or both. In time or frequency

(a.k.a. Doppler or multipath) diversity systems, we exploit the natural property of wire-

less channels to vary over time or frequency. The benefits of diversity are significant. In

a typical (wireline) additive white Gaussian noise (AWGN) channel the error probability

decays exponentially as the received signal-to-noise-ratio (SNR) increases; i.e., error effects

decrease as e−SNR. A wireless Rayleigh fading channel however, exhibits errors decaying

as SNR−1. A κth-order diversity channel entails κ uncorrelated channels and exhibits er-

ror probability which decreases as SNR−κ. A pertinent definition when analyzing diversity
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enabling protocols is the diversity order.

η := lim
γ→∞

log[Pe(γ)]
log(γ)

. (4.1)

Needless to say the gap between the exponential decay in wireline channels and the inversely

linear decay in wireless channel is enormous. Considering that for sufficiently large κ the

SNR−κ and e−SNR functions are not very different, the value of diversity is clear: it can

close the error performance gap between wireline and wireless channels.

Spatial and time-frequency diversity systems are at opposite ends of a deployment cost

versus reliability curve. Spatial diversity is reliable but comes with hardware cost. Time-

frequency diversity on the other hand exploits natural phenomena that may or may not be

present in a particular link and is thus less reliable even if it comes for free when available.

User cooperation is an alternative form of diversity which aims to strike a balance in this

curve by providing diversity more reliable than natural time-frequency variations yet with-

out requiring deployment of additional antennas. The basic idea is to have single-antenna

terminals share information and cooperate in relaying it to intended destinations. If prop-

erly designed, cooperative protocols involving κ terminals can achieve κth-order diversity

relying on relatively inexpensive software modifications of existing wireless protocols.

Since its introduction [51, 96, 97], researchers in signal processing, wireless communica-

tions and information theory have contributed major advancements to explore and realize

the potential of cooperative networks. The contribution of this thesis in this area is in un-

derstanding user cooperation for multiple access (MA) over fixed as well as random access

(RA) channels.

Notation: The canonical basis of RN will be denoted as {e1, . . . , eN} so that the N ×N

identity matrix can be written as IN := [e1, . . . , eN ]. The all-one and all-zero vectors in RN

will be denoted as 1N := [1, . . . , 1]T and 0N := [0, . . . , 0]T , respectively.

4.1 Single source cooperation (SSC)

The core idea behind user cooperation is to create a virtual antenna array (VAA) for

transmission by means of data sharing between users. With reference to Fig. 4.1, consider
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Figure 4.1: Source terminals S1 and S2 cooperate in transmitting to their respective desti-

nations D1 and D2 by creating a distributed virtual antenna array (VAA).

source S1 (S2) sending a data packet d1 (d2) to destination D1 (D2) through the wireless

Rayleigh flat fading channel h(S1, D1) [h(S2, D2)]. Due to the broadcast nature of the

wireless channel, d1 transmitted by S1 is not only received by D1 but also by S2 and D2

through corresponding channels h(S1, S2) and h(S1, D2). Thus, if we let S2 repeat the

signal received from S1 and vice versa, both destinations receive two independent copies

of d1 and d2. Forgetting for a moment the channel h(S1, S2) between sources, D1 receives

data from a 2×1 multiple input single output (MISO) channel which is capable of providing

second-order diversity [4].

Even though similar, there are important differences between VAAs and MISO systems

with multiple co-located antennas. One difference is that wireless terminals are half-duplex,

and as such they cannot transmit and receive over the same frequency at the same time.

This practical limitation is rooted in the need to isolate transmitter and receiver in order

to avoid feedback from the transmitter to the receiver radio-frequency (RF) front end. If

the terminal size is not enough to provide spatial isolation, this has to be achieved in time

and/or frequency. The implication is that cooperation protocols have to follow a scheme like

the one depicted in Fig. 4.1 in which we have a slot assigned to S1’s transmission, a second

slot assigned to S2’s and a third slot for the cooperative transmission of the other terminal’s

data. Comparing this scheme with space-time codes [4] we recognize that different from

MISO channels the diversity advantage of VAAs comes at the price of bandwidth increase.

It is worth noting that this does not necessarily imply a penalty in communication rate,

because the decrease in the amount of forward error correction (FEC) and/or number of
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re-transmissions required can compensate for the bandwidth expansion [96].

A second difference is that in VAAs we cannot ignore the channel h(S1, S2) between

sources. To appreciate its effects, let d̂1 denote S2’s estimate of d1 and consider the signals

received by the destination D1:

y11 =
√

Ph(S1, D1)d1 + w11,

y12 =
√

Ph(S2, D1)d̂1 + w12, (4.2)

where w11 and w12 denote AWGN terms and P is the transmitted power. It is a surprising

result that if D1 uses a maximum ratio combiner (MRC) for estimating d1 as (∗ stands for

conjugation and ‖x‖ for the magnitude of x)

d̂MRC
1 = arg min

d1

∥∥∥h∗(S1, D1)y11 + h∗(S2, D1)y12 −
√

P
[|h(S1, D1)|2 + |h(S2, D1)|2

]
d1

∥∥∥ ,

(4.3)

then the diversity order of this two-branch VAA is only one. The reason for the lack of

diversity in this so called decode and forward (DF) strategy is that the VAA error probability

is dominated by the error probability in the link S1 → S2.

While DF does not achieve diversity, three alternative strategies do achieve this goal:

[S1] Selective forwarding (SF): Instead of always repeating d1, S2 will repeat the packet

only if it is successfully decoded i.e., if d̂1 = d1. This strategy is more complex than

DF because it requires FEC decoding followed by a cyclic redundancy code (CRC)

check to detect possible errors at S2.

[S2] Amplify and forward (AF): A seemingly simple alternative is to let S2 amplify the

analog-amplitude signal received from S1. That is, the signal y21 = h(S1, S2)d1 +w21

received by S2 is transmitted after amplification as Ay21. The amplification factor

satisfies

A2 =
P

P |h(S1, S2)|2 + N0
, (4.4)

so that the power of the signal transmitted by S2 is equal to P .

[S3] Cooperative (C) MRC: While the strategies [S1] and [S2] require operations at the

cooperating terminal, a different approach is to adopt DF at the cooperating terminal
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Figure 4.2: Multi-branch cooperation.

but use a weighted version of the MRC demodulator in (4.3)

d̂CMRC
1 = arg min

d1

∥∥∥α11y11 + α12y12 −
√

P [α11h(S1, D1) + α12h(S2, D1)]d1

∥∥∥ . (4.5)

By properly selecting α11 and α12 as functions of h(S1, D2), h(S2, D2) and h(S1, S2)

the so called C-MRC in (4.5) can be shown to achieve second-order diversity [15].

Each of the strategies [S1]-[S3] has its own merits. SF is the simplest one from the

perspective of the destination but strains the digital processor at the cooperating terminal;

also, even if the packet is not correctly decoded there is still some information about d1

in the signal received at the cooperator that is not conveyed to the destination. When

the link between sources (S1 → S2) is expected to be much better than the links between

sources and destination (S1, S2 → D1), S2 will almost always correctly decode d1 making

SF the method of choice for this case. AF requires minimal processing at the cooperating

terminal, but necessitates storage of the analog-amplitude received signal thus straining

memory resources. AF is appealing when the cooperating terminal is located close to the

destination so that the link from the cooperating terminal to the destination (S2 → D1)

is strong and the link S1 → S2 is comparable to the link S1 → D1. Use of C-MRC for

decoding DF relayed signals is the simplest strategy from the perspective of the cooperating

terminal. Its drawback is that the channel realization h(S1, S2) has to be transmitted to

the destination since it is needed to compute α11 and α12. If this can be accomplished by

transmitting a few bits the overhead is not significant.

Pairwise cooperation can be generalized to groups of terminals. For a group of κ co-
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Figure 4.3: Multi-hop cooperation.

operating terminals we can build a protocol using any of the strategies [S1]-[S3] to achieve

κth-order diversity. This may not be always the best approach considering that in cooper-

ative networks – sometimes also referred to as relay networks – there is a tradeoff between

multi-branching (see Fig. 4.2) and multi-hopping (see Fig. 4.3). In multi-hopping, the source

packet is relayed through a cascade of cooperating terminals; while not providing diversity,

this approach saves energy by exploiting the smaller pathloss between cooperators as com-

pared to the pathloss from source to destination. In multi-branching, the packet is relayed

to κ cooperators that retransmit the packet to the destination; this provides diversity but

does not benefit from pathloss reduction. The configuration offering desirable tradeoffs in

a general network is a combination of multi-hop and multi-branch cooperation [75].

Remark 9 We have introduced only simple concepts of SSC necessary to study cooperation

in multiple fixed and random access channels. Among topics we did not cover due to

space limitations is the aforementioned bandwidth penalty VAAs incur relative to MISO

systems with co-located antennas. A possible remedy is resorting to (an e.g., turbo) coded

cooperation whereby the source transmits the first sub-block of the code, the cooperating

terminal decodes the signal using only this first sub-block and, if successful, transmits the

second sub-clock of the turbo code. This does not incur bandwidth expansion to implement

cooperation but requires coding at the relays which expands bandwidth, even though the

latter is arguably needed anyways [40]. An additional issue is the use of coherent versus

non-coherent reception. The use of non-coherent modulation in cooperative networks and

its diversity benefits are reported in [17] and [118]. Fundamental performance limits of

cooperative links are closely related to the capacity of the relay channel, the evaluation of

which remains an open problem in information theory [20]. It has been shown that the

bandwidth penalty of cooperative protocols is not inherent to the relay channel but is due

to the use of repetition coding [5]. In the low-power regime, achievable rates and optimum
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resource allocation issues for the relay channel have been studied in [14] and [126]. For the

Gaussian relay channel it is also known that DF and AF relay strategies can be outperformed

by a quantize and forward (QF) scheme, whereby the cooperating relay forwards a quantized

version of the source signal [47].

4.2 Cooperation in multiple access channels

In a multiple access channel, “good performance” is quantified by low error rate, high

spectral efficiency and low complexity. On the other hand, multiplicative fading induced

by the propagation environment and additive noise effects at the receiving end, render it

impossible to optimize one metric without sacrificing the others. A universal system design

should, therefore, be flexible to tradeoff among error performance, spectral efficiency and

complexity.

The name Multi-source cooperation (MSC) to denote cooperation between terminals

of a multiple access network was introduced in [100] to improve bandwidth efficiency and

diversity order. A two-phase MSC system with distributed convolutional coding (DCC) was

reported in [117], along with a simple design of interleavers to maximize the diversity order

of simple error events. A distributed trellis coded modulation (DTCM) based MSC system

approaching the bandwidth efficiency of a non-cooperative time division multiple access

(TDMA) system was developed in [116]. Assuming slow block fading Rayleigh channels

with binary transmission, the maximum achievable diversity order effected by error control

coding (ECC) in MSC networks with K users is η = min(dmin, b1+K(1−Rc)c), where dmin

and Rc denote respectively the minimum (free) distance and the ECC rate [116,117].

However, viewing K transmitting users as a virtual antenna array suggests that the

attainable diversity order could be as high as K. Clearly, if Rc > 1/K, then MSC with

ECC cannot achieve this maximum diversity order. This is actually inherent to the diversity

properties of ECC. On the other hand, complex field coding (CFC) applied to co-located

(Nt, Nr) multi-antenna systems is known to achieve transmission rate of Nt symbols per

channel use with diversity order as high as the product of the number of transmit-receive

antennas, i.e., ηmax = NtNr [60,125]. This motivates adoption of distributed CFC (DCFC)
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in MSC networks to effect diversity order equal to the number of cooperating users K.

This chapter introduces a general MSC framework with full-diversity, flexible spectral

efficiency and controllable decoding complexity. Users are grouped in clusters that are sep-

arated with code division multiple access (CDMA). Within each cluster users cooperate to

reach the access point (AP), implementing MSC according to a two-phase TDMA protocol

(Section 4.3). Our first contribution is to show that the diversity order of MSC over fading

channels coincides with the diversity order when the links between cooperating users are

error-free (Section 4.3.1). As the latter can be thought as a single user transmission over

multiple input - single output (MISO) channels, two implications of this result are: i) the

diversity order of repetition coding is ηRC = 2; and ii) the maximum diversity order of dis-

tributed ECC is ηDECC = min(dmin, b1+K(1−Rc)c). The second contribution is to establish

that DCFC-based MSC enables diversity order equal to the number of users, ηDCFC = K

(Section 4.3.2). We further address cluster separation and demonstrate that when the num-

ber of clusters is larger than the spreading gain, flexible MSC protocols emerge trading off

spectral efficiency, error performance and complexity (Section 4.4). While coding gain is

affected in this under-spread case the diversity order is not, thus enabling MSC protocols

to achieve full diversity at maximum spectral-efficiency equal to that of non-cooperative

networks. By adjusting the number of cooperating users, MSC encoder, spreading gain

and/or the number of clusters, our general MSC framework is flexible to tradeoff among

spectral-efficiency, decoding complexity and diversity.

4.3 Multi-source cooperation

Consider the cooperative multiple access (MA) setup of Fig. 4.4 in which the set of active

users is divided into L clusters {Ul}L
l=1. In each cluster, Kl users {Ulk}Kl

k=1 cooperate in

transmitting symbol blocks slk := [slk1, . . . , slkN ]T of size N × 1 to the AP that we write as

U00. We assume that slk contains a cyclic redundancy check (CRC) code allowing detection

of correctly received packets. We let hl1k1,l2k2 := hl1k1,l2k21N denote the block Rayleigh

fading channel between users Ul1k1 and Ul2k2 ; and hlk := hlk1N the one between Ulk and

the AP. We further assume that these channels are uncorrelated and adopt the convention
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Figure 4.4: Multiple access (MA) channel is divided in cooperating clusters.

hlk,lk ≡ 1N . Let us postpone to Section 4.4 the issue of cluster separation and focus on

the operation of a single cluster, for which we set L = 1 and drop the cluster subscript l to

simplify notation.

Supposing that frame synchronization has been established, TDMA is used to separate

users per cluster as depicted in Fig. 4.5. The MSC protocol consists of two phases each

taking place over K slots. With symbol duration Ts, unit-energy pulse waveform p(t)

with non-zero support Ts and amplitude A, the waveform transmitted by source Uk during

phase-1 is

x
(1)
k (t) = A

N∑

n=1

sknp [t− ((k − 1)N + n)Ts] , t ∈ [0,KNTs). (4.6)

The waveforms {x(1)
k (t)}K

k=1 propagate through the shared wireless interface so that over

a burst of KNTs seconds each user in the cluster, say Uk, has available the waveform

y
(1)
k (t) =

∑K
j=1 hj,k(t)x

(1)
j (t) + n(t), where n(t) denotes AWGN with double-sided spec-

tral density N0/2. The waveform y
(1)
k (t) is subsequently match filtered yielding samples
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... ...

... ...

1 frame ( 2 K slots)

user 1 user 2 user K user 1 user 2 user K user 1... ...

Phase 1 Phase 2

s1s1 s2 sK v1 v2 vK

h1
h1

h1 h2
h2 hKhK

Figure 4.5: TDMA structure of an MSC protocol for a cluster with K active users.

... rr ...s1 s2 sK v1 v2 vKu
ψ(·)Π1 Π2

Figure 4.6: Encoder and interleaving modules of each cooperating user.

yk,jn =
∫ Ts

0 y
(1)
k [t− ((j−1)N +n)Ts]p∗(t)dt. Upon defining the aggregate KN ×1 transmit-

ted and received blocks s := [sT
1 , . . . , sT

K ]T and y(1)
k := [yk,11, . . . , yk,1N , yk,21, . . . , yk,KN ]T ,

the noise vector n(1)
k := [nk,11, . . . , nk,KN ]T and the diagonal channel matrix D(1)

k :=

diag(hT
k,1, . . . ,h

T
k,K), the input-output relationship per user Uk during phase-1 is

y(1)
k = AD(1)

k s + n(1)
k , k = 0, 1, . . . , K, (4.7)

where by convention hk,k ≡ 1N ∀k, nk,kn ≡ 0 for n ∈ [1, N ] and we recall that y(1)
0

corresponds to the received block at the AP. For future use, we note that the transmit SNR

is γ := A2/N0 and the average SNR in the Uk → Uj link is γk,j := (A2/N0)E[h2
k,j ] = γE[h2

k,j ].

Notice that by the end of phase-1 every user has available information about the symbol

blocks of all users in the cluster U . User Uk (k > 0) estimates the joint block s, with entries

drawn from a signal constellation S, using the maximum likelihood (ML) decoder [c.f. (4.7)]

ŝk = arg min
s∈SN

‖y(1)
k −AD(1)

k s‖. (4.8)

If symbols in s are uncoded, then (4.8) amounts to symbol-by-symbol detection since D(1)
k is

diagonal; whereas if the individual blocks sk are protected with ECC, then (4.8) implements

block detection. Since not all users in U decode s correctly, we define the set of those that



4.3 Multi-source cooperation 97

do as

D := {Uk | ŝk = s} ⊆ U . (4.9)

Users in D proceed to phase-2, but before transmission they process s as shown in Fig. 4.6.

The aggregate block s is fed to an interleaver, Π1, yielding the vector r = Π1s. The

interleaved block r is then encoded with a function ψ(·) to obtain u = ψ(r), which is

subsequently fed to a second interleaver, Π2, to obtain the block v = Π2u. This processing

per user in D can be summarized as

v = Π2u = Π2ψ(r) = Π2ψ(Π1s). (4.10)

Since all operations in (4.10) preserve dimensionality, we have that the blocks v,u, r ∈
RNK×1, the matrices Π1,Π2 ∈ RNK×NK and the encoder ψ : RNK×1 → RNK×1.

Each user in D transmits again in a TDMA fashion an N×1 sub-block of the block v :=

[v11, . . . , v1N , v21, . . . , vKN ]T . Specifically, Uk transmits the sub-block vk := [vk1, . . . , vkN ]T

using the waveform

x
(2)
k (t) = A

N∑

n=1

vknp [t− ((k − 1)N + n)Ts] , t ∈ [0,KNTs). (4.11)

The AP receives x
(2)
k (t) from all users Uk ∈ D and nothing from the remaining users

Uk /∈ D. To describe this reception, define the N × 1 channel vector h̃k := hk, if Uk ∈ D;

and h̃k := 0N , otherwise. Using this model, the block of samples at the matched filter

output of the AP in phase-2 is given by

y(2)
0 = AD̃Π2ψ(Π1s) + n(2)

0 , (4.12)

where D̃ := diag(h̃1, . . . , h̃K). The blocks y(1)
0 and y(2)

0 received in the two phases can be

combined in the aggregate input-output relationship

 y(1)

0

y(2)
0




2KN×1

= A


 D(1)

0 s

D̃Π2ψ(Π1s)


 +


 n(1)

0

n(2)
0


 (4.13)

that the AP relies on to jointly decode s. Note that all channels are assumed invariant over

the duration of the two phases. Furthermore, since we transmit KN symbols in 2KN time

slots, the spectral efficiency of single-cluster MSC is ξ = 1/2.
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If all the diagonal entries of D(1)
0 and D̃ were Rayleigh distributed, then (4.13) could

be thought as the input-output relationship of a coded MISO system transmitting s and

its encoded version over K antennas with only one antenna transmitting N symbol peri-

ods in a cyclic fashion. Equivalently, (4.13) could model an 1 ×K single input - multiple

output (SIMO) channel with K receive antennas, or, a single antenna time-selective block

fading channel with K degrees of freedom. In any event, the diversity order can be eval-

uated once the encoder ψ(·) has been specified. Having as elements the (Rayleigh) block

fading channels hk between Uk and the AP, D(1)
0 is Rayleigh distributed. However, the

second phase equivalent channels h̃k have a distribution that depends on the probability

of successful decoding – recall that h̃k := hk, if Uk ∈ D; and h̃k := 0N , otherwise. While

this distribution is not difficult to characterize it is certainly not Rayleigh; hence, D̃ is not

Rayleigh distributed either. We will prove later in Theorem 7 that even if D̃ is not Rayleigh

distributed the diversity order of MSC protocols coincides with the diversity order when D̃

is Rayleigh distributed.

Defining a particular MSC protocol amounts to specifying the triplet (Π2, ψ(·),Π1)

in (4.10). The diversity enabled by any MSC protocol is mainly determined by the encoder

ψ(·); while the interleavers Π1 and Π2 distribute relayed symbols to different channels in

order to effect the diversity order enabled by ψ(·). In this sense, the unifying framework

presented in this section subsumes a number of existing cooperative protocols as special

cases. Three of them are highlighted next.

[C1] Distributed repetition coding: Setting the permutation matrices Π1 = Π2 = I

and selecting the encoder as

ψR(r) = ψR(s) = ψR([sT
1 , . . . , sT

K ]T ) := [sT
2 , . . . , sT

K , sT
1 ]T , (4.14)

reduces the input-output relationships (4.7) and (4.12) to those encountered with

MSC based on repetition coding whereby Uk repeats Uk−1’s frame for k 6= 1 and U1

repeats UK ’s frame [96].

[C2] Distributed ECC: Let ϕ(·) be the function mapping a symbol vector over the Ga-

lois field GF (m), to a channel codeword and ϕ−1(·) the corresponding de-mapping
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function. Let also P denote the generator matrix of a channel encoder ψP (r) :=

ϕ(Pϕ−1(r)) with multiplication defined over GF (m). If P generates a Reed-Solomon

code, ψP (r) specifies the MSC protocol in [100]; whereas if P generates a convolu-

tional code, ψP (r) gives rise to the DCC based MSC protocol in [117]. To effect the

diversity, Π1 and Π2 have to be tailored for each chosen ECC [117]. Other channel

codes, including distributed trellis coded modulation [116], are also possible choices.

[C3] Distributed CFC: Consider now the encoder ψΦ(r) = Φr, where Φ is a block

diagonal matrix with complex entries and multiplication is over the complex field.

This selection of ψ(·) corresponds to distributed complex field coding (DCFC) that

we will elaborate on later in this section.

Remark 10 The set D of users that correctly decoded s does not need to be known to the

cooperating users. This feature is important in practical deployment and can be readily

verified by inspecting the encoder steps in (4.10) which clearly do not depend on D.

4.3.1 Diversity Analysis

The diversity order η in (4.1) enabled by the generic MSC protocol we described so far

depends on the encoder ψ(r) in (4.10). Even though this precludes assessment of the

diversity order without referring to a specific ψ(r), we can obtain a general result by relating

the MSC setup with an equivalent single-user transmission of [sT ,vT ]T (comprising the

systematic and parity symbols) over a single-antenna block fading channel D(1)
0 . If the

links between cooperating users are error-free, then D ≡ U and (4.12) becomes

y(2)
0 = D(1)

0 Π2ψ(Π1s) + n(2)
0 . (4.15)

The AP can, therefore, decode s as if it were transmitted by a single user over a single

time-selective fading channel. The only difference between (4.12) and (4.15) is that the

channel matrix D̃ in (4.12) is replaced by D(1)
0 in (4.15). From a statistical point of view,

the only difference between these two models is the probability distribution of D(1)
0 and

D̃; from a practical perspective, we can think of (4.15) as the limiting case of (4.12) with
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perfect decoding in user-to-user links. Regardless of the interpretation, the important point

is stated in the following theorem.

Theorem 7 Let η[Π2, ψ(·),Π1] be the diversity order of the MSC protocol with input-output

relations given by (4.7) and (4.12). Likewise, let β[Π2, ψ(·),Π1] be the diversity order of

the equivalent single user protocol with input-output relations (4.7) and (4.15). Then, for

any encoder ψ(·) and permutation matrices Π1, Π2, it holds that

η[Π2, ψ(·),Π1] = β[Π2, ψ(·),Π1]. (4.16)

To prove Theorem 7 we need two lemmas. In Lemma 2 we assess the diversity order

conditioned on the set of decoders D (see Appendix A for the proof). In Lemma 3, we

characterize the probability distribution of D as γ →∞ (see Appendix B for the proof).

Lemma 2 If η(D) := limγ→∞ log[Pe(γ|D)]/ log(γ) denotes the diversity order of the MSC

protocol in Theorem 7 conditioned on the decoding set D, then

η(D) ≥ max[0;β − (K − |D|)], (4.17)

where |D| is the cardinality of D and β := β[Π2, ψ(·),Π1].

Lemma 3 The probability Pr(D) of the decoding set D is such that

lim
γ→∞

log [Pr(D)]
log(γ)

= − (K − |D|) . (4.18)

Lemma 2 establishes the intuitively expected result that the diversity order decreases by

the number K−|D| of users who did not decode s correctly. However, Lemma 3 shows that

as γ → ∞ the probability of this event behaves precisely as γ−(K−|D|). These two effects

annihilate each other leading to Theorem 7 that we prove next.

Proof of Theorem 7: From the theorem of total probability Pe(γ) =
∑
D Pe(D) Pr(D),

and thus

η = − lim
γ→∞

log [
∑
D Pe(D) Pr(D)]
log(γ)

= −min
D

{
lim

γ→∞
log [Pe(D) Pr(D)]

log(γ)

}
, (4.19)
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where the second equality is a manifestation of the fact that the slowest term dominates

the convergence ratio. This can be further separated as

η = min
D

{
− lim

γ→∞
log [Pe(D)]

log(γ)
− lim

γ→∞
log [Pr(D)]

log(γ)

}
= min

D

{
η(D)− lim

γ→∞
log [Pr(D)]

log(γ)

}
.

(4.20)

The first limit in (4.20) is given by Lemma 2 and the second by Lemma 3, based on which

we obtain

η = min
D
{max[0;β − (K − |D|)] + (K − |D|)} = β (4.21)

after substituting (4.17) and (4.18) into (4.20). ¤

The value of Theorem 7 is twofold. On the one hand, it establishes that diversity results

for MISO channels carry over to judiciously designed MSC protocols. In particular, two

immediate implications of Theorem 7 are stated in the following corollaries.

Corollary 3 Diversity order of the repetition coding based MSC protocol in [C1] is

η(I, ψR(·), I) = 2.

Proof: For repetition coding, the equivalent single-user protocol described by (4.7)-(4.15)

can be readily shown to correspond to an uncoded 2× 1 MISO channel which is known to

provide second-order diversity. ¤

Corollary 4 For the MSC protocol based on distributed ECC in [C2] with minimum dis-

tance dmin and code rate Rc, there exist matrices Π1(P) and Π2(P) so that

η[Π2(P), ψP (·),Π1(P)] = min(dmin, b1 + K(1−Rc)c). (4.22)

Proof: The result in (4.22) holds true for a single-antenna time-selective block fading chan-

nel; see e.g., [69, Ch.14]. It is thus true for MSC with distributed ECC because of Theorem 7.

¤

On the other hand, Theorem 7 establishes that designing good encoders ψ(·) is equivalent

to designing diversity-enabling codes for co-located multi-antenna transmitters with the

advantage that the latter is a well-understood problem. An interesting observation in this
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regard is that since there are K uncorrelated Rayleigh channels in (4.15), the potential

diversity order is K. MSC protocols based on distributed repetition coding or distributed

ECC fail to enable this diversity order. The solution in co-located multi-antenna systems

is to use complex field coding (CFC) [125], which motivates exploring CFC possibilities in

a distributed setup.

4.3.2 Distributed Complex Field Coding

While in principle any matrix Φ with complex entries could be used, the diversity order

enabled by the DCFC protocol in [C3] depends critically on the choice of Φ. To make this

point clear, we start by specifying the permutation matrices Π1, Π2 as KN -dimensional

periodic interleavers. Letting ei denote the ith element of the canonical basis of RKN , we

select

Π1 = ΠKN := [e1, eN , . . . , e(K−1)N+1, e2, eN+1, . . . , eKN ],

Π2 = ΠNK := [e1, eK , . . . , e(N−1)K+1, e2, eK+1, . . . , eKN ]. (4.23)

The period of Π1 = ΠKN is K and consequently it changes the ordering of s so

that in r = Π1s, same symbol indices across users appear consecutively in r =

[s11, s21 . . . , sK1, s12, . . . , sKN ]T . Likewise, the period of Π2 = ΠNK is N , so that

Π2 = ΠT
1 = Π−1

1 .

The permutation matrix Π1 models the interleaver Π1 shown in Fig. 4.7. Each terminal

inD correctly decodes the N symbols of all users including its own symbols that are arranged

in the K vectors sk := [s1k, . . . , sNk]T , k ∈ [1,K]. These KN symbols are fed to the

interleaver Π1 which outputs the N vectors rn := [sn1, . . . , snK ]T , n ∈ [1, N ], that contain

the nth symbols of all K terminals. In matrix-vector form, this relation can be written as

[rT
1 , . . . , rT

N ]T := r = Π1s := Π1[sT
1 , . . . , sT

K ]T . (4.24)

We consider the DCFC based MSC protocol in which each of these rn blocks is CFC-

encoded independently yielding the vectors un := Θrn, corresponding to the selection

Φ := diag(Θ, . . . ,Θ) in [C3]. These N vectors un := [vn1, . . . , vnK ]T , n ∈ [1, N ], are
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u = [u1, …, uN]T

v = ΠΠΠΠ2u

v = [v1, …, vK]T

ΦΦΦΦ = diag(ΘΘΘΘ,…,ΘΘΘΘ)

ΠΠΠΠ1 ΦΦΦΦ ΠΠΠΠ2

CFC stage

Figure 4.7: Block diagram of DCFC per cooperating user.

then fed to the interleaver Π2 whose output consists of K vectors vk := [v1k, . . . , vNk]T ,

k ∈ [1,K], each containing the kth element of all vectors un, n ∈ [1, N ]. Again, this can be

written using matrix-vector notation as

[vT
1 , . . . ,vT

K ]T := v = Π2u := Π2[uT
1 , . . . ,uT

N ]T . (4.25)

User Uk transmits the vector vk leading to the phase-2 input/output relationship (4.12).

We then de-interleave the received blocks at the AP to obtain [c.f. (4.12)]

Π1y
(2)
0 = A(Π1D̃Π2)Φr + Π1n

(2)
0 . (4.26)

Interestingly, since Π2 = Π−1
1 we have Π1D̃Π2 = diag(h(2)

1 , . . . , h
(2)
K , . . . , h

(2)
1 , . . . , h

(2)
K ).

Thus, upon defining y(2)
0n := [y(2)

n1 , . . . , y
(2)
nK ]T , n(2)

0n := [n(2)
n1 , . . . , n

(2)
nK ]T and D(2)

0n :=

diag(h(2)
1 , . . . , h

(2)
K ); and recalling that Φ is block diagonal, we can write

y(2)
0n = AD(2)

0n un + n(2)
0n = AD(2)

0n Θrn + n(2)
0n , n ∈ [1, N ]; (4.27)

which amounts to separating (4.26) in N decoupled equations, each involving the K × 1

vectors rn, y(2)
0n , and n(2)

0n instead of the KN × 1 vectors r, y(2)
0 , and n(2)

0 .

If we finally combine y(2)
0n in (4.27) with its counterpart y(1)

0n := [y(1)
n1 , . . . , y

(1)
nK ]T from (4.7)

corresponding to the channel matrix D(1)
0n := diag(h1 . . . hK), the ML decoder for a DCFC
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based MSC protocol is

r̂n = arg min
rn∈SK

∥∥∥∥∥∥


 y(1)

0n

y(2)
0n




2K×1

−A


 D(1)

0n

D(2)
0n Θ




2K×K

rn

∥∥∥∥∥∥
. (4.28)

It is worth stressing that DCFC decoding in (4.28) operates on blocks of K symbols. (Near)-

ML decoders, such as the sphere decoder [37,68,130], can be used to obtain ŝn from (4.28)

with polynomial average complexity (cubic for moderate size K and SNR [37]). Certainly,

if only quadratic complexity can be afforded, zero forcing, minimum mean-squared error or

decision-feedback equalizer options are available but they cannot guarantee to achieve the

maximum possible diversity order.

The advantage of the formulation in (4.27) is that the CFC encoder Θ operates on

K × 1 symbol blocks which reduces complexity considerably relative to a KN -symbol CFC

encoder. Also, basic CFC results derived for co-located multi-antenna systems [125] can be

directly applied to the distributed MSC setup. In particular, it is useful to recall the notion

of maximum distance separable (MDS) matrices.

Definition 3 A matrix Θ is called MDS with respect to the constellation S if and only if

for any two different symbols r1 6= r2 ∈ S, all the coordinates of Θr1 and Θr2 are different

i.e., [Θr1]i 6= [Θr2]i, ∀i.

The MDS property leads to the following corollary of Theorem 7.

Corollary 5 If Θ is MDS with respect to S, the DCFC based MSC protocol in [C3] with

Φ = diag(Θ, . . .Θ) and Π1, Π2 given by (4.23) enables diversity equal to the number of

users; i.e.,

η[Π2,Φ(·),Π1] = K. (4.29)

Proof: Because of Theorem 7 it suffices to show that β[Π2,Φ(·),Π1] = K. Let dH(un1,un2)

be the Hamming distance between codewords un1 and un2. When D(2)
0n is Rayleigh dis-

tributed, the diversity order is β[Π2,Φ(·),Π1] = minun1,un2 dH(un1,un2) [60, Sec. 2.1.2].

The MDS property guarantees that minun1,un2 [dH(un1,un2)] = K for un = Θrn and con-

sequently β[Π2,Φ(·),Π1] = K. ¤
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Remark 11 Relative to repetition based single-source cooperation (SSC), the MSC proto-

col based on distributed ECC or CFC can also enhance coding gains because relay trans-

missions are coded across time and space. As each source in MSC is served by multiple

cooperators, for the same spectral efficiency, even ECC based MSC can achieve higher diver-

sity gains than SSC. And since each cooperator serves multiple sources simultaneously, for

the same diversity order, MSC can offer higher spectral efficiency than SSC. With regards

to the cooperative multi-user protocol in [76] which relies on the presence of idle users,

the unifying MSC protocol here does not require idle users. However, if KI idle users are

available and willing to cooperate, the protocol here can also take advantage of them to

increase the diversity order up to K + KI per cluster.

4.4 Multi-cluster operation

Let us now return to the multi-cluster setting with L > 1 non-overlapping clusters com-

municating with the AP. Cluster separation can be accomplished with any multiple access

(MA) scheme which in principle should not affect the properties of the DCFC based MSC

protocol. However, it will turn out that MA with CFC can affect spectral efficiency of the

MSC protocol.

Recall that slk := [slk1, . . . , slkN ]T denotes the data packet of Ulk and sl := [sT
l1, . . . , s

T
lK ]T

the lth cluster’s aggregate block1. To separate clusters at the AP we rely on CDMA with

spreading code signatures {cl(t)}L
l=1. To this end, the waveform transmitted by Ulk is

x
(1)
lk (t) = A

N∑

n=1

slkncl[t− (N(k − 1) + n)Ts], t ∈ [0, kNTs). (4.30)

The correlation between cl(t) and cm(t) will be denoted as ρml :=
∫ Ts

0 cl(t)cm(t)dt and

arranged in the symmetric L× L matrix R with entries [R]ml := ρml.

User Ulk receives the superposition of what the remaining LK−1 users transmit, namely

y
(1)
lk (t) =

L∑

m=1

K∑

j=1

hlk,mj x
(1)
mj(t) + n

(1)
lk (t). (4.31)

1Although generalizations are immediate, to avoid further complication of the already heavy notation we

will assume that the clusters have equal number of active users; i.e., Kl = K, ∀l ∈ [1, L].
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For notational simplicity, let us consider the waveform y
(1)
00 (t) = y(1)(t) received by the AP.

Notice that depending on the correlation matrix R, optimal reception may require joint

detection of the L × 1 vector s̄kn := [s1kn, . . . , sLkn]T containing the nth symbol of the

kth user across the L clusters. The joint detector will rely on the L × 1 decision vector

y(1)
kn := [y(1)

1kn, . . . , y
(1)
Lkn]T whose components are given by

y
(1)
lkn :=

∫ knTs

kn(Ts−1)
y

(1)
lk (t)cl(t− knTs)dt = A

L∑

m=1

ρmlhmksmkn + n
(1)
lkn. (4.32)

Upon defining D(1)
k := diag(hk1, . . . , hkL), we can rewrite (4.32) in matrix-vector form as

y(1)
kn = ARD(1)

k s̄kn + n(1)
kn , k ∈ [1,K], n ∈ [1, N ]. (4.33)

The complexity of ML detection required to recover s̄kn from y(1)
kn depends on the dimen-

sionality L. While (4.33) models reception at the AP, a similar relationship characterizes

reception in every cooperating user allowing Ulk to construct the estimate ŝlk of its cluster’s

aggregate block sl. Similar to Section 4.3, we define Dl := {Ulk | ŝlk = sl} ⊆ Ul; and let

h
(2)
lk = hlk if Ulk ∈ Dl, and h

(2)
lk = 0 else. As before, users Ulk ∈ Dl participate in phase-2.

Each cluster in phase-2 operates separately, repeating the steps described in Section 4.3.2

to construct vl := [vl11, . . . , vl1N , vl21, . . . , vlKN ]T = Π2ΦΠ1sl with Π1 and Π2 as in (4.23)

and Φ = diag(Θ, . . . ,Θ) ∈ RNK×NK . Each user Ulk ∈ Dl then transmits the sub-block

vlk := [vlk1, . . . , vlkN ]T . Except for notation, these steps are identical to those in Sec-

tion 4.3.2. The difference is in the received signal which now comprises the superposition

of waveforms transmitted from users in all L clusters

y
(2)
0 (t) = A

L∑

l=1

K∑

k=1

N∑

n=1

vlkncl[t− (N(k − 1) + n)Ts] + n
(2)
0 (t). (4.34)

As in (4.32), we let y
(2)
lkn :=

∫ knTs

kn(Ts−1) y
(2)
0 (t)cl(t − knTs)dt so that upon defining y(2)

kn :=

[y(2)
1kn, . . . , y

(2)
Lkn]T , v̄kn := [v1kn, . . . , vLkn]T and D(2)

0k = diag(h(2)
1k , . . . , h

(2)
Lk), we can write

y(2)
kn = ARD(2)

0k v̄kn + n(2)
kn , the counterpart of (4.33) for phase-2. For future use, it is con-

venient to define y(2)
0n := [y(2)T

1n, . . . ,y(2)T
Kn]T , v̄n := [v̄T

1n, . . . , v̄T
Kn]T , R̄ := diag(R, . . . ,R)

and D̃ := diag(D(2)
01 , . . . ,D(2)

0K) and write

y(2)
0n = AR̄D̃v̄n + n(2)

0n . (4.35)
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On the other hand, let uln := [ul1n, . . . , ulKn]T , un := [uT
1n, . . . ,uT

Ln]T and ΠLK :=

[e1, eL, . . . , e(L−1)K+1, e2, eK+1, . . . , eKL] be a KL-dimensional periodic interleaver with

period L. According to these definitions, we have v̄n = ΠLKun. Also, note that since

uln = Θrln, for rn := [rT
1n, . . . , rT

Ln]T and Φ̄ = diag(Θ, . . . ,Θ) ∈ RLK×LK , we have that

y(2)
0n = AR̄D̃ΠLKΦ̄rn + n(2)

0n . (4.36)

Concatenating (4.33) and (4.36) we obtain the ML decoder for rn as

r̂n = arg min
rn∈SLK

∥∥∥∥∥∥


 y(1)

0n

y(2)
0n




2LK×1

−A


 R̄D(1)

0

R̄D̃ΠLKΦ̄




2LK×LK

rn

∥∥∥∥∥∥
. (4.37)

Dimensionality of the multi-cluster ML decoder (4.37) is KL that has to be compared with

K, the corresponding dimensionality of the ML decoder in (4.28) for the single-cluster case.

Even though the input-output relationships (4.33) and (4.36) as well as (4.7) and (4.12)

model different systems they exhibit similar forms. An important consequence of this

observation is that Corollary 3 establishing the diversity order of a single-cluster DCFC

based MSC protocol can be readily generalized.

Corollary 6 If Θ is MDS with respect to S, the multi-cluster DCFC based MSC protocol

with the ML decoder in (4.37) achieves diversity equal to the number of users in each cluster;

i.e.,

η[Π2, Φ̄,Π1,R] = K. (4.38)

Proof: For a Rayleigh channel, the coefficients hlk are complex Gaussian and consequently

the channel D(1)
0eq := R̄D(1)

0 is also Rayleigh. As in Corollary 5, notice from (4.35)

that the diversity for Rayleigh distributed channel D(2)
0eq := R̄D̃ is β[Π2, Φ̄,Π1,R] =

minv̄n1,v̄n2 dH(v̄n1, v̄n2), [60, Sec. 2.1.2]. Since ΠLK is a permutation matrix, it follows

that dH(v̄n1, v̄n2) = dH(Φ̄rn1, Φ̄rn2). The minimum dH is achieved when all but one clus-

ter transmit the same symbol block. Supposing without loss of generality that the first

cluster transmits the distinct symbol block we have that rn1 := [rT
1n1, r

T
2n . . . , rT

Ln]T and

rn2 := [rT
1n2, r

T
2n . . . , rT

Ln]T . The MDS property guarantees that for these rn1, rn2 selected,
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the minimum Hamming distance is dH(Φ̄rn1, Φ̄rn2) = K. Invoking now Theorem 7, we

deduce that η[Π2, Φ̄,Π1,R] = β[Π2, Φ̄,Π1,R] = dH(Φ̄rn1, Φ̄rn2) = K. ¤

As expected, Corollary 4 proves that the diversity enabled by DCFC remains invariant

regardless of the structure of the correlation matrix R.

Remark 12 For clarity, we have considered MA in fixed cooperative networks. However,

the same scheme and results are also valid for ad-hoc networks. In this case, different

sources per cluster cooperate while communicating with (possibly) different destinations.

Different clusters operate without coordination.

4.4.1 Effect of under-spreading in spectral efficiency

Consider a set of orthonormal functionsN := {νs(t)}S
s=1 with

∫ Ts

0 νs1(t)νs2(t)dt = δ(s1−s2),

where δ(·) denotes Kronecker’s delta. It is customary to write the signature waveforms

in (4.30) as the linear combination

cl(t) =
S∑

s=1

clsνs(t), t ∈ [0, Ts), l ∈ [1, L], (4.39)

where the vector cl := [cl1, . . . , clS ]T is the spreading code specific to the cluster Ul. Arrang-

ing the codes in a matrix C := [c1, . . . , cL] we can write the correlation matrix as R = CHC.

Changing the set N we can model different CDMA systems; if the functions are delayed

versions of each other νs(t) = p[St− (s−1)Ts)], then (4.39) amounts to symbol-periodic di-

rect sequence (DS)-CDMA; if they are different subcarriers, νs(t) = exp[j2π(s−1)t/Ts]p(t),

then (4.39) models multi-carrier (MC)-CDMA.

Transmission of νs(t) requires S times more bandwidth than transmission of the pulses

p(t) in (4.6). Consequently, the spectral efficiency of multi-cluster DCFC is

ξ = L/(2S). (4.40)

An important choice in the selection of C is whether the spreading gain S constrains a

fortiori the number of codes L or not. This calls for distinguishing between under-spread

and over-spread MA:
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Definition 4 In an over-spread MA system, the number of codes L and the spreading gain

S are constrained by S ≥ L. We say that an MA system is under-spread if L and S can be

selected independently.

Over-spread orthonormal MA: In this case, C is formed by orthonormal vectors, e.g.,

Walsh-Hadamard sequences, so that R := CHC = IL. But the latter requires L ≤ S

because a set of orthonormal vectors in RS cannot contain more than S elements. Thus,

orthonormal MA is over-spread in the sense of Definition 4.

Under-spread MA: Symbol-periodic non-orthogonal signatures, including those in MC-

CDMA and DS-CDMA with Gold or Kasami sequences [24], implement under-spread MA

since L can be much larger than S. Long pseudo-noise (PN) sequences also give rise to

under-spread MA with approximately uncorrelated signatures. Since the latter can be

theoretically infinite, L and S are decoupled and long code DS- or MC-CDMA is also

under-spread in the sense of Definition 4.

Since in orthonormal MA, clusters do not interfere with each other, the multi-cluster

model in (4.37) can be reduced to a set of single-cluster models (4.28). Thus, the ML de-

coding space dimension is reduced from KL to K. PN sequences, on the other hand, have

found widespread use due to their robustness to propagation delays and relaxed synchro-

nization requirements. The decision as to whether to use under- or over-spread MA may

also depend on other factors as well.

MSC protocols with under-spread versus over-spread MA are fundamentally different in

terms of bandwidth efficiency. In over-spread MA the spectral efficiency of MSC protocols is

hard limited by ξMSC ≤ 1/2 [c.f. (4.40) and Definition 4] and cooperation comes at the price

of reducing the spectral efficiency ξNC = 1 of the corresponding non-cooperative system.

In e.g., orthonormal MA, this is because L ≤ S clusters can have orthogonal signatures.

In under-spread MA, bandwidth efficiency and cooperative diversity are not necessarily

traded off since L and S are decoupled. Indeed, we can obtain ξMSC = ξNC by reducing the

spreading gain by half, i.e., SMSC = SNC/2 while maintaining the same number of clusters

L [c.f. (4.40)]. Note that even if we reduce the spreading gain by half, after completing both
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Table 4.1: Comparison of different protocols

Performance metrics Repetition coding Distributed ECC DCFC Non-cooperative

over-spread MA diversity (η) 2 min(dmin, b1 + K(1− Rc)c) K 1

spectral eff. (ξ) 1/2 1/2 1/2 1

complexity 1 KN K 1

under-spread MA diversity (η) 2 min(dmin, b1 + K(1− Rc)c) K 1

spectral eff. (ξ) 1 1 1 1

complexity L LKN LK 1

MSC phases each information symbol has been transmitted twice and the effective coding

gain is still the same as in non-cooperative MA. Nonetheless, a consequence of Corollary 6

is that the diversity gain is η[Π2, Φ̄,Π1,R] = K, regardless of the correlation structure

R. Thus, under-spread MA with DCFC achieves full diversity without sacrificing spectral

efficiency.

4.5 Comparing MSC with non-cooperative protocols

So far, we have considered three different MSC protocols, namely distributed repetition

coding, distributed ECC and DCFC defined in [C1], [C2] and [C3], respectively. We also

distinguished between under- and over-spreading for cluster separation as per Definition 4,

for a total of six different alternatives. These alternatives differ in their diversity η [c.f. (4.1)],

spectral efficiency ξ [c.f. (4.40)] and decoding complexity as we summarize in Table 4.1.

Repetition coding can afford the lowest decoding complexity, but also enables the small-

est diversity order. Moreover, the diversity order it enables is independent of the number

of users in the cluster. The diversity order can be increased with either distributed ECC

or DCFC at the expense of increasing decoding complexity. It is known that η ≈ 4 brings

the wireless channel within a 10% of an AWGN channel’s error performance [121], meaning

that K ≈ 4 captures enough of the diversity advantage. Thus, a slight complexity increase

brings in a substantial error performance gain. This is particularly true for DCFC that

achieves full; i.e., η = K, diversity. For distributed ECC a larger cluster is possibly needed.

Under- and over-spreading are fundamentally different in terms of bandwidth efficiency
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ξ. In the rows corresponding to over-spread MA, ξ is reduced from 1 to 1/2 for any of

the MSC protocols. The value of ξ in the corresponding columns of Table 4.1 for under-

spread MA is not affected when we move from non-cooperative MA to MSC. The value

ξ = 1 is an arbitrary selection and should be interpreted as an option to allow for a

fair comparison between over-spread non-cooperative MA and under-spread cooperative

MA. Interestingly, the use of under-spread MA with DCFC achieves full diversity K while

avoiding the bandwidth penalty usually associated with cooperative protocols as we can see

by comparing the second with the fifth row of Table 4.1.

All in all, in a complexity-limited system repetition coding offers the best MSC protocol,

while in a bandwidth-limited setup DCFC-based MSC with under-spreading for cluster

separation should be preferred. In intermediate cases, DCFC-based MSC with (over-spread)

orthonormal cluster separation achieves full diversity with reasonable spectral-efficiency

(ξ = 1/2) and a modest increase in complexity.

4.6 Simulations

In this section, we present simulated examples to corroborate our analytical claims. Each

user transmits blocks with N = 50 symbols per TDMA slot. Except for one example, we

assume error-free channels between users. We choose the CFC encoder Θ to be the unitary

Vandermonde matrix in [125]

Θ =
1√
K

FH
Kdiag(1, α, . . . , αK−1), (4.41)

where FK is the K ×K fast Fourier transform (FFT) matrix with (i, j)th entry [FK ]ij :=

e−j2π(i−1)(j−1)/K ; and α := ejπ/(2K) if K is power of 2, α := ejπ/9 if K = 3, and α := ejπ/25

if K = 5.

DCFC based MSC with orthonormal MA.

Consider first the DCFC based MSC protocol with orthonormal CDMA signatures used

for cluster separation. According to Table 4.1, the ML decoder operates on blocks of length

K, the spectral efficiency is ξ = 1/2 and the diversity order is η = K. To benchmark perfor-

mance consider error-free links between users, in which case D ≡ U . Fig. 4.8 demonstrates
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Figure 4.8: BER of orthonormal DCFC-based MSC with variable number of users, and

error-free user-to-user links.

how the bit error rate (BER) varies with K for a DCFC based MSC protocol. We verify

that the diversity order is, indeed, equal to the number of users K. For reference, we also

depict the BER of a non-cooperative system and repetition based MSC [96]. For K = 2

repetition based MSC outperforms DCFC based MSC by a small margin. This is because

in this case both protocols have the same diversity gain but the coding gain of DFCF is

smaller. The advantage of DCFC is apparent for larger cooperating clusters. Setting e.g.,

K = 5, we can see that with a minimal investment in decoding complexity, DCFC based

MSC returns a 4− 5 dB gain with respect to repetition based MSC due to the increase in

diversity from η = 2 to η = K = 5.

Even though the simulated curves in Fig. 4.8 are for error-free user-to-user links, the

same results are obtained when we account for the effect of decoding errors in these links

as verified by Fig. 4.9 for K = 3. We consider different values of the relative SNR ∆ :=

γk,j/γk = E[h2
k,j ]/E[h2

k], where we recall γk,j is the average SNR of the Uk → Uj link

and γk is the average SNR in the Uk →AP link. Regardless of ∆, the diversity order is
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Figure 4.9: BER of orthonormal DCFC-based MSC with variable relative SNRs in the links

between user pairs.

always η = K = 3 as asserted by Theorem 7, but the coding gain changes, as predicted.

Notwithstanding, the gap between error-free Uk → Uj links and ∆ = 5dB is approximately

2dB, and reduces to less than 1dB for ∆ = 10dB. Thus, in many practical settings proximity

of cooperators ensures that MSC protocols work almost as well as non-cooperative single-

user multi-antenna systems.

DCFC based MSC with under-spread MA.

Spectral efficiency in the simulated systems of the previous subsection is ξ = 1/2. This

is not the case for DCFC with under-spread MA which according to Table 4.1 requires

ML decoding on blocks of length KL, but attains spectral efficiency ξ = 1 and diversity

order η = K. In Fig. 4.10 we show BER for K = 3, S = 8 and L = 4 – L = 8 with

PN codes used to implement under-spread cluster separation. Verifying Corollary 6, the

diversity order is η = K = 3 regardless of the number of clusters L. When L = 8 the

spectral efficiency is ξ = 1 and it is pertinent to compare DCFC with a non-cooperative

protocol with orthonormal MA (for which ξ = 1 too). The diversity enabled by DCFC
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Figure 4.10: BER of under-spread DCFC-based MSC with different values of spectral effi-

ciency.

leads to a considerable BER reduction. When L = 4 the spectral efficiency is ξ = 1/2.

In this case, it is possible to use DCFC based MSC with orthonormal MA. We can see

that gaining in spectral efficiency with DCFC entails a loss in coding gain of about 2dB.

Interestingly, the coding gain is affected by the use of under-spread MA but the diversity

order is not. Complexity allowing, DCFC based MSC with under-spread MA is the choice

for bandwidth-limited scenarios, whereas if bandwidth is plenty the use of orthonormal MA

should be preferred for its larger coding gain.

DCFC versus Distributed ECC.

Even though we established that the diversity order of DCFC is in general larger than

the diversity of distributed (D)ECC in [C2] (see Table 4.1), the latter has in general a larger

coding gain. To demonstrate these differences, we consider clusters with K = 3 users and

compare DCFC based MSC against MSC based on distributed convolutional coding (DCC)

with rate 1/2 and generator in octal form [15/7]. The free distance of this code is dmin = 5
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Figure 4.11: BER of orthonormal DCFC and DCC based MSC protocols.

and consequently the diversity order is ηDCC = 2. The interleavers Π1, Π2 are designed as

in [117] to ensure that this diversity is actually achieved.

Fig. 4.11 illustrates that due to its larger diversity order DCFC outperforms DCC at

high SNR while the opposite is true at low SNR due to the larger coding gain of DCC based

MSC. We can also use CC and DCFC together to jointly exploit the coding gain of CC and

the diversity order of DCFC. This is done by encoding each user’s bits with a CC before

transmitting sk. At the receiver, we adopt soft iterative decoding between CC and DCFC

decoders along the lines of [125]. As depicted in Fig. 4.11, there is about 1dB gain achieved

with a CC of memory 2. Another advantage of DCFC is that the interleavers are simple

periodic multiplexers as opposed to carefully designed interleavers needed for DCC in [117].

4.7 Summary

We introduced a general multi-source cooperation (MSC) framework for multi-cluster net-

works that allows flexible tradeoffs between error performance, spectral efficiency and com-

plexity. Our MSC protocols rely on code division multiple access (CDMA) for cluster
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separation and time division multiple access (TDMA) for user separation per cluster. The

unifying framework includes many existing protocols as particular cases and suggests the

introduction of distributed complex field coding (DCFC) to enable diversity as high as the

number of per-cluster users. We also demonstrated the different spectral efficiency prop-

erties of over-spread, e.g., orthonormal, and under-spread, e.g., MC-CDMA or DS-CDMA

with Gold or Kasami sequences, cluster separation. Whereas in the former cooperative

diversity is traded off for bandwidth in the latter there is no bandwidth penalty associated

with user cooperation.

Adjusting the number of cooperating users, MSC encoder, spreading gain and/or number

of clusters, our general MSC framework is flexible to tradeoff among spectral-efficiency,

decoding complexity and diversity. By increasing complexity, the combination of DCFC

with under-spread multiple access enables high order diversity with spectral efficiency up

to that of non-cooperative systems. In cases where bandwidth is not the limiting resource,

DCFC-based MSC with over-spread orthonormal cluster separation allows one to collect

full diversity with reasonable spectral-efficiency and a modest increase in complexity.
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Appendices

4.7.1 Proof of Lemma 2

Let δ (f ;g) be the indicator function of f 6= g taking on the values δ (f ;g) = 1 if f 6= g and

δ (f ;g) = 0 if f = g; and consider two distinct codewords [sT ,vT ] = [sT
1 , . . . , sT

K ,vT
1 , . . . ,vT

K ]

and [s̃T , ṽT ] = [s̃T
1 , . . . , s̃T

K , ṽT
1 , . . . , ṽT

K ]. If D = U , then MSC is equivalent to a multi-

antenna channel, in which case the diversity achieved depends on the triplet (Π2, ψ(·),Π1).

If we define β(s; s̃) as the pairwise error probability (PEP) diversity order we have [19]

β(s; s̃) := − lim
γ→∞

log [Pr(s → s̃|D = U)]
log(γ)

=
K∑

k=1

δ
(
[sT

k ,vT
k ]; [s̃T

k , ṽT
k ]

)
. (4.42)

That is, the probability that we declare s̃ when the actual transmitted block is s goes to

zero as γ−β(s;s̃), with β(s; s̃) given by (4.42). Consequently, if [sT
k ,vT

k ] = [s̃T
k , ṽT

k ] user Uk

does not contribute to the diversity order of this particular pair and if [sT
k ,vT

k ] 6= [s̃T
k , ṽT

k ]

Uk contributes one unit to the PEP exponent in (4.42).

If Uk /∈ D then h
(2)
k = 0, which is equivalent to having vk and ṽk punctured. Thus,

each Uk /∈ D reduces β(s; s̃) by (at most) 1 which implies that the PEP diversity order

conditioned on D is bounded as

η(s; s̃|D) := − lim
γ→∞

log [Pr(s → s̃|D)]
log(γ)

=
∑

k|Uk∈D
δ
(
[sT

k ,vT
k ]; [s̃T

k , ṽT
k ]

)

≥ max[0;β(s; s̃)− (K − |D|)]. (4.43)

Finally, note that β = mins;s̃ β(s; s̃) and likewise for η(D). But if (4.42) holds for any pair

of codewords it must hold for their minima and (4.17) follows. ¤

4.7.2 Proof of Lemma 3

Let F (k, j) := {ŝk,j 6= sj} denote the event that Uk fails to correctly decode Uj ’s message.

The probability of F (k, j) can be obtained by averaging over the realizations of hk,j to

obtain

Pr{F (k, j)} = Ehk,j
[Pr{F (k, j)|hk,j})] = Ehk,j

[
1−

(
1−Q

(√
κγ|hk,j |2

))N
]

, (4.44)
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where γ|hk,j |2 is the instantaneous SNR in the Ui → Uj link, N is the length of the symbol

vector from one user, and κ is a constant dependent on the constellation. It is not difficult

to show that as γ increases we have, see e.g., [69, Chap. 14]

lim
γ→∞

log [Pr{F (k, j)}]
log(γ)

= lim
γ→∞

log
[
Ehk,j

(
NQ

(√
κγ|hk,j |2

))]

log(γ)
= −1. (4.45)

Since the events F (k, j) are independent, the probability of a given user being part of D is

such that

Pr(Uk /∈ D) ≤ Pr




K⋃

j=1,j 6=k

F (k, j)


 =

K∑

j=1,j 6=k

Pr (F (k, j)) . (4.46)

But since (4.45) is valid for all F (k, j) we have that [c.f. (4.45), (4.46)]

lim
γ→∞

log [Pr(Uk /∈ D)]
log(γ)

≤ lim
γ→∞

log
[∑K

j=1,j 6=k Pr (F (k, j))
]

log(γ)
= −1. (4.47)

On the other hand, the probability of D can be bounded as

Pr(D) =
∏

Uk /∈D
Pr(Uk /∈ D)

∏

Uk∈D
Pr(Uk ∈ D) ≤

∏

Uk /∈D
Pr(Uk /∈ D), (4.48)

where the inequality follows since Pr(Uk ∈ D) ≤ 1. Using (4.48) we can finally write for the

limit in (4.18)

lim
γ→∞

log [Pr(D)]
log(γ)

=
∑

Uk /∈D
lim

γ→∞
log [Pr(Uk /∈ D)]

log(γ)
. (4.49)

Since the sum in (4.49) contains K − |D| elements, (4.18) follows after substituting (4.47)

into (4.49). ¤
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Chapter 5

Cooperative diversity in random

access networks

Instead of agreeing on a fixed channel allocation, RA networks let users transmit at random

contending to reach the common AP. Letting users transmit packets independently with

probability p implies that successful packet delivery depends not only on the physical channel

but on how many other users decided to transmit, leading to a packet delivery probability

function Pd(p). In turn, this implies that an average of µ(p) := pPd(p) packets are delivered

per time slot. A remarkable property of RA networks is that despite the lack of coordination

among users, it is possible to achieve a reasonable average number of packets delivered by

selecting p so as to achieve µ := max[µ(p)]. In e.g., the slotted Aloha protocol, µ = 0.36

which means that about 1 packet is delivered every 3 time slots.

In the present chapter, we discuss user cooperation in random access (RA) channels

by drawing from two different sources. On the one hand, we draw from well-established

spread spectrum random access (SSRA) protocols; see e.g., [2,43,62] and references therein.

And on the other hand, we draw from the observation that user cooperation can be viewed

as a form of multipath, a type of diversity for which SS with long PN sequences used as

spreading codes is particularly well suited [76].

An intuitive notion underlying our contribution is that user cooperation is a form of

diversity well matched to the very nature of RA networks. Indeed, the random nature of
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RA dictates that at any given time only a fraction of potential users is active, the others

having either empty queues or their transmissions deferred. Accordingly, given that only

a few out of the total number of transmitters are active at any given time, transmission

hardware resources are inherently under-utilized in wireless RA networks. As we will show,

user cooperation can exploit these resources to gain a diversity advantage, without draining

additional energy from the network and without bandwidth expansion. Reinforcing this

intuitively reasonable notion, the number of temporarily idle users increases with the size

of the network, indicating that user cooperation is available when most needed; i.e., in

congested heavily-populated networks. While intuitive notions not always turn out to be

true, this one will; the main purpose of this chapter being precisely to establish that as the

network size increases, there is an increasing diversity advantage to be exploited leading to

a limiting scenario in which the throughput of cooperative RA over wireless fading channels

approaches that of an equivalent system operating over an additive white Gaussian noise

(AWGN) channel.

Building on an existing network diversity multi-access (NDMA) protocol [109], coop-

erative RA has been also considered in [54, 55], where re-transmitting cooperators aid the

separation of multiple collided packets. However, NDMA-based schemes are known to be

challenged by channel ill-conditioning, difficulty in determining the number of collided pack-

ets and relatively high complexity at the access point as well as at the relays, which require

analog (waveform storage and) forwarding [54,55].

The rest of the chapter is organized as follows. The spatial distribution of users and

the physical propagation model are introduced in Section 5.1 to formalize the notion that

cooperation takes place among nearby users. In Section 5.1.1, we provide a high level

description of how our cooperative RA protocol operates and explain different user states

that emerge due to cooperation. We then introduce in Section 5.2 a novel non-cooperative

SSRA protocol upon which a cooperative version is built later on. The throughput of this

protocol is analyzed in Section 5.2.1 to serve as a benchmark as well as to illustrate the

tools utilized. A consequence of this analysis, discussed in Section 5.2.2, is to motivate the

beneficial role of diversity by showing how it can close the large throughput gap between
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Figure 5.1: A snapshot of a cooperative RA network. Users are divided into four classes:

Active-A users trying to reach nearby idle users, Active-B users trying to reach the AP,

Idle users that have empty queues or deferred their transmissions, and Cooperators that

are helping Active-B users in reaching the AP.

corresponding systems operating over wireless and wireline channels.

Having made the case for diversity, we argue about a symbiotic relation between RA and

user cooperation and introduce in Section 5.3 our Opportunistic Cooperative Random Ac-

cess (OCRA) protocol based on the opportunistic exploitation of highly reliable links among

neighboring users. We then move on to study its throughput in Section 5.4 and introduce

our main results regarding OCRA’s asymptotic throughput as the number of users grows

large in Section 5.4.1. Section 5.4.1 contains only the most relevant results, with a more de-

tailed asymptotic behavior analysis postponed to Section 5.5, where we show how pertinent

theorems formalize intuitive comments made in this introduction about the suitability of

user cooperation as the form of diversity for RA networks. Finally, synchronization issues

motivate an unslotted counterpart of OCRA that we present in Section 5.6.
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5.1 Preliminaries

The problem addressed in this chapter is that of designing a cooperative RA protocol.

Consider a set of J users, J = {Uj}J
j=1, communicating with an access point (AP) in a

wireless RA network as depicted in Fig. 5.1. User j and its position in a coordinate system

centered at the AP will be denoted by Uj . With these positions considered random and

uniformly distributed within a circle of radius R, we express the probability of Uj to have

distance from the AP smaller than r as

Pr{‖Uj‖ < r} =
r2

R2
, 0 ≤ r ≤ R, (5.1)

where ‖Uj‖ denotes the 2-norm of the position vector Uj . User positions are further assumed

independent.

Users transmit blocks of duration T with Uj ’s block denoted as xUj := {xUj (t)}T−1
t=0 .

The broadcast nature of the wireless channel dictates that the signal zUj1
= {zUj1

(t)}T−1
t=0

received at any point is the superposition of all users’ signals, {xUj2
}J

j2=1; i.e.,

zUj1
=

J∑

j2=1

h(Uj2 , Uj1)xUj2
+ n, (5.2)

where n := {n(t)}T−1
t=0 is zero-mean additive white Gaussian noise (AWGN) with variance

E[n2(t)] = N0, and h(Uj2 , Uj1) denotes the Rayleigh block fading channel coefficient cor-

responding to the link Uj2 → Uj1 . When Uj1 ≡ AP we will denote zAP (t) ≡ z(t) and

h(Uj2 , AP ) ≡ h(Uj2).

The average power received at Uj1 from a source Uj2 transmitting with power P (Uj2)

adheres to an exponential path loss model

P (Uj2 → Uj1) =
ξ P (Uj2)

‖Uj1 − Uj2‖α
, (5.3)

with ξ and α ≥ 2 denoting the pathloss constant and exponent respectively [69, Chap.14].

As a special case, the power received at the AP from Uj2 is P (Uj2 → AP ) = ξP (Uj2)/‖Uj2‖α.

Consistent with (5.3), the Rayleigh block fading coefficient h(Uj1 , Uj2) in (5.2) is complex
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Gaussian distributed with zero-mean and variance

var[h(Uj1 , Uj2)] := E [h(Uj1 , Uj2)h
∗(Uj1 , Uj2)]

= E
[|h(Uj1 , Uj2)|2

]

=
ξ

‖Uj1 − Uj2‖α
. (5.4)

We assume that fading coefficients linking different users are uncorrelated and that channel

state information is obtained by the receivers (e.g., using a training sequence) to permit

coherent reception. We further note that block fading coefficients h(Uj1 , Uj2) are constant

for the duration of a transmission block but different and uncorrelated across blocks.

5.1.1 Two-phase cooperation

Transmission in the proposed cooperative RA protocol proceeds in two phases. In the first

phase, “phase-A”, the user sends a packet with sufficient power to be correctly decoded

by nearby peers; while in the second phase, “phase-B”, the set of peers that successfully

decoded this packet transmit cooperatively with power sufficient to reach the AP. If we

manage to balance conflicting power requirements, what will happen in phase-A is that

nearby users decode the original packet while the power received at the destination is

negligible. On the one hand, this implies that phase-A users do not interfere severely

with nodes which are at the same time operating in phase-B. On the other hand, phase-A

succeeds in locally disseminating information so that subsequent phase-B transmissions are

enriched with a certain degree of user cooperation diversity.

It is not necessary to follow a given user from phase-A to phase-B, because what will

happen to current phase-A users when they reach phase-B is statistically indistinguishable

from what is happening to current phase-B users. It thus suffices to study a snapshot

of the RA network which comprises current phase-A and phase-B users. At this given

snapshot, the set of users J is temporarily divided into a set of NA “active-A” users,

A = {Aj}NA
j=1, operating in phase-A of their transmission trying to reach nearby users; a

set of NB active-B users, B = {Bj}NB
j=1, communicating their packets to the AP; and NI

idle users I = {Ij}NI
j=1 that either have empty queues or decided not to transmit. Clearly,
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we have that J = A ∪ B ∪ I. A fourth class of users, encompasses the sets of cooperators

Cj = {Ck
j }Kj

k=0 associated with each active-B user Bj . The set Cj contains the Kj users that

correctly decoded Bj ’s phase-A packet in the previous slot, and we adopt the convention

that C0
j = Bj .

Remark 13 It is worth stressing that the different sets of users are not necessarily mutually

exclusive. Actually, the sole constraint on the classes is

I ∩ (B ∪ A) = ∅, (5.5)

meaning that a terminal cannot be idle and active-A or active-B at the same time, but is

allowed to be active-A and active-B in the same slot, as we will detail later. Also, it is

convenient to regard cooperators as a parallel class in the sense that

Cj ⊆ I ∪ A, (5.6)

implying that a cooperator is either regarded as active-A, if it independently decided to

transmit its own information, or as idle, if it did not. The reason for these requirements

will become clear in Section 5.3.

It will turn out, that phase-A will be the phase determining the system’s performance; a

perhaps intuitive result since it is in this phase that the need arises to balance the conflicting

requirements of transmitting with as low power as possible while reaching as many idle

users as possible. To this end, we will isolate one of the statistically identical phase-A

user nodes, call it U0 ∈ A, and study the tradeoff between phase-A power and number

of idle users reached. Without loss of generality, we further assume that U0 = ANA
. Let

C0 = {Ck
0 }K0

k=0 denote the set of (idle) users that successfully decode U0’s phase-A packet

with the convention that C0
0 = U0. Note that the nodes in the set C0 are not cooperating

with U0 in the current slot, but will do so in the next one.

The key to delineate the aforementioned power tradeoff is to observe that the closer an

idle node is to U0 the larger is the probability of decoding U0’s active-A packet correctly.

Consequently, we will consider distance-ordered sets with I
(k)
0 , A

(k)
0 and B

(k)
0 denoting the
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kth closest to U0, idle, active-A and active-B user respectively1; i.e.,

‖I(1)
0 − U0‖ ≤ ‖I(2)

0 − U0‖ ≤ . . . ≤ ‖I(k)
0 − U0‖, (5.7)

I
(1)
0 . . . I

(k)
0 ∈ I ,

with similar expressions holding true for active-A and active-B users. Likewise, we will

order the sets of cooperators according to their distance from the active-B user they are

cooperating with

0=‖C(0)
j −Bj‖≤‖C(1)

j −Bj‖≤ . . .≤‖C(Kj)
j −Bj‖, j ∈ [1, NB] (5.8)

where the first equality follows from the convention C
(0)
j = Bj .

Note that consistent with the random nature of RA networks, the degree of cooper-

ation Kj that each Uj receives is itself random, not requiring pre-established agreement

among users. Cooperative RA throughput will be determined by the statistics of Kj , the

characterization of which constitutes a central topic of this chapter.

5.2 Non-Cooperative SS Random Access

In this section, we present a non-cooperative spread spectrum (SS) RA protocol upon which

we will build the cooperative version in Section 5.3. While many such non-cooperative SSRA

systems have been proposed and analyzed in the literature (see e.g., [2,43,62] and references

therein) we summarize here the one introduced in [127] that we regard as the best starting

point for our cooperative protocol in Section 5.3. The queue model is depicted in Fig. 5.2,

where each of the J users has an infinite-length buffer for storing L-bit fixed length packets

that arrive at a rate of λ packets per packet duration. The packet arrival processes are

identically distributed (i.d.), not necessarily independent, yielding a total arrival rate of Jλ

packets per packet duration.

The L bits of each packet are spread by a factor S (a.k.a. spreading gain) to construct a

transmitted packet of T := SL chips. Spreading is implemented using a long pseudo-noise

(PN) sequence c := {c(t)}t∈Z with period P = SL = T . Letting dUj := {dUj (l)}L−1
l=0 denote

1Subscripts and superscripts in parentheses will henceforth signify ordering.
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Figure 5.2: Queue and transmission diagram of a non-cooperative SSRA network. Packets

are spread using random shifts of a common long PN sequence.

a data packet of user Uj , and xUj := {xUj (t)}T−1
t=0 the corresponding transmitted packet, we

have

xUj (Sl + s) =
√

P (Uj) dUj (l)c(Sl + s− τUj ), (5.9)

l ∈ [0, L− 1], s ∈ [0, S − 1],

where we note that c is a common long PN sequence shared by all users, τUj is a user-specific

shift applied to c, and P (Uj) is the power transmitted by node Uj .

These spread packets are transmitted to the AP, which acknowledges successfully de-

coded packets through a common feedback channel. As in [2,43,62] feedback is assumed to

be instantaneous and free of errors.

We are now ready to define the non-cooperative SSRA protocol considered in this chapter

by the following rules:

[R1] Time is divided into slots, each comprising T chip periods. If users decide to transmit,

they do so at the beginning of a slot.

[R2] Packets are spread for transmission according to (5.9). The shift τUj is selected at

random by each user; and P (Uj) = P0‖Uj‖α/ξ effects average power control so that all

users are received at the AP with the same average power P0 [c.f. (5.3)].

[R3] If a given user’s queue is not empty, the user transmits the first queued packet in the

next slot with probability p.
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Rule [R1] defines a slotted system and its purpose is to simplify throughput analysis; [R2]

effects statistical user separation and power control; and [R3] controls the transmission rate,

with p adjusted so as to maximize throughput.

To better appreciate [R2], let N ≤ J denote the number of users active in a given

slot and consider the block z := {z(t)}T−1
t=0 received at the AP. Specializing (5.2) to the

superposition of these N transmissions, the received chips (entries of z) are

z(Sl+s)=
N∑

j=1

√
P (Uj)h(Uj)dUj (l)c(Sl+s−τUj ) + n(Sl+s). (5.10)

To recover packets from a given user, say UN without loss of generality, we compen-

sate the random phase by multiplying with the normalized channel conjugate h∗n(UN ) :=

h∗(UN )/|h(UN )| and despread z using the properly delayed version of the long PN sequence

c(t− τUN
). The resultant decision vector rUN

:= {rUN
(l)}L−1

l=0 has entries

rUN
(l)=

h∗n(UN )
S

S−1∑

s=0

z(Sl + s)c(Sl + s− τUN
) (5.11)

=
√

P (UN)|h(UN)|dUN
(l)+

N−1∑

j=1

I(l;UN→AP ;Uj)+ñ(l)

where we used h(UN )h∗n(UN ) ≡ |h(UN )|. Note that the noise variance is reduced by S;

i.e., var[ñ(l)] = N0/S, and interference terms emerge due to users {Uj}N−1
j=1 ; the symbol

I(l; Uj0→AP ;Uj) denotes the interference of user Uj to the communication of bit l from UN

to the AP, and is given by

I(l;UN→AP ;Uj) =
1
S

√
P (Uj) h(Uj)h∗n(UN )dUj (l)

×
S−1∑

s=0

c(Sl + s−τUj )c(Sl + s−τUN
). (5.12)

The most important property of PN sequences is that they have a white-noise like autocor-

relation E[c(t − τUj )c(t − τUN
)] ≈ δ(τUj − τUN

), from where we deduce that if τUj 6= τUN
,

then

E[I(l; UN→AP ; Uj)] = 0 (5.13)

var[I(l;UN→AP ;Uj)] = P0/S (5.14)

E[I(l; UN→AP ; Uj1)I∗(l; UN→AP ; Uj2)]= 0, ∀j16=j2 (5.15)
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where in deriving the last equality we also exploited the independence of users’ fading

coefficients when τUj1
= τUj2

.

Combining (5.11) with (5.13), we find readily that the expected value of the decision

vector is

E[rUN
(l)] =

√
P (UN )|h(UN )|dUN

(l) l ∈ [0, L− 1], (5.16)

from where it follows that a suitable demodulator is d̂Uj0
= sign(rUj0

). The interference

increases the variance of the decision variable rUN
(l) in (5.11), which after using properties

(5.14) and (5.15) turns out to be

var[rUN
(l)] = N0/S + P0(N − 1)/S, l ∈ [0, L− 1]. (5.17)

Eq. (5.17) implies that the interference increases the probability of error because it increases

the variance of the decision statistic. As in e.g., [114, Chap.2] we can model the interference

as Gaussian and independent for different bits, implying that the probability that a packet

is correctly decoded is fully determined by the signal to interference-plus-noise ratio (SINR).

When N users are active, the instantaneous SINR is [c.f. (5.16) and (5.17)]

γN :=
E2[rUN

(l)]
var[rUN

(l)]
= S

P (UN )|h(UN )|2
N0 + (N − 1)P0

, (5.18)

and the average SINR is found by taking expected values with respect to the channel

distribution [c.f. (5.18)]

γ̄N := E[γN ] =
S

N0/P0 + N − 1
, (5.19)

where we used that P (UN )|E[h(UN )|2] = P0 which follows from the average power control

in [R2] and the channel model in (5.3).

We established in (5.16) that through [R2] we effect statistical separation of different

users’ packets, with packet error probability (PEP) determined by the SINR in (5.19).

Notice though, that there is also a chance to have τUj = τUN
for some j 6= N . Both this and

the interference term will determine the throughput of this non-cooperative RA protocol,

motivating a distinction between what we term soft and hard collisions which we define as

follows.
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Definition 5 (Soft and hard collisions)

[a] We say that Uj0 experiences a “hard collision” (HC) if τUj0
= τUj for some j 6= j0; the

HC event is

HC(Uj0) :=
⋃

j 6=j0

{
τUj0

= τUj

}
. (5.20)

[b] Given that Uj0 does not experience a hard collision, we say that it experiences a “soft

collision” (SC) when the packet is lost due to interference:

SC(Uj0) := {d̂Uj0
6= dUj0

| HCc(Uj0)}, (5.21)

where HCc(Uj0) denotes the complement of HC(Uj0).

Conditioned on the number of active users N , we can evaluate the probability that Uj0

experiences a HC as the probability that any of the N − 1 interferers chooses the same PN

shift

PHC(N) := Pr{HC(Uj0) | N} = 1− Pr{HCc(Uj0) | N}

= 1−
(

1− 1
T

)N−1

, (5.22)

where we used that since there are T possible PN shifts, Pr{τUj0
= τUj} = 1/T . Likewise,

the SC probability PSC(N) can be inferred from the SINRs in (5.18) and (5.19). For a

given channel realization h(UN ), PSC(N) is a function of the instantaneous SINR in (5.18);

however, what matters from a throughput perspective is PSC(N) averaged over all channel

realizations. We thus write

PSC(N) := Pr{SC | N} = Pe (γ̄N ) [1− PHC(N)], (5.23)

where Pe(γ̄N ) is a function that maps the link average SINR, γ̄N , to the average PEP.

The function Pe(γ̄N ) is determined by the channel model and the transmission/reception

parameters which include the type of modulation, type of receiver and forward error cor-

recting (FEC) code. The existence of Pe(γ̄N ) is guaranteed since we model the interference

as Gaussian and independent across bits. In fact, given Rayleigh interferers Pe(γ̄N ) is also

a function of N , S and P0/N0 as clarified in Remark 15.
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A packet is successfully decoded if and only if it neither experiences a hard collision,

nor a soft one. Accordingly, the packet success probability with N active users (N − 1

interferers) is

Ps(N) := 1−PHC−PSC =
(

1− 1
T

)N−1

[1− Pe(γ̄N )]. (5.24)

The throughput of this non-cooperative SSRA system can be obtained from (5.24) as we

analyze in the next section.

5.2.1 Throughput Analysis

A possible performance measure of RA networks is the average departure rate µ; if we let

Ps =
∑J

n=1 Pr{N = n}Ps(n) be the probability that a packet transmitted by the reference

user Uj0 is successfully decoded by the AP, then

µ = pPs. (5.25)

However, throughput instead of departure rate is the standard metric whose definition

follows from the concept of stability. We let qj(m) be the number of packets in Uj ’s queue

in the mth slot, and say that this queue is stable if, [58]

lim
m→∞Pr{qj(m) ≤ x} = Q(x) with lim

x→∞ Q(x) = 1. (5.26)

The conditions in (5.26) assert that the system is stable if and only if there exists a positive

probability mass function of {qj(m)}J
j=1 when m →∞. A system is called stable if all the

queues are stable, and throughput is defined as follows:

Definition 6 The maximum aggregate throughput is defined as the unique quantity η such

that the system is stable if Jλ < η and unstable if Jλ > η.

Thus, η is defined as the maximum aggregate arrival rate that the system can afford with

stable queues. If Jλ < η, then individual queues have a bounded number of packets and

the packets get transmitted with finite delay. If Jλ > η, then the queues grow without limit

and the packets experience infinite delays.
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The system will be clearly unstable if λ > µ. Accordingly, the throughput cannot exceed

the departure rate η ≤ Jµ. What is not so obvious is whether λ < µ yields a stable system.

Indeed, this is not true in general but for symmetric and stationary systems it is true due

to Loynes’ theorem [58]. For this subclass of systems, we thus have

η = Jµ. (5.27)

A challenge with the protocol defined by rules [R1]-[R3] is that the service processes are

not necessarily stationary due to the possibility of having empty queues. Notwithstanding,

by resorting to a dominant system approach, [111], and following an equivalence argument

(see [23,71]), we can establish that η = Jµ for the SSRA protocol introduced in Section 5.2

to obtain the following proposition.

Proposition 4 Consider the protocol defined by rules [R1]-[R3], and not necessarily in-

dependent but i.d. arrival processes with rate λ. Then, the average aggregate throughput

is

η =η(J,N0/P0, S, p) (5.28)

:=Jp

J−1∑

n=0

(
J − 1

n

)
pn(1− p)J−1−n

(
1− 1

T

)n

[1−Pe(γ̄n+1)]

with γ̄n+1 := 1/(N0/P0 + n/S).

Proof:Define the dominant system by replacing rule [R3] with:

[R3’] Users transmit with probability p. If a user’s queue is empty, then the corresponding

user transmits a dummy packet.

Rule [R3’] is commonly used to decouple the different users’ queues. But here we are

interested in the fact that it renders the system stationary and allows application of Loynes’

theorem. Thus, using (5.27) for the dominant system we have

ηDS = Jµ = JpPs, (5.29)

with ηDS denoting the dominant system’s throughput.
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To compute Ps, we condition on the number of interfering users N − 1 to obtain

Ps =
J−1∑

n=0

Pr{N − 1 = n}Ps(n + 1) (5.30)

=
J−1∑

n=0

Pr{N − 1 = n}
(

1− 1
T

)n

[1− Pe(γ̄n+1)],

where the limits of the summation are because the number of interferers is between 0 and

J − 1, and the second equality follows from (5.24) with N − 1 = n.

On the other hand, since interferers act independently N − 1 follows a binomial distri-

bution with parameters p and J−1 and accordingly Pr{N−1 = n} =
(
J−1

n

)
pn(1−p)J−1−n,

which upon substitution into (5.30) yields

Ps =
J−1∑

n=0

(
J − 1

n

)
pn(1− p)J−1−n

(
1− 1

T

)n

[1− Pe(γ̄n+1)]. (5.31)

Furthermore, substituting (5.31) into (5.29) yields (5.28) and establishes the result for the

dominant system defined by rules [R1], [R2] and [R3’].

We can now repeat the argument in [23], for what we consider identical instantiations

of the arrival processes fed to the dominant and original systems. Given that we are adding

(dummy) packets, the queues in the fictitious dominant system can never be shorter than

the queues in the original system. It follows that if the dominant system is stable, then so

must be the original system; hence η ≥ ηDS . Assume now that η > ηDS strictly, to infer

that there exists an arrival rate η > λJ > ηDS that makes the original system stable and the

dominant system unstable. But this is a contradiction since if the dominant system were

unstable, there would be no long-term need for dummy packets since all the queues in the

dominant system would eventually become continuously backlogged with real packets. The

dominant system is therefore equivalent to the original system; hence, the original system

is also unstable. So, we must have η = ηDS , and (5.28) is also valid for the original system

defined by rules [R1]-[R3]. ¤

Note that η in (5.28) is a function of the number of users J , the noise to signal ratio

N0/P0, the spreading gain S and the transmission probability p. We are usually interested
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in the maximum stable throughput (MST) defined as

ηmax(J,N0/P0, S) = max
p
{η(J,N0/P0, S, p)} , (5.32)

and achieved at p = pmax. In this particular work, we will be interested in the asymptotic

MST that we define as

η∞(N0/P0, S) = lim
J→∞

ηmax(J,N0/P0, S), (5.33)

and interpret as the average number of packets transmitted per unit time in a system with

a very large number of users.

In Section 5.4, we will compare η∞ for the SSRA protocol introduced in this section

against a suitably defined cooperative RA protocol. Before moving on to that, let us show

what advantage diversity has to offer in RA systems.

5.2.2 On the role of diversity in RA

For this section only, we consider different models for the channels h(Uj) and present a

motivating example of the function Pe(γ̄N ). Let us suppose that we use BPSK modulation

with coherent detection and code the packet with a BCH block code capable of correcting up

to εmax errors. With Q(x) := (1/
√

2π)
∫∞
x e−u2/2 du denoting the Gaussian tail function and

recalling the Gaussian model of interference, the bit error probability with γN instantaneous

SINR is q(γN ) = Q(
√

2γN ) [69, sec. 5.2] and the corresponding instantaneous PEP is given

by [69, p.437]

Pe,i(γN ) = 1−
εmax∑

ε=0

(
L

ε

)
qε(γN )[1− q(γN )]L−ε. (5.34)

It is interesting to compare the throughput as determined by (5.28) for different channel

models. The best possible scenario is when h(Uj) is a deterministic constant (AWGN

channel), in which case γN = γ̄N and the corresponding average PEP is thus PG
e (γ̄N ) =

Pe,i(γN ).

A better model for the wireless environment however, is a Rayleigh fading channel where

γN is random Rayleigh distributed (since |h(Uj)|2 is). In this case, we have to average (5.34)
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over the channel (Rayleigh) distribution fγN (γN ) to obtain

PR
e (γ̄N ) =

∫ ∞

0
Pe(γN )fγN (γN ). (5.35)

It can be easily verified that for moderate and large γ̄N we have PR
e (γ̄N ) À PG

e (γ̄N ),

ultimately leading to a much smaller throughput when otherwise equivalent systems operate

over Rayleigh channels than when they operate over AWGN channels.

The throughput over wireless channels can be increased with diversity techniques, e.g.,

multiple transmit antennas. Consider a terminal with κ antennas transmitting a packet

as in (5.9) using a user and antenna-specific τUj ,κ so that despreading z in (5.10) with

c(t − τUj ,κ) recovers the signal transmitted by Uj ’s κth antenna. This way the AP can

decode κ copies received through uncorrelated Rayleigh channels, {hk(Uj)}κ
k=1, yielding

the aggregate channel model |h(Uj)|2 :=
∑κ

k=1 |hk(Uj)|2 when maximum ratio combining

is used. If we let the uncorrelated channels have equal average received powers so that

P (Uj)E[|hk(Uj)|2] = P0/κ, the channel distribution fγN (γN ) is chi-square with 2κ degrees

of freedom. To fully characterize this distribution we repeat steps (5.11) - (5.19) to obtain

the per-path average SINR

γ̄(N, κ) := S
1/κ

N0/P0 + N−1 + (κ− 1)/κ
, (5.36)

where in the denominator, the term N0/P0 comes from the AWGN, the term N − 1 from

the interference from other terminals and the term (κ− 1)/κ from the (self-)interference of

the remaining κ−1 paths of the same terminal. The corresponding aggregate SINR is given

by γ̄N := κγ̄(N, κ) and the average PEP P κ
e (γ̄N ) can be found from (5.35) with fγN (γN )

modified accordingly [69, sec. 14.4].

A particularly important fact for the present work is that if κ → ∞ in the κ-order

diversity channel, then the channel |h(Uj)|2 approaches an AWGN channel. Indeed,

lim
κ→∞P (Uj)|h(Uj)|2 = lim

κ→∞κ
1
κ

κ∑

k=1

P (Uj)|hk(Uj)|2 = P0, (5.37)

where the limit follows from E[|hk(Uj)|2] = P0/κ and the strong law of large numbers.

But (5.37) implies that |h(Uj)|2 converges to a constant which by definition leads to an
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Figure 5.3: High-order diversity closes the enormous gap between the performance of RA

over wireless Rayleigh fading channels with respect to wireline AWGN channels (J = 128,

S = 32, L = 1024, 215/255 BCH code capable of correcting t = 5 errors).

AWGN channel. We can now take the limit in (5.36) to obtain

lim
κ→∞κγ̄(N,κ) =

S

N0/P0 + N
= γ̄N+1. (5.38)

And combine (5.38) with (5.37) to claim that as the diversity order κ → ∞, the PEP

P∞
e (γ̄N ) := limκ→∞ P κ

e (γ̄N ) of this ∞-order diversity channel approaches the PEP of a

Gaussian channel with a (in most cases small) increase in SINR; i.e., P∞
e (γ̄N ) = PG

e (γ̄N+1).

For each of the channels considered, we depict in Fig. 5.3 the normalized throughput

as a function of the transmission probability p. It comes as no surprise that the MST

over a wireless (Rayleigh) channel is miserable, being almost an order of magnitude smaller

than the MST of the wireline AWGN channel. Corroborating the implications of (5.37),

this sizeable gap can be closed by diversity techniques, as hinted by the twofold increase

observed with 2-order diversity and the close-to-AWGN MST enabled with 8-order diversity.

We summarize this important observation in the following remark.

Remark 14 For a given ECC, let ηG(J,N0/P0, S, p) and ηκ(J,N0/P0, S, p) be the
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throughput over an AWGN channel and a κ-order diversity channel, respectively.

Defining the throughput over an ∞-order diversity channel as η∞(J,N0/P0, S, p) :=

limκ→∞ ηκ(J,N0/P0, S, p) we can write [c.f. (5.19), (5.37) and (5.38) ]

η∞(J,N0/P0, S, p) = ηG(J,N0/P0 + 1, S, p). (5.39)

This also implies the same relation between MSTs and asymptotic MSTs, η∞∞(N0/P0, S) =

ηG∞(N0/P0 + 1, S), a fact that we will exploit later on in pertinent remarks. With the SNR

before spreading being N0/P0 À 1 for usual values of SNR and S, we deduce that (5.39)

entails almost identical throughputs.

To characterize the diversity advantage in the ensuing sections without resorting to a specific

transmission/reception scheme, we introduce the following definition.

Definition 7 In the family of PEP functions {P κ
e (γ̄N )}κ∈N, P κ

e (γ̄N ) represents the PEP

for a κ-order diversity channel when the SINR is γ̄N := κγ̄(N,κ) with γ̄(N, κ) as in (5.36).

Specifically, P κ
e (γ̄N ) maps the average SINR to the average PEP for terminals with κ

transmit antennas so that the information bearing signal is transmitted over κ indepen-

dent Rayleigh channels {hk(Uj)}κ
k=1 with equal powers P (Uj)hk(Uj) = P0/κ via user and

antenna-specific PN delays τUj ,κ.

An example of the family {P κ
e (γ̄N )}κ∈N is the one generated by BCH codes and described by

(5.34) - (5.36). While in deriving these equations we used the Gaussian model of interference

this assumption is not strictly necessary for our claims as we discuss in the following remark.

Remark 15 In deriving (5.17) we modelled the interference plus noise term
∑N−1

j=1 I(l;UN→
AP ;Uj) + ñ(l) in (5.11) as a Gaussian random variable independent for different values of

l. This approximation was later used in this section to derive the PEP expressions (5.34)

and (5.35). The Gaussian model of interference is often accurate in practice; more generally

(and perhaps more importantly) though, Proposition 4 as well as other results derived in

the ensuing sections are true regardless of this assumption. Indeed, what is relevant for our

results is the existence of the family {P κ
e (γ̄N )}κ∈N in Definition 7. Clearly, P κ

e (γ̄N ) can be

defined in terms of the exact correlation of
∑N−1

j=1 I(l; UN→AP ; Uj)+ñ(l) for different values
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Figure 5.4: OCRA is a two-phase cooperative protocol. During phase-A users transmit

with small power trying to recruit idle users as cooperators for phase-B. The seemingly

conflicting requirements of small ρ and large K turn out to be asymptotically compatible.

of l. Note that if the interference plus noise is not modelled as independent for different

bits l, P κ
e depends on higher moments of the interference plus noise distribution and its

characterization requires knowledge of N , S and Po/No. In our context of iid Rayleigh

normalized channels, P κ
e (γ̄N ) is in fact a function of only γN , N , S and Po/No. Since

these three parameters are fixed throughout, we will write P κ
e (γ̄N ) as a function of γN only

and keep the rest implicit for brevity as in Definition 7. Also, even though the relation in

(5.39) does not hold true without the Gaussian assumption, P∞
e (γ̄N ) = PG

e (γ̄N+1) still does.

Moreover, as can be easily verified by simulations, η∞(J,N0/P0, S, p) ≈ ηG(J,N0/P0, S, p)

as noted in Remark 14.

The present section has established that diversity offers the potential for a large through-

put increase in RA networks; the point is, of course, whether and how this diversity can be

enabled. This is the theme we deal with in the next section, where we explore the suitability

of user cooperation to enable high order diversity in random access networks.
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5.3 Opportunistic Cooperative Random Access

Because users transmit at random in RA networks a number of users remain idle over any

given slot. Moreover, the transmission probability pmax that achieves MST decreases as

J increases and the percentage of temporarily idle users that do not transmit in a given

slot increases. This implies that a large number of potential cooperators (idle users) are

available per active user and motivates user cooperation as a suitable diversity enabler for

wireless RA.

Indeed, this large number of potential cooperators suggests a high probability of some

of them having a good signal reception of any given user. The Opportunistic Cooperative

Random Access (OCRA) protocol introduced in this section exploits this potential advan-

tage since it relies on idle users with good reception opportunities. OCRA is a two-phase

protocol as described in Section 5.1.1 and is defined by the following operating conditions;

see also Fig. 5.4.

[S0] Let κ be a constant limiting the maximum achievable diversity. The period of the PN

spreading code c(t) is chosen to be P = κT + 1.

[S1] At the beginning of each slot, if Uj ’s queue is not empty, Uj enters phase-A with

probability p and moves the first packet in the queue, dUj := {dUj (l)}L−1
l=0 , to a single-

packet buffer that we term phase-A buffer.

[S2] Phase-A: When in phase-A, we say that Uj ↔ Aj is an active-A user and transmits

a packet spread according to (5.9) with PN-shift and power given by [c.f. [R2]]

τAj = 0, P (Aj) = ρP0‖Aj‖α/ξ, (5.40)

with ρ ∈ (0, 1). Notice that the PN shift is deterministically chosen and the transmis-

sion power is so that the packet is received at the AP with fractional power ρP0. A

random integer, τBj ∼ U [1, T ], uniformly chosen over [1, T ] is included in the packet

header to coordinate PN-shifts during phase-B. Let this transmitted packet be denoted

as xAj := {xAj (t)}T−1
t=0 .
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[S3] Phase-A handshake: Any idle user Ik that successfully decodes xAj becomes a

cooperator Ik ↔ Ck
j and places dUj in a single-packet buffer designated for cooperation

purposes. This successful decoding is acknowledged to Aj who collects a total of Kj

acknowledgments and feeds forward the number Kj to the cooperators. Similar to

e.g., [2, 43,62] this handshake is assumed to be instantaneous and error free.

[S4] User Uj enters phase-B in the slot immediately after entering phase-A.

[S5] Phase-B: Let Cj = {Ck
j }Kj

k=0 be the set of cooperators as defined in Section 5.1.1

comprising C0
j = Bj ↔ Uj and the Kj cooperators recruited in phase-A. Each of the

Ck
j transmits the packet dUj spread according to (5.9) using

τCk
j

= τBj + τkT, P (Ck
j ) =

P0

Kj + 1
‖Ck

j ‖α/ξ, (5.41)

with τBj the number received in phase-A’s packet header, and the integer τk ∼ U [0, κ−
1]. The power scaling is so that the total received power at the destination is P0. Let

xCk
j

:= {xCk
j
(t)}T−1

t=0 denote these transmitted packets.

The number of cooperators Kj will be henceforth termed the “cooperation order” of

Bj and the number κj of PN shifts chosen by at least one cooperator will be called the

“diversity order” of Bj .

[S6] AP acknowledgement: If the superposition of phase-B packets corresponding to Bj

is successfully decoded, the AP acknowledges this event through a feedback channel. If

an acknowledgement is not received, the packet dBj is placed back in Bj ’s queue. The

cooperators discard this packet in any event.

[S7] Idle operation: When not transmitting, Uj ↔ Ij correlates the received signal with

{c(t)}T−1
t=0 to detect phase-A packets transmitted by other (nearby) users.

OCRA is a formal description of the two-phase protocol outlined in Section 5.1 based

on the opportunistic exploitation of nearby users that happen to have a favorable signal

reception of a given user. Phase-A is defined in rule [S2] by which Uj becomes the active-A

user Aj and transmits xAj with low power so as to reach nearby users while not interfering
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with the AP, this last situation requiring ρ ¿ 1. Phase-B is defined by rule [S5] in which the

packet is transmitted with κj-order diversity by Uj ↔ Bj plus Kj cooperators corresponding

to the Kj idle users that successfully decoded Uj ’s transmission during phase-A. Note that

the opportunistic nature of the protocol manifests in the random diversity order κj which

depends on the number Kj of cooperators recruited and the random selection of shifts τk

used by these cooperators. Let us also recall that user devices are half-duplex and can

decode a single packet per slot when not transmitting.

Rules [S1], [S4] and [S6] govern the transition between idle and active-A/B states. The

transition from idle to active-A happens with probability p as per [S1]; after entering phase-

A, the user proceeds deterministically to phase-B in the first upcoming slot ([S4]), and in

most cases back to idle in the second one ([S6]). A lost packet does not alter this transition

but only determines whether the packet is put back in queue or not. Also, [S6] dictates

that cooperators do not keep track of acknowledgements discarding Bj ’s packet regardless

of the transmission success. OCRA’s complete transition diagram is slightly more involved

due to the possibility of concurrent events. While most transitions are between idle and

cooperator states and around the cycle idle to active-A to active-B to idle, other transitions

and mixed states are also possible. Indeed, there is a chance for e.g., a user to be active-A

and active-B in the same slot, or active-A and cooperator; also, instead of moving from

active-B to idle we can move back to active-A if we independently choose to transmit a

different packet. The complete transition diagram is shown in Fig. 5.5.

Rules [S0], [S3] and [S7] guarantee logical consistency of the protocol. According to

[S0], the number of possible PN shifts is increased with respect to non-cooperative SSRA to

enable the PN shift selection rule in phase-B [c.f. (5.41)]; [S3] disseminates the number of

cooperators recruited to allow proper power scaling during phase-B as required by (5.41);

and [S7] ensures that idle users are listening for phase-A packets.

A delicate issue in OCRA’s description is the use of PN shifts, that is judiciously chosen

to satisfy two requirements that we summarize in the following remark.

Remark 16 The PN shifts during phases A and B are selected in order to:

[a] Facilitate decoding of phase-A’s packet by idle users. Indeed, since phase-A packets
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Figure 5.5: Most of the transitions are between Idle and Cooperator and from Idle to

Active-A to Active-B and back to Idle. Some less common transitions are also possible.

use a fixed shift (τAj = 0), the idle users just need to correlate with a fixed sequence.

[b] Let the AP combine different cooperative copies of the same packet. If τBj1
6= τBj2

,

then τ
C

k1
j1

6= τ
C

k2
j2

∀k1, k2, as can be seen from (5.41). Thus, if

τ
C

k1
j1

− τ
C

k2
j2

= κ0T (5.42)

for some integer κ0 ∈ [0, κ− 1], then either the packets contains the same information,

i.e., j1 = j2, or a hard collision occurred i.e. τBj1
= τBj2

.

Depending on their distances to the AP any user Uj experiences a propagation delay ωUj ,

so that if the latter is measured in chips, the PN shifts at the AP are perceived as τUj +ωUj .

While for SSRA propagation delays only add a random quantity ωUj to the already random

τUj , the remark in [b] is no longer valid for OCRA once we account for the propagation delay

ωCk
j
. A simple solution used in e.g., the IS-95 standard [1], is to restrict the set of allowed

shifts to a subset so that the difference in PN shifts is always larger than the maximum

propagation delay, i.e., τUj1
− τUj2

> max[1,J ]{ωUj}.

Remark 16 is important in practice. A third consequence of the selection of PN shifts

having theoretical as well as practical significance is given in the following proposition.
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Proposition 5 Given a slot with NB active-B users, OCRA’s hard collision probability

(see Definition 5-[a]) for any reference user Bj1 is

PHC(NB) = 1−
(

1− 1
T

)NB−1

, (5.43)

independently of the number of active-A users and cooperators’ sets.

Proof:To evaluate this probability, note that τ
C

k1
j1

= τ
C

k2
j2

can happen in two circumstances.

The first is j2 = j1, in which case τk2 = τk1 leads to τ
C

k2
j2

= τ
C

k1
j1

according to (5.41). But

in this case, both packets contain the same information and this is not a collision but just

lost diversity2 [c.f. Remark 16-[b]].

The second is τBj2
= τBj1

for j2 6= j1, in which case according to Remark 16-[b] the

packets are combined as belonging to the same user. Thus, the hard collision event HC is

equivalent to

HC =
⋃

j2 6=j1

{
τBj1

= τBj2

}
. (5.44)

Taking probabilities in (5.44) yields the expression

PHC(NB) = 1−
NB∏
j2=1

j2 6=j1

Pr
{

τBj1
6= τBj2

}
. (5.45)

But since the shifts τBj2
are chosen uniformly and independently in [1, T ], we find that

Pr
{

τBj1
6= τBj2

}
= (1− 1/T ) and (5.43) follows. ¤

Comparing (5.22) with (5.43), we deduce that hard collisions in OCRA happen with

exactly the same frequency as in non-cooperative SSRA. This is a design goal made possible

by the increase in the PN sequence period P as per [S0]. Certainly, this period cannot be

made arbitrarily large since it must satisfy P ≤ 2S , [24], effectively limiting the maximum

achievable diversity order of OCRA to

κ =
2S − 1

T
. (5.46)

Notice though that since in general 2S/T À 1, the constraint in (5.46) is not severe in

practice.

2This requires noting that the sum of two normal random variables is also normally distributed so that

the fading of the “combined” diversity path is also Rayleigh; see also (5.52).
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Figure 5.6: Each terminal has three independent transmission chains that are combined

using baseband digital signal processing.

To wrap up this section, let us look at OCRA from the perspective of a terminal; see

also Fig. 5.6. Each terminal maintains three separate transmission chains: the first one for

the transmission of phase-A packets, a second one for the transmission of phase-B packets

and a third one for the transmission of cooperative packets. The phase-A chain is used

with probability p ([S1]) and is fed with packets from the terminal’s queue. If the user was

in phase-A during the previous slot then it enters phase-B in the current one, activating

the second transmission chain to transmit the packet stored in the phase-A buffer. The

third chain is used when cooperating with other users and is activated whenever a packet

is successfully decoded during the idle state.

The terminal can use more than one chain simultaneously, if it decides to enter phase-A

in two consecutive slots, or, if it decodes another terminal’s packet in the slot immediately

before entering phase-A. Interestingly, not all the chains can be used simultaneously. As

we can see from Fig. 5.5 mixed states include active-A plus cooperator and active-A plus

active-B. Mixed states including active-B and cooperator never happen since this would

require decoding a packet (to become cooperator) and being active-A (to become active

B) in the previous slot. This is impossible for half-duplex terminals and consequently the

active-B and cooperation chains are never used simultaneously.
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Remark 17 This multi-transmission ability ensures that at any given time the random

variables NA and NB are not only independent of each other but also that their distribution

is not affected by the cooperation among users. Assuming a saturated system, we have that

NA and NB follow binomial distributions with parameters J and p; i.e.,

Pr{NA = n} = Pr{NB = n} =
(

J

n

)
pn(1− p)J−n. (5.47)

Beyond a saturated system, this expression is also valid for the dominant system (see

Section 5.4). Finally, note that if Uj enters phase-A while being active-B or cooperator, it

will fail in recruiting cooperators with high probability due to the self interference from high-

power phase-B packets to low-power phase-A packets. This rather undesirable situation

should be avoided in practice, but is allowed here to ensure independence between NA and

NB.

5.3.1 Packet transmission and reception

The first problem we consider is signal transmission and reception in OCRA to abide by [S0]-

[S7]. There are two signal reception instances in OCRA that we have to study. One is the

detection of phase-A packets by nearby idle users and the other one is the detection of the

cooperative transmission of phase-B packets. If we call dAj = {dAj (l)}L−1
l=0 the unit-power

information packet of the active-A user Aj , then the corresponding transmitted packet xAj

is constructed according to [S2] with entries

xAj (Sl + s) =
√

P (Aj) dAj (l)c(Sl + s), (5.48)

l ∈ [0, L− 1], s ∈ [0, S − 1],

where we used τAj = 0 and P (Aj) is given by (5.40). Likewise, if dBj = {dBj (l)}L−1
l=0 is

the packet of the active-B user Bj , the packet transmitted by a given cooperator Ck
j is

constructed according to [S5] and given by

xCk
j
(Sl + s) =

√
P (Ck

j )dBj (l)c(Sl + s− τCk
j
), k ∈ [1,Kj ] (5.49)

with τCk
j

and P (Ck
j ) as in (5.41).
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We first analyze the reception of a packet from a reference active-B user Bj0 . For that

matter, let the received block at the AP be z = {z(t)}T−1
t=0 whose components are given by

z(Sl + s) =
NB∑

j=1

dBj (l)
Kj∑

k=0

√
P (Ck

j ) h(Ck
j )c(Sl + s− τCk

j
)

+
NA∑

j=1

√
P (Aj) h(Aj)dAj (l)c(Sl + s) + n(Sl + s) (5.50)

that is, the superposition of the cooperative NB active-B transmissions, the NA low power

active-A transmissions and the receiver noise.

Let us focus on the detection of any one of the diversity paths of Bj0 ’s communication

say the one with PN-shift τBj0
,κ0 := τBj0

+ κ0T . Since according to [S5] this shift is chosen

by a random number of cooperators, we define the number of Bj0 ’s cooperators that chose

this shift as

N(Bj0 , κ0) := #{Ck
j0 ∈ Cj0 s.t. τk = κ0} := #(Cκ0

j0
) (5.51)

where the cardinality operator # represents the number of elements in a set. Since the

packets xCk
j0

of all cooperators in the set Cκ0
j0

share the PN shift τBj0
− κ0T , they are

indistinguishable at the AP. Thus, all cooperators in Cκ0
j0

in (5.51) appear as a single path

to the AP with composite Rayleigh fading coefficient

h(Cκ0
j0

) :=
∑

k:τk=κ0

P (Ck
j0)h(Ck

j0). (5.52)

Note that being a sum of complex Gaussian random variables, h(Cκ0
j0

) is also complex

Gaussian and the composite fading is also Rayleigh.

To recover the path Cκ0
j0

, the AP compensates for the random phase by multiplying with

the normalized composite channel conjugate h∗n(Cκ0
j0

) := h∗(Cκ0
j0

)/|h(Cκ0
j0

)| and despreads

with the proper PN shift. This yields the decision vector rC
κ0
j0

= {rC
κ0
j0

(l)}L−1
l=0 with entries

rC
κ0
j0

(l) = h∗n(Cκ0
j0

)
1
S

S−1∑

s=0

z(Sl + s)c(Sl + s− τBj0
− κ0T ). (5.53)

If a hard collision does not occur, then τBj0
6= τBj ∀ j 6= j0 and straightforward manipula-
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tions (see Appendix A.1) yield the per-path SINR as:

SINR(Bj0 , κ0) :=
E2[rC

κ0
j0

(l)]

var[rC
κ0
j0

(l)]
(5.54)

= S
N(Bj0 , κ0)/(Kj0 + 1)

(NB−1) +
(
1− N(Bj0

,κ0)

Kj0
+1

)
+ ρNA + N0/P0

.

Coherent combining of these κj paths leads to diversity order κj , with the PEP determined

by the SINR(Bj0 , κ0) given by (5.54) for all the shifts κ0 ∈ [0, κ]. Note that the denominator

of SINR(Bj0 , κ0) in (5.54) contains a term (NB − 1)P0 accounting for the interference from

other active-B users, a term [1−N(Bj0 , κ0)/(Kj0 +1)]P0 accounting for the self-interference

of other paths of the same communication Bj0 → AP and a term ρNAP0 for the active-A

users’s interference.

Remark 18 The analysis in this section should clarify the difference between cooperation

order and diversity order as defined in [S5]. Note that κj is indeed the diversity order of

the Bj → AP link, since the number of uncorrelated Rayleigh channels is precisely κj . In

that regard, OCRA’s diversity depends not only on the number of cooperation order Kj –

as usual in most cooperative protocols – but also on the (random) selection of PN shifts by

the user in Cj .

The other reception instance is that of idle users decoding active-A transmissions. Con-

sider the received vector at the idle user Ii denoted by zIi = {zIi(t)}T−1
t=0 with entries

zIi(Sl+s) =
NB∑

j=1

Kj∑

k=0

√
P (Ck

j )h(Ck
j , Ii)dBj (l)c[Sl + s− τCk

j
]

+
NA∑

j=1

√
P (Aj)h(Aj , Ii)dAj (l)c(Sl+s)+n(Sl+s). (5.55)

In this case, we focus on decoding the reference active-A user U0 = ANA
. To construct

the pertinent decision variable, we have to compensate for fading by multiplying with

h∗n(U0, Ii) := h∗(U0, Ii)/|h(U0, Ii)| and despreading with c(t). Letting rIi = {rIi(l)}L−1
l=0

be the decision vector, we have

rIi(l) = h∗n(U0, Ii)
1
S

S−1∑

s=0

zIi(Sl + s)c(Sl + s). (5.56)
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As we did for the AP, we can obtain the mean and variance of rU0(l) (see Appendix A.2),

and from there SINRi
0, the SINR at idle user Ii for the signal of U0. Its inverse is given by

(SINRi
0)
−1 :=

var[rIi(l)]
E2[rIi(l)]

= S−1
NB∑

j=1

Kj∑

k=0

P (Ck
j → Ii)

P (U0 → Ii)

+
NA−1∑

j=1

P (Aj → Ii)
P (U0 → Ii)

+ S−1 N0

P (U0 → Ii)
(5.57)

where the powers P (Uj → Ii) for the different users are obtained from the path loss model

in (5.3).We remark that the interference from other active-A users is not reduced by the

spreading gain, but (hopefully) by spatial separation.

The SINR in (5.57) determines the probability of Ii becoming a cooperator of U0, and

as such, it is an important metric of OCRA that we will study in Section 5.5. But before

that, we will introduce our main result pertaining to OCRA’s throughput.

5.4 OCRA’s throughput

Mimicking the steps we followed for the non-cooperative SSRA protocol in Section 5.2,

we can try to evaluate the aggregate throughput of OCRA. The hard collision probability

coincides with the non-cooperative SSRA protocol and is given by Proposition 5. The

soft collision probability, on the other hand, depends on both the number of active-A and

active-B users and is given by [c.f. (5.23)]

PSC(NA, NB) = Pe(NA, NB)[1− PHC(NB)], (5.58)

with Pe(NA, NB) a function that maps the number of active-A and active-B users to the

average PEP.

Using (5.58), we can compute the packet success probability conditioned on the number

of interferers, namely Ps(NA, NB) := 1 − PHC(NB) − PSC(NA, NB)). Using the latter

and (5.43), (5.58) we find

Ps(NA, NB) =
(

1− 1
T

)NB

[1− Pe(NA, NB)]. (5.59)
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Averaging (5.59) over the joint distribution of (NA, NB) and considering the average depar-

ture rate definition in (5.25), we find

µOCRA = p
J−1∑

nB=0

Pr{NB = nB}
(

1− 1
T

)nB

(5.60)

×
J∑

nA=0

Pr{NA = nA}[1− Pe(nA, nB + 1)]

were we used the independence of NA and NB discussed in Remark 17. For a saturated

system, the probabilities Pr{NB = nB} and Pr{NA = nA} are binomially distributed as

in (5.47). This motivates introduction of the dominant system obtained after replacing [S1]

with:

[S1’] At the beginning of each slot, Uj enters phase-A with probability p and moves the

first packet in its queue, dUj := {dUj (l)}L−1
l=0 , to the phase-A buffer. If Uj ’s queue is

empty, it moves a dummy packet.

This modification renders the departure process stationary and we can claim, as we did in

the proof of Proposition 4, that ηOCRA = JµOCRA, with µOCRA given as in (5.60).

The difficulty in evaluating OCRA’s throughput is cocooned in the function Pe(NA, NB).

This function depends on the diversity order κj , which depends on the number of coop-

erators Kj recruited during phase-A; while in theory we could compute Kj ’s distribution

and from there Pe(NA, NB), this turns out to be analytically intractable and motivates the

asymptotic approach of the next section.

5.4.1 OCRA’s asymptotic throughput

Since OCRA’s throughput ηOCRA(J,N0/P0, S, κ, p, ρ) depends also on (κ, ρ), it is convenient

to differentiate the MST (as defined in (5.32)) depending on whether we optimize over ρ or

not. If we consider ρ fixed, we define the ρ-conditional MST as:

ηOCRA
max (J,N0/P0, S, κ|ρ)=max

p

{
ηOCRA(J,N0/P0, S, p, κ, ρ)

}
(5.61)
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with the maximum achieved at pmax(ρ) = arg maxp(η). If we jointly optimize over (p, ρ),

we define the MST as:

ηOCRA
max (J,N0/P0, S, κ) = max

p,ρ

{
ηOCRA(J,N0/P0, S, p, κ, ρ)

}
(5.62)

with the maximum achieved at (pmax, ρmax) = arg max(p,ρ)(η). We adopt this second defi-

nition as the one equivalent to the non-cooperative SSRA MST defined in (5.32).

Having made this distinction, we can introduce the main results of this chapter in the

following two theorems.

Theorem 8 Consider the OCRA dominant system defined by rules [S0], [S1’] and [S2]-

[S7] operating over a fading channel; and functions ρ = ρ(J) and K = K(J) such that

limJ→∞ ρ = 0 and limJ→∞K = ∞. Let Cj := {Ck
j }Kj

k=1 be the set of cooperators of the

active-B user Bj for j ∈ [1, NB]. If

[h1] limJ→∞(ρ2/αJ/K) = ∞, with α being the pathloss exponent in (5.3); and

[h2] the transmission probability p = pmax(ρ) is chosen to achieve the MST given ρ;

then

lim
J→∞

Pr{Kj ≥ K/2, ∀j} = 1. (5.63)

Proof:See Section 5.5.2.

Theorem 8 establishes that every active-B user is receiving cooperation by at least K/2

users; moreover, as long as the convergence rates of ρ(J) and K(J) satisfy [h1] the coop-

eration order Kj becomes arbitrarily large while the active-A transmitted power becomes

arbitrarily small. Consequently, the seemingly conflicting requirements of recruiting an

infinite number of cooperators with a vanishingly small power are compatible as J → ∞
implying that very large diversity orders are achievable by OCRA. A by-product of this

comment leads to the following result.

Theorem 9 For any κ ≤ (2S − 1)/T , the asymptotic MST of OCRA operating over a

Rayleigh fading channel ηOCRA∞ and the asymptotic throughput of non-cooperative random
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access over a κ-order, diversity channel ηκ∞ are equal; i.e.,

lim
J→∞

ηOCRA
max (J,N0/P0, S, κ) := ηOCRA

∞ (N0/P0, S, κ)

= ηκ
∞(N0/P0, S). (5.64)

Proof:For each value of J , choose (K, ρ, p) according to the conditions of Theorem 8.

With its hypotheses satisfied, Theorem 8 states that for any active-B user we can map

an arbitrarily large (Kj > K/2) number of cooperators to a finite number of PN shifts κ.

Accordingly, the number of elements in the set Cκ0
j in (5.51) satisfies

lim
J→∞

N(Bj , κ0)
Kj + 1

= 1/κ, ∀ κ0 ∈ [1, κ], (5.65)

due to the law of large numbers. Using (5.65) and limJ→∞ ρ = 0, the per path SINR

in (5.54) reduces to

lim
J→∞

SINR(Bj , κ0) = S
1/κ

NB − 1 + (1− 1/κ) + N0/P0

:= γ̄(NB, κ). (5.66)

Eq. (5.66) is, in part, a manifestation of the fact that as J →∞, the active-A users transmit

with negligible power. But note that (5.66) is identical to the per-path SINR in a κ-order

diversity channel [c.f. (5.36)], and because it is valid for every active-B user Bj and every

shift κ0 we infer that

lim
J→∞

Pe(NA, NB) = P κ
e (κγ̄(NB, κ)), (5.67)

with Pe(NA, NB) the function determining PSC(NA, NB) in (5.58) and P κ
e (κγ̄(NB, κ)) =

P κ
e (γ̄NB

) the corresponding member of the family of functions introduced in Definition 7.

Even though computing Pe(NA, NB) is intractable, we can find its limit as J → ∞;

moreover, in the limit Pe(NA, NB) is a function of NB only, and we can compute the limit

of the average departure rate in (5.60) as

lim
J→∞

µOCRA
max = pmax

J−1∑

nB=0

(
J − 1
nB

)
pnB
max(1− pmax)J−1−nB

×
(

1− 1
T

)nB

[1− P κ
e (κγ̄(NB, κ))] (5.68)
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This is identical to the expression (5.28) of Proposition 4 when the channel is a κ-order

diversity channel establishing that limJ→∞ JµOCRA
max = ηκ∞(N0/P0, S). To complete the

proof, we invoke the same argument used in Proposition 4 about the dominant system to

claim that

ηOCRA
∞ (N0/P0, S, κ) := lim

J→∞
ηOCRA
max (J,N0/P0, S, κ)

= lim
J→∞

JµOCRA
max

= ηκ
∞(N0/P0, S). (5.69)

The first equality follows form the definition of asymptotic throughput in (5.64), the second

from the dominant system argument, and the last one by comparing (5.68) with (5.28). ¤

Theorem 9 is the main result of this chapter effectively stating that very high diversity

orders are achievable by OCRA. Notice that the only constraint κ ≤ (2S−1)/T , is not very

restrictive in practice since we are interested in achieving diversity orders of no more than

a few units and 2S/T À 1. Thus, it is fair to recall Remark 14 and assert that

ηOCRA
∞ (N0/P0, S, κ) = ηκ

∞(N0/P0, S) ≈ ηG
∞(N0/P0, S), (5.70)

with κ sufficiently large.

Surprisingly, user cooperation can improve the network throughput to the point of

achieving wireline-like throughput in a wireless RA environment. This is a subtle but

significant difference relative to point-to-point user cooperation in fixed access networks,

where the diversity advantage typically comes at the price of bandwidth expansion [51,96].

5.5 On the asymptotic behavior of OCRA

In this section, we will show that Theorem 8 is a consequence of the spatial distribution

of users. We will first consider a particular snapshot of an OCRA system with arbitrarily

large NI but fixed NA and NB, and study the distance ratios that determine the SINR

(Lemma 5). From there, we prove that if [h1] in Theorem 8 is true, then every I
(k)
0 with

k ≤ K correctly decodes U0’s phase-A packet almost surely (Theorem 10). We will then
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establish that with high probability, the numbers of users NA, NB, and NI in OCRA behave

like the numbers of this particular snapshot (Lemma 6) from where Theorem 8 will follow.

5.5.1 A network snapshot

We consider in this subsection a fixed access network corresponding to a snapshot of the

OCRA dominant system operating under [S0], [S1’] and [S2]-[S7]. In this fixed access

network, NA and NB are fixed but the number of idle users NI →∞. The problem we are

concerned with is that of the reference active-A user U0 trying to communicate with the

idle users in I. For each member of I, the detection probability is determined by the SINR.

If we let SINR(k)
0 be such a metric at the kth closest to U0 idle user, we have

(SINR(k)
0 )−1 := S−1

NB∑

j=1

Kj∑

k=0

P (Ck
j → I

(k)
0 )

P (U0 → I
(k)
0 )

(5.71)

+
NA−1∑

j=1

P (Aj → I
(k)
0 )

P (U0 → I
(k)
0 )

+
N0

P (U0 → I
(k)
0 )

which is obtained by setting Ii = I
(k)
0 in (5.57). The first sum in (5.71) corresponds to the

NB active-B users, the second sum to the NA active-A users, and the third term accounts

for the receiver noise. The upper limit NA−1 of the second sum follows from the convention

U0 = ANA
.

To relate power terms in (5.71) with corresponding distances, let us consider first the

(interfering) power received at Ik
0 from Bj ’s communication which involves the set of Kj +1

cooperators Cj = {Ck
j }Kj

k=0:

P (Bj→I
(k)
0 ) :=

Kj∑

i=0

P (Ci
j → I

(k)
0 )=

1
Kj + 1

Kj∑

i=0

P0‖Ci
j‖α

‖Ci
j−I

(k)
0 ‖α

(5.72)

where the second equality comes from the path loss model in (5.3) and the average power

control enacted by [S5]. Less severe but not negligible interference is received from active-A

users; for a specific Aj , we have

P (Aj → I
(k)
0 ) =

ρP0‖Aj‖α

‖Aj − I
(k)
0 ‖α

. (5.73)
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Remembering that U0’s phase-A power is ρP0‖U0‖α/ξ (so that it is received at the AP with

power ρP0), the signal power received at I
(k)
0 is P (U0 → I

(k)
0 ) = ρP0‖U0‖α/‖U0 − I

(k)
(0) ‖α,

and we obtain [c.f. (5.71), (5.72), and (5.73)]

(SINR(k)
0 )−1 =

1
Sρ

NB∑

j=1

Kj∑

i=0

1
Kj + 1

‖Ci
j‖α‖U0 − I

(k)
0 ‖α

‖U0‖α‖Ci
j − I

(k)
0 ‖α

+
NA−1∑

j=1

‖Aj‖α‖U0 − I
(k)
0 ‖α

‖U0‖α‖Aj − I
(k)
0 ‖α

+
N0

ρP0

‖U0 − I
(k)
0 ‖α

‖U0‖ . (5.74)

The SINR expression in (5.74) determines the probability that a packet transmitted by U0

with reduced power (ρ ¿ 1) is received correctly at the kth closest to U0 idle user. We

would prefer ρ → 0 so that the interference added to the AP in (5.54) is negligible, and we

want k →∞ so that the cooperation order grows large. As commented before, it will turn

out that these seemingly conflicting requirements are compatible for NI sufficiently large.

To establish this we need to establish two lemmas; the first one concerns the cumulative

distribution function (CDF) of the distance between any two users.

Lemma 4 If users are uniformly distributed in a disc of radius R, Uj denotes an arbitrary

user (idle, active-A or active-B), and F (r) := Pr{‖Uj − U0‖ < r|U0}, then F (r) = 0 for

r < 0, and

min
{

r2

4R2
, 1

}
≤ F (r) ≤ min

{
r2

R2
, 1

}
, for r > 0. (5.75)

Proof:See Appendix A.

Since users are uniformly distributed within a circle, their distance ‖Uj‖ to the AP

follows a quadratic CDF as asserted by (5.1). Lemma 4 establishes that their distance to

any point, in this case to the reference user U0, has a CDF that is lower and upper bounded

by a parabola.

This result is useful in establishing that some pertinent distance ratios are becoming

arbitrarily large, as we quantify in the next lemma.

Lemma 5 With NI denoting the number of idle users, consider a function ρ = ρ(NI) that

determines the phase-A fraction of power and a function K = K(NI) such that limNI→∞ ρ =
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0, limNI→∞K = ∞ and limNI→∞(ρ2/αNI/K) = ∞. Then, for arbitrary K > 0, the events

e1(NI ,K) := {‖U0‖ > (K/ρ1/α)‖I(K)
0 − U0‖} (5.76)

e2(NI ,K) := {‖B(1)
0 − U0‖ > (K/ρ1/α)‖I(K)

0 − U0‖} (5.77)

e3(NI ,K) := {‖A(1)
0 − U0‖ > K‖I(K)

0 − U0‖} (5.78)

have probability 1 as the number of idle users NI →∞; i.e.,

lim
NI→∞

Pr{el(NI ,K)} = 1, l = 1, 2, 3. (5.79)

Proof:See Appendix B.

If we let
p−→ denote convergence in probability, Lemma 5 implies that the distance ratios

satisfy
ρ1/α‖U0‖
‖I(K)

0 − U0‖
,

ρ1/α‖B(1)
0 − U0‖

‖I(K)
0 − U0‖

,
‖A(1)

0 − U0‖
‖I(K)

0 − U0‖
p−→∞, (5.80)

for every ρ and K satisfying the conditions of Lemma 5.

Intuitively, U0’s phase-A transmission will not be correctly decoded by I
(K)
0 when com-

pared to the distance ‖I(K)
0 −U0‖, either because I

(K)
0 is close to an active-B user, or close

to another active-A user, or, because U0 is close to the AP. In the first two cases, the in-

terference will be too high, and in the third case the signal will be too weak (being close

to the AP, the power P (U0) is small because of [S2]). The importance of Lemma 5 is in

establishing that all these events happen with vanishing probability and points out to the

almost certainty of I
(K)
0 decoding U0’s phase-A transmission successfully. This is formally

asserted in the following theorem.

Theorem 10 Consider a set of NA active-A users, A := {Aj}NA
j=1; a set of NI idle users,

I := {Ij}NI
j=1; and a set of NB active-B users, B := {Bj}NB

j=1, each receiving cooperation

from a set of Kj idle users, Cj := {Ck
j }Kj

k=1. Let U0 = ANA
be a reference user, I

(k)
0 be

the kth closest to U0 idle user and C0 := {Ck
0 }K0

k=0 be the set of idle users that decode U0’s

phase-A packet correctly (called U0’s cooperators). If

[h1] the functions ρ = ρ(NI) and K = K(NI) satisfy limNI→∞ ρ = 0 and limNI→∞K =

∞;
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[h2] convergence rates are such that limNI→∞(ρ2/αNI/K) = ∞; and

[h3] the transmitted powers are P (Ck
j ) = P0‖Ck

j ‖α/[ξ(Kj + 1)], P (Aj) = (ρP0/ξ)‖Aj‖α

and P (U0) = (ρP0/ξ)‖U0‖α;

then

[a] as NI → ∞, the ratio of distances between Bj and its farthest cooperator C
(Kj)
j and

the distance between Bj and the AP converges to 0 in probability; i.e.,

lim
NI→∞

Pr




‖Bj − C

(Kj)
j ‖

‖Bj‖ < ε



 = 1, ∀ ε > 0 (5.81)

[b] for every k ≤ K, the event that I
(k)
0 becomes a cooperator is asymptotically almost

sure; i.e.,

lim
NI→∞

Pr{I(k)
0 ∈ C0} = 1. (5.82)

Proof:See Appendix D.

Theorem 10-[a] states that as we reduce the phase-A fraction of power, we do not recruit

faraway idle users. In that sense, cooperators become clustered around the active-B user

they are cooperating with nicely matching the intuition of cooperation with nearby users.

More important, Theorem 10-[b] establishes that the probability of each I
(k)
0 , k ≤ K,

becoming a cooperator when phase-A transmission is reduced by a factor ρ converges to 1,

as the number of idle users NI grows large. Moreover, as long as limNI→∞(ρ2/αNI/K) = ∞,

the phase-A fraction of power ρ can be made arbitrarily small and the number K of co-

operators recruited arbitrarily large. The mathematical formalism here should not obscure

the fact that this suggests the possibility of having an arbitrarily large number of termi-

nals correctly decoding U0’s active-A transmission with probability 1; and correspondingly

enable arbitrarily large diversity order during phase-B when U0 transmits with practically

negligible power during phase-A.

Applying Theorem 10 to OCRA requires taking care of the randomness in the number

of active-A and active-B users in a given slot, a problem that leads us to the next section.
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5.5.2 Asymptotic Throughput

Theorem 10 establishes the potentially high cooperation order of the described fixed network

access. The following lemma establishes that with high probability, an OCRA network is

well described by the fixed network for which Theorem 10 has been proved.

Lemma 6 Let pmax be the probability that achieves MST of the OCRA dominant system

defined by rules [S0], [S1’] and [S2]-[S7]; assume that 0 < η∞ := limJ→∞ ηmax < ∞ exists;

and let N̄ := E(NA) = E(NB) = pmaxJ denote the average number of active-A (active-B)

users. It then holds that

[a] the average number of users converges

lim
J→∞

N̄ = N̄∞ (5.83)

to a finite constant N̄∞ ∈ (0,∞); and,

[b] the random variables NA and NB are asymptotically Poisson distributed:

Pr{NB = n} = Pr{NA = n} =
N̄n

n!
e−N̄ . (5.84)

Proof:If N̄ → ∞, then the probability that all active-B users experience a hard collision

goes to 1:

lim
J→∞

⋂

j0





⋃

j 6=j0

{
τUj0

= τUj

}


 = 1 , (5.85)

since we have a finite number of PN shifts T and an infinite number of instantaneously

active users; thus, limJ→∞ N̄ 6= ∞. The fact that N̄ does not oscillate follows since N̄(J)

is a non-decreasing function of J from where (5.83) follows. To prove claim [b], simply note

that the conditions of Poisson’s theorem are satisfied. ¤

The importance of Lemma 6 is in establishing that as J → ∞, the average number of

active-A (active-B) users remains bounded; i.e., N̄ → N̄∞ < ∞. This enables application

of Theorem 10 to establish the asymptotically infinite order diversity of the OCRA network

as claimed by Theorem 8 that we are now ready to prove.
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Proof of Theorem 8: Eq. (5.63) can be written in terms of the complementary event

Pr{∪j(Kj < K/2)} = 1− Pr{Kj ≥ K/2 ∀j}, (5.86)

which we will prove convergent to zero. To this end, let us start by defining a network

snapshot as the set S := {U ,A,B,∪j|Uj∈BCj} composed of the realizations of user’s positions

and classes; and the index k∗ = arg maxk∈[1,K] Pr{I(k)
0 /∈ C0|S} corresponding to the idle

user least likely to decode U0 among the K closest ones when the snapshot S is given.

We separate the failure in soliciting at least K/2 cooperators – the event {∪j(Kj <

K/2)} in (5.86) – in two cases: i) the realization S is not favorable and we fail with

high probability, e.g., when NA, NB are very large; and ii) S is favorable and we succeed

with high probability. For that matter, define the set of network realizations Sβ,Nmax :=

{S|Pr{I(k∗)
0 /∈ C0|S} ≤ β;NA, NB ≤ Nmax} for which the number of active-A and active-B

users is less than Nmax, and the decoding failure probability is less than β, to write

Pr{∪j(Kj<K/2)}=Pr{∪j(Kj<K/2)|Sβ,Nmax}Pr{Sβ,Nmax}

+Pr
{∪j(Kj <K/2)|Sβ,Nmax

}
Pr

{Sβ,Nmax

}
. (5.87)

Further recalling that probabilities are smaller than 1 we obtain

Pr{∪j(Kj <K/2)} ≤Pr{∪j(Kj <K/2)|Sβ,Nmax}

+ Pr{Sβ,Nmax}. (5.88)

Applying the union bound to the event {∪j(Kj < K/2)|Sβ,Nmax}, we obtain

Pr{∪j(Kj < K/2)} ≤Nmax Pr{Kj < K/2|Sβ,Nmax}

+ Pr{Sβ,Nmax} (5.89)

since the number of active-B users is NB ≤ Nmax.

We start by bounding the first term in (5.89). To this end, we note that in order

for Kj < K/2 we must have at least K/2 decoding failures among the K closest idle

users during phase-A. Furthermore, the decoding probabilities at idle users are independent
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when conditioned on the network snapshot S; i.e., Pr{I(k1)
0 , I

(k2)
0 ∈ C0|S} = Pr{I(k1)

0 ∈
C0|S}Pr{I(k2)

0 ∈ C0|S}, and we can thus write

Pr{Kj < K/2|S} <
K∑

k=K/2

(
K

k

)[
Pr

{
I

(k∗)
0 /∈ C0|S

}]k

×
[
Pr

{
I

(k∗)
0 ∈ C0|S

}]K−k
(5.90)

where we used the fact that by definition Pr{I(k)
0 /∈ C0|S} ≤ Pr{I(k∗)

0 /∈ C0|S} for all

k ∈ [1, K]. The largest summand in (5.90) corresponds to k = K/2, which together with

Pr{I(K)
0 ∈ C0}K−k < 1, yields

Pr{Kj < K/2|S} < K/2
(

K

K/2

) [
Pr

{
I

(k∗)
0 /∈ C0|S

}]K/2

≤ (K/2)2K
[
Pr

{
I

(k∗)
0 /∈ C0|S

}]K/2
(5.91)

where we also used Stirlings’ factorial approximation to obtain the last expression.

Now, use Bayes’ rule and the bound in (5.91) to write

Pr{∪j(Kj < K/2)|Sβ,Nmax}

=
∑

S∈Sβ,Nmax

Pr{Kj < K/2|S}Pr{S}

≤ (K/2)2KβK/2, (5.92)

where in obtaining the inequality we used that for S ∈ Sβ,Nmax the decoding failure proba-

bility at I
(k∗)
0 satisfies Pr{I(k∗)

0 /∈ C0|S} ≤ β and that
∑
S∈Sβ,Nmax

Pr{S} ≤ 1.

For β = 1/8 the latter bound reduces to Pr{∪j(Kj < K/2)|Sβ,Nmax} ≤ (K/2)(1/2)K/2

which goes to zero as K → ∞. Since K → ∞ is implied when J → ∞, we conclude from

the latter that for any ε/(3Nmax) > 0, ∃ J0 such that

Pr{Kj < K/2|Sβ,Nmax} < ε/(3Nmax), (5.93)

for every J > J0.
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To bound the second term in (5.89), we invoke Lemma 6-[a] and Theorem 10. First,

note that we can write

Pr{Sβ,Nmax} =Pr{(NB, NA) > Nmax}

+ Pr{Sβ,Nmax |(NB, NA) < Nmax}, (5.94)

Lemma 6-[a] guarantees that we can choose Nmax sufficiently large so that

Pr{(NB, NA) > Nmax} < ε/3, ∀J, (5.95)

taking care of the the first term in (5.94). In the second term the numbers (NB, NA) of

active-A and active-B users are given, and we can apply Theorem 10.

Note that since Theorem 10 is valid for any k ≤ K, it must hold for I
(k∗)
0 ; and conse-

quently, as NI := J −NA −NB > J − 2Nmax →∞, we must have

Pr{I(k∗)
0 /∈ C0|(NB, NA) < Nmax} → 0, (5.96)

when the failure probability is not conditioned on S.

Suppose that Pr{Sβ,Nmax |(NB, NA) < Nmax} > ε/3 ∀J and argue by contradiction.

Indeed, if this were true we would have Pr{I(k∗)
0 /∈ C0|S} ≥ β for a subset of network real-

izations {Sβ,Nmax |(NB, NA) > Nmax} with non-vanishing measure. But this is incompatible

with (5.96) and consequently for any ε/3 > 0, ∃ J > J1 such that

Pr{Sβ,Nmax |(NB, NA) < Nmax} < ε/3. (5.97)

Substituting (5.95) and (5.97) into (5.94), and the result of this operation along with (5.93)

into (5.89), we finally obtain that

Pr{∪j(Kj < K/2)} ≤ ε, (5.98)

for arbitrary ε and all J > max(J1, J2). By definition, this implies the result in (5.63). ¤

Besides establishing our major claim previewed in Section 5.4.1, the asymptotic analysis

of this section provides a series of byproduct remarks about OCRA:
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Remark 19 Average power constraint. A consequence of the cooperators’ clustering as-

serted by Theorem 10-[a] is that cooperation is limited to nearby idle users; and accordingly,

the total transmitted power by any active communication is

Kj∑

k=0

P (Ck
j ) ≈ (Kj + 1)

P0

Kj + 1
‖Bj‖α/ξ = P0‖Bj‖α/ξ. (5.99)

Comparing (5.99) with rule [R2], we see that the average transmitted power in non-

cooperative SSRA is equal to OCRA’s phase-B power. The sole power increase is due

to the phase-A power used to recruit cooperators, yielding the relation

POCRA(Uj) ≈ (1 + ρ)P SSRA(Uj) (5.100)

between the power required by OCRA and non-cooperative SSRA. Since ρ → 0, we deduce

that OCRA enables high order diversity with a small increase in average transmitted power.

Remark 20 Maximum power constraint. A maximum power constraint P (Uj) ≤ Pmax

determines the AP’s coverage area, since power control dictates that ‖Uj‖α ≤ (ξPmax/P0) :=

Rα
c . But since power in OCRA is contributed by Kj cooperators, we have

ROCRA
c = (Kj)1/αRSSRA

c . (5.101)

This increase in coverage stems from the fact that users in OCRA transmit less power

during more time.

Remark 21 Network Area. The proofs rely on the asymptotic behavior of the distance

ratios in Lemma 5. This behavior does not depend on the radius of the network, implying

that we can make it arbitrarily large. Accordingly, our major claims in Theorems 8 and 9

are valid for a fixed area network with increasing user density as well as for a fixed user

density network with increasing area.

Remark 22 OCRA with different physical layers. It is known that diversity in wireless

networks requires a transmitter that enables, a channel that provides, and a receiver that

collects diversity. While results in this chapter have been derived for SSRA networks whose
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suitability in enabling and collecting diversity is well appreciated, the advantage of OCRA

is that it generates multipath diversity in a channel that originally did not provide it. This

result depends on the spatial distribution of users and can be readily established for RA

networks with different physical layers. The difference in these other cases will be the way in

which the diversity is enabled and collected; but retaining the essential diversity-providing

structure of a low power phase-A followed by a high order diversity phase-B will lead to

claims analogous to Theorems 8 and 9.

5.6 Unslotted OCRA

Packet de-spreading at the AP is performed through multiplication with the appropriately

delayed version of the spreading sequence c. Indeed, multiplication by c(t − τCk
j
) allows

the AP to recover the kth copy of Bj ’s phase-B packet; and multiplication by c(t) allows

idle users to detect A′js packet. Unfortunately, this requires knowledge of the delay τCk
j
,

and the only way of accomplishing this in RA is by having the AP check all the (virtually

infinite) possible shifts τ . This complexity can be reduced by altering the PN selection rule

to let the nodes choose a random shift at the beginning of time, communicate this selection

to the AP and then use the same shift for the life of the network. A more elegant solution

to this problem is through an unslotted protocol as we outlined for non-cooperative SSRA

networks in [89].

In this unslotted version, active-A and active-B users choose a random time to start

transmitting, but they spread their packets with an unshifted version of the common PN

sequence. This entails replacing rules [S1]-[S2] and [S4]-[S5] with the following.

[U1] If Uj ’s queue is not empty, Uj enters phase-A with probability p and moves the first

packet in the queue, dUj := {dUj (l)}L−1
l=0 , to the phase-A buffer.

[U2] Phase-A: The transmission is as in [S2], but we include in the packet header the time

TBj in which phase-B transmission is going to be attempted. The time TBj is chosen

so that the transmission probability in each time unit is p.

[U4] Uj enters phase-B at time TBj .
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Figure 5.7: In unslotted OCRA, the correlator shown can be used to detect the starting

times of a packet. Simulations corroborate that slotted and unslotted OCRA exhibit similar

throughputs.

[U5] Phase-B: Transmission is as in [S5] but when spreading dUj the cooperator Ck
j uses

the shift

τCk
j

= τkT, (5.102)

with τ0 = 0 and τk ∼ U [0, κ− 1].

When expressed with respect to a common time reference, the equivalent of (5.48) for

this unslotted system becomes

xAj (Sl + s) =
√

P (Aj) dAj (l)c(Sl + s− TAj ) u (Sl + s− TAj ) (5.103)

where u(t) is a unit-amplitude square pulse with nonzero support over t ∈ (0, NL). Relying

on (5.103), we can repeat the steps in Appendix A.2 to deduce that this spreading rule

achieves statistical user separation at the idle users. Similarly, for the cooperative phase-B

transmissions the counterpart of (5.49) is

xCk
j
(Sl + s) =

√
P (Ck

j ) dBj (l)

× c(Sl + s− TBj − τkT ) u (Sl + s− TBj ) (5.104)

with k ∈ [0,Kj ]. Again, by following the steps in Appendix A.2 we can prove that this

achieves statistical user separation at the AP.
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The difference is that the first symbol in every packet is always spread by the same set

of chips. Upon defining the (short) periodic sequences

ck(t) = c(t− kSL mod S), k ∈ [0, κ− 1]; (5.105)

which amounts to periodically repeating the first S chips that spread the first symbol of

any packet xCk
j

or xAj ; the output of a continuous correlator matched to sk(t) can be used

to detect the beginning of a packet; see also Fig 5.7. Indeed, the sum of the outputs of

these correlators is

R(t) =
κ∑

k=0

t+S∑

t′=t

ck(t′)z(t′) =
κ∑

k=0

t+S∑

t′=t

c(−kT )z(t′), (5.106)

since we have that ck(t) = c(−kSL) in an interval of length S. But E(R(t)) = 0, except

when a packet started at time t, in which case E(R(t)) = ±SP0, the sign being the value

of the transmitted bit. Accordingly, the event |R(t)| > SP0/2 can be used by the AP

to identify the starting time of Bj ’s packet at TBj = t. A similar correlator with κ = 0

in (5.106) can be used by the idle users to identify the times TAj .

Thus, an unslotted version of OCRA reduces the challenging task of identifying the

random shifts τBj to the easier problem of identifying the random times TBj . Interestingly,

the number of correlations computed does not change; what changes is that instead of

taking κT correlations at the beginning of a slot, we take κ correlations during T times.

The difference is, of course, that Theorems 8 and 9 (and all other results for that matter)

apply to the unslotted version. In the next section, we simulate unslotted OCRA as defined

by rules [S0], [U1]-[U2], [S3], [U4]-[U5] and [S6]-[S7] to unveil that as is usual in SSRA

networks (see e.g., [43]) the throughput of this practically feasible unslotted version is

accurately predicted by the theoretical results derived for the slotted version.

5.7 Simulations

We have established in this chapter that slotted OCRA operating over a Rayleigh fading

channel can asymptotically achieve the throughput of an equivalent non-cooperative SSRA

operating over an AWGN channel, promising an order of magnitude increase in throughput.
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Figure 5.8: OCRA captures a significant part of the diversity advantage in mid-size net-

works; the MST for J = 128 is 2/3 the MST of SSRA over an AWGN channel (κ = 10,

S = 32, L = 1024, 215/255 BCH code capable of correcting t = 5 errors).

In this section, we explore three questions of significant practical importance that our

theoretical results left only partially answered. These questions are: i) does slotted OCRA

results carry over to unslotted OCRA? ii) how large the number of users should be to achieve

a significant throughput increase? and iii) how do we select ρ and κ? To address i), we

performed simulations for slotted and unslotted OCRA obtaining almost identical results

in all the metrics studied; to avoid presenting virtually identical figures, we report only the

figures pertaining to unslotted OCRA stressing the fact that they basically coincide with

the curves for slotted OCRA. The answers to ii) and iii) are provided in the remainder of

this section.

Consider first question ii) and refer to Fig. 5.8 where we depict unslotted OCRA’s MST,

ηOCRA
max , as a function of the number of users J in a network with spreading gain S = 32,

packet length L = 1024, and a 215/255 BCH code capable of correcting t = 5 errors used

for FEC. A quick inspection of Fig. 5.8 reveals that convergence to AWGN throughput is

rather slow since for J as large as 512 there is still a noticeable gap. Notwithstanding,
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Figure 5.9: OCRA throughput with variable packet transmission probability p. In the range

shown, OCRA’s throughput remains between the throughput of non-cooperative SSRA over

Rayleigh channels with diversity of order 4 and 5 (ρ = 0.01, κ = 10, J = 128, S = 32,

L = 1024, 215/255 BCH code capable of correcting t = 5 errors).

the throughput increase is rather fast; for J = 64 there is a threefold throughput increase

(ηmax = 0.04 if the channel is Rayleigh), and for J = 128 OCRA’s MST is 2/3 of the MST

achieved by non-cooperative SSRA over an AWGN channel. Thus, while collecting the full

diversity advantage requires an inordinately large number of users, OCRA can collect a

significant percentage of it in moderate size networks, with a ratio J/S ≈ 4. This behavior

can be explained through the background curves that show the MST of non-cooperative

systems with increasing diversity order. These curves illustrate the well understood behavior

that the throughput increase when the diversity order goes from 2 to 3 is much larger than

the increase when the diversity order goes from 7 to 8, [121]. Moreover, a large part of the

potential increase is collected with order 5 diversity. As a diversity enabler, OCRA quickly

achieves 5-order diversity when J ≈ 128; but additional improvements in the diversity order

translate to increasingly small throughput increments.

Similar conclusions can be drawn from the simulation with J = 128 users depicted in
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Figure 5.10: A closer look to Fig 5.9. OCRA’s throughput is consistent with the fact that

the average number of cooperators is between 4 and 5 (ρ = 0.01, κ = 10, J = 128, S = 32,

L = 1024, 215/255 BCH code capable of correcting t = 5 errors).

Figs. 5.9 and 5.10. For this case study, we show throughput and average diversity as a

function of the transmission probability p. For the range of probabilities close to the MST,

OCRA’s throughput remains between the curves for 4 and 5-order diversity, consistent with

the fact that the average degree of cooperation that users receive is between 4 and 5.

Turning our attention to question iii), let us recall the distinction between ρ-conditional

MST in (5.61) and MST in (5.62). Interestingly, optimizing over (ρ, p) provides a small

throughput increase with respect to optimizing over p only, as can be seen in Fig. 5.8. In

this plot, the solid line depicts OCRA’s MST and the circles depict the ρ-conditional MST,

when we set ρ = 0.01. In the vast operational range shown, there is no noticeable difference

between these two approaches. This has the important practical implication that we do not

need to optimize ρ, removing a significant part of the added complexity that OCRA incurs

relative to non-cooperative SSRA.

Finally, it is interesting to check our intuition about OCRA by looking at the network

snapshots depicted in Figs. 5.11 and 5.12. OCRA effectively exploits wasted resources in
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Figure 5.11: Snapshots of OCRA networks. OCRA effectively exploits the otherwise wasted

cooperators’ transmitters to provide user cooperation diversity (p = pmax(ρ) ρ = 0.01,

κ = 10, J = 128 in left, J = 256 in right, S = 32, L = 1024, 215/255 BCH code capable of

correcting t = 5 errors).

non-cooperative RA, namely idle users’ transmitters, as can be seen in Fig 5.11. In a

conventional SSRA, only a small number of active-B users would be transmitting; whereas

in OCRA, the cooperators are a significant percentage of the total number of users. This

does not change as the number of users increases since when we go from J = 128, Fig. 5.11

(left) to J = 256, Fig. 5.11 (right), the number of cooperators per user increases so as to

exploit the otherwise wasted cooperators’ transmitters. It is also interesting to verify that

as predicted by Theorem 10 the cooperators become clustered around the active-B user

they are cooperating with.

The perspective of an active-A user can be summarized in the interference map depicted

in Fig. 5.12. Each point in this map represents the total power received from all active-B

users and their cooperators, and effectively represents the amount of noise in the active-A

to idle users links. Thus, idle users in purple spots have low SINR and are not likely to

be recruited as cooperators and idle users in green-yellow spots have large SINR and are

likely to be recruited as cooperators. As the network size increases, the interference map
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Figure 5.12: Interference maps. The color scale represents the total interference in dB

received from active-B users at any point in space. As the number of users increases, the

interference map remains essentially the same but the signal power received at idle users

from active-A users increases. This translates in an increased number of idle users with

good reception opportunities for active-A packets (p = pmax(ρ) ρ = 0.01, κ = 10, J = 128

in left, J = 256 in right, S = 32, L = 1024, 215/255 BCH code capable of correcting t = 5

errors).

is essentially unchanged by Lemma 6, but the signal power in the active-A to idle users

links increases. This translates to an increase of the green-yellow area when the number of

users increases from J = 128, Fig. 5.12 (left) to J = 256, Fig. 5.12 (right). Since users are

uniformly distributed, this also translates to an increased number of idle users with good

reception opportunities for active-A packets.

The simulations presented provide a reasonable answer to questions i) – iii) at the

beginning of the section corroborating that: i) unslotted OCRA behaves as slotted OCRA;

ii) the asymptotic behavior applies even to moderate-size networks having J/S ≈ 4; and

iii) ρ ≈ 0.1 is a reasonable rule of thumb, and κ ≈ 10 enables 4 to 6 diversity paths.
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5.8 Summary

With the goal of migrating user cooperation benefits to random access channels, we intro-

duced the OCRA protocol which we showed capable of effecting a significant throughput

increase with respect to equivalent non-cooperative random access protocols. Testament to

this significant advantage is the fact that as the number of users in the network increases,

OCRA’s throughput over Rayleigh fading links approaches that of the corresponding SSRA

protocol over AWGN links, without an energy penalty. Accordingly, OCRA has the capacity

of rendering a wireless RA channel equivalent to a wireline one from the throughput per-

spective. This is a striking difference with point to point cooperation, where the diversity

comes at the expense of bandwidth expansion. The price paid is a modest increase in the

complexity (and therefore cost) of the baseband circuitry.

Simulations demonstrated that our asymptotic results can be perceived in realistic-sized

networks, since the asymptotic results manifest for moderate values of the total number of

users.

The OCRA protocol relies on a two-phase transmission in which users first transmit

with reduced power trying to reach nearby users, whose cooperation is thereby solicited

for the subsequent slot. In this second slot, the (random) number of cooperators recruited

transmit cooperatively to the destination. While a specific (spread spectrum) physical layer

support was assumed, the same approach and results can be applied to other physical layers

with the consequence of an intrinsic suitability of user cooperation as the form of diversity

for random access networks.
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5.9 Appendices

5.9.1 Other users’ interference in OCRA 4

Signal reception at the AP

Substituting the explicit value of z(Sl + s) in (5.50) into (5.53) and using the expression for

the composite fading coefficient in (5.52) we can write the decision statistic rC
κ0
j0

(l) as

rC
κ0
j0

(l)=h(Cκ0
j0

)h∗n(Cκ0
j0

)dBj0
(l)+

NB∑
j=1

j 6=j0

Kj∑

k=0

I(l; Cκ0
j0
→AP ; Ck

j )

+
Kj0∑

k=0
τk 6=κ0

I(l;Cκ0
j0
→AP ; Ck

j0)+
NA∑

j=1

I(l;Cκ0
j0
→AP ; Aj)+ñ(l) (5.107)

where we used the notation (introduced after (5.11)) I(l; Ck0
j0
→AP ;U) to represent the

interference of user U to the aggregate link Cκ0
j0
→ AP for the transmission of the lth bit.

The first group of interference terms corresponds to the active-B users Bj 6= Bj0 , the second

group to the cooperators of Bj0 that chose a different shift τk 6= κ0, and the third group to

the active-A users. These interference terms are given by

I(l; Cκ0
j0
→AP ;U) =

√
P (U) h(U)h∗n(Cκ0

j0
)dU (l)

× 1
S

S−1∑

s=0

c(Sl+s−τU )c(Sl+s−τBj0
−κ0T ) (5.108)

with U denoting alternatively Ck
j j 6= j0, Ck

j0
τk 6= κ0, and Aj .

Using the low autocorrelation property of long PN sequences, we obtain that if τC
κ0
j0

6= τU

– for what it suffices to have τBj0
6= τBj , for j ∈ [1, NB], j 6= j0– then

E[I(l; Cκ0
j0
→AP ; U)] = 0 (5.109)

var[I(l; Cκ0
j0
→AP ; U)] = (1/S)P (U)E

[|h(U)|2] (5.110)

E[I(l; Cκ0
j0
→AP ; U1)I∗(l;Cκ0

j0
→AP ; U2)] = 0. (5.111)

Since when τC
κ0
j0

6= τU all the random variables in (5.108) are independent, we have that:

i) eq. (5.109) follows immediately since any of the involved random variables has zero
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mean; ii) when computing the variance in (5.110) we have that E[h(U)h∗(U)] = E[|h(U)|2,
E[h∗n(Cκ0

j0
)h∗n(Cκ0

j0
)] = 1, E[dUj (l)] = 1, and among the S2 cross-products involving the code

c only S of them are not null; and iii) to establish (5.111) it suffices to note that h(U1) and

h(U2) are independent and zero-mean.

Using property (5.109) we can see that none of the interference terms in (5.107) con-

tributes to the mean of rC
κ0
j0

(l) and consequently

E[rC
κ0
j0

(l)] = E
[
|h(Cκ0

j0
)|

]
=

√
P0N(Bj0 , κ0)

Kj0 + 1
dBj0

(l), (5.112)

since the composite channel h(Cκ0
j0

) contains N(Bj0 , κ0) terms, each with power P0/(Kj0+1).

Likewise, (5.111) allows us to separate the variance in independent terms

var[rC
κ0
j0

(l)] = E[ñ2(l)] +
NB∑
j=1

j 6=i

Kj∑

k=0

E[|I(l; Ck0
j0
→AP ; Ck

j )|2]

+
Kj∑

k=0
k 6=k0

E[|I(l; Ck0
j0
→AP ; Ck

j0)|2]+
NA∑

j=1

E[|I(l; Ck0
j0
→AP ;Aj)|2] (5.113)

Evaluating the expected values in (5.113) we obtain

var[rC
κ0
j0

(l)] = N0 + (NB − 1)
P0

S

+ [Kj0 +1−N(Bj0 , κ0)]
P0

S(Kj0 +1)
+ NA

ρP0

S
(5.114)

where we used: i) property (5.110), ii) the power control rules P (Aj)E[|h(AP,Aj)|2] = ρP0

in (5.40) and P (Ck
j )E[|h(AP, Ck

j )|2] = P0/(Kj + 1) in (5.41), and iii) that the number of

summands in the second sum is [Kj0 + 1−N(Bj0 , κ0)],

From (5.112) and (5.114), the SINR in (5.54) follows from its definition.

Signal reception at idle users

Using once again the notation I(l; U0→Ii; U) to denote the interference of U to the com-

munication of the lth bit of the packet dU0 from U0 to Ii, the entries of the decision vector
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in (5.56) can be written as

rU0(l) =
√

P (U0) h(U0, Ii)dU0(l) +
NB∑

j=1

Kj∑

k=0

I(l; U0→Ii; Ck
j )

+
NA−1∑

j=1

I(l; U0→Ii;Aj) + ñ(l) (5.115)

where E[P (U0)|h(U0, Ii)|2] = P (U0 → Ii) is the power received from U0 at Ii and is given

by the pathloss model (5.3). The interference terms are given by [c.f. (5.55)]

I(l;U0→Ii; U) =
√

P (U) h(U, Ii)h∗n(U0, Ii)dU (l)

× 1
S

S−1∑

s=0

c(Sl + s− τU )c(Sl + s) (5.116)

where, as before, E[P (U)|h(U, Ii)|2] = P (Uj → Ii) can be obtained from (5.3).

The important observation is that for active-B transmissions, including active-B termi-

nals and their cooperators, the autocorrelation property of PN codes yields that E[I(l;U0→
Ii; U)] = 0, var[I(l; U0→Ii;U)] = P (U → Ii)/S and E[I(l; U0→Ii; U1)I∗(l;U0→Ii;U2)] = 0

deterministically, since the 0th PN shift is reserved for active-A users.

For active-A users however, the PN shifts are all equal and we have

E[I(l; U0→Ii; Aj)] = 0, (5.117)

var[I(l; U0→Ii;Aj)] = P (Aj → Ii), (5.118)

E[I(l; U0→Ii; Aj1)I∗(l;U0→Ii; Aj2)] = 0, (5.119)

where (5.117) and (5.119) follow from the independence between different user’s fading

coefficients and the fact that in (5.118) the interfering power is not reduced by the spreading

gain, as usual.

Using these properties, we can compute the expected value and the variance of rU0(l);

and from there, the SINRi
0 in (5.57).

5.9.2 Proof of Lemma 4

In order to have ‖Uj − U0‖ < r, user Uj must lie in the region

Uj ∈ O(0, R) ∩ O(U0, r) := R, (5.120)
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where O(o, r) denotes a circle with center o and radius r. The probability of Uj being in R
is simply

F (r) =
area(R)

πR2
. (5.121)

The right inequality in (5.75) follows from (5.121) after noting that

area(R) < area[O(U0, r)] = πr2. (5.122)

The left inequality in (5.75) requires considering the case in which the intersection of

O(U0, r) with O(0, R) subtracts most of the area from O(U0, r). This happens when U0 is

at the border of O(U0, r) and r = 2R. In this case,

area(R) = πR2 =
πr2

4
. (5.123)

QED. ¤

5.9.3 Proof of Lemma 5

The proofs for all events are similar. We prove the lemma for e2(NI ,K) that is the most

representative, and sketch the proofs for the remaining events.

Remark 23 In the subsequent proofs we exploit the fact that active-A and active-B users’

positions are independent. Indeed, users that enter phase-A in a given slot enter phase-B in

the subsequent one regardless of whether they succeeded in recruiting cooperators or not.

Furthermore, users enter phase-A regardless of their knowledge regarding the activity of

neighboring nodes. This is rather “foolish” since we are allowing transmissions with small

success probability, but nonetheless allowed to maintain independence between active-A

and active-B users’ positions. See also Remark 17.

Proof for event e2(NI ,K)

To simplify notation define K′ := K/ρ1/α. Recall that F (r) is the distribution of ‖Bj −
U0‖ given U0, and note that since the positions of the NB active-B users are assumed
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independent, we have

Pr{‖B(1)
0 − U0‖ > r |U0} = Pr





NB⋂

j=1

(‖Bj − U0‖ > r)|U0





= (Pr{‖Bj − U0‖ > r |U0})NB

= [1− F (r)]NB . (5.124)

On the other hand, recall that F (r) is also the CDF of ‖Ij − U0‖ and denote by f
I
(K)
0

(r)

the pdf of ‖I(K)
0 − U0‖ given U0. A basic result in order statistics is that [6, chap. 3]

f
I
(K)
0

(r)=
NI !

(K−1)!(NI−K)!
FK−1(r)[1− F (r)]NI−K ∂F (r)

∂r
. (5.125)

Applying Bayes’ rule to the probability of e2(NI ,K) as given by (5.77) conditioned on U0’s

position and using the expressions in (5.124) and (5.125), we obtain

Pr{e2(NI ,K) |U0} =

=
∫ ∞

−∞
Pr

{
‖B(1)

0 − U0‖ > K′r |I(K)
0 = r

}
f

I
(K)
0

(r) dr

=
∫ r∗

0
[1−F (K′r)]NB

NI !
(K−1)!(NI−K)!

× FK−1(r)[1−F (r)]NI−K ∂F (r)
∂r

dr (5.126)

where we also used that B
(1)
0 is independent of I

(K)
0 , and we defined r∗ :=

min{r s.t. F (K′r) = 1} that is the relevant upper limit of the integral, since the integrand

is null for r > r∗.

Applying Lemma 4 to the distribution F (r), we obtain the following inequality valid in

(0, r∗):

F (K′r) ≤ (K′r)2
R2

= 4K′2 r2

4R2
≤ 4K′2F (r), (5.127)

which upon substituting in (5.126) and changing variables u = F (r), yields

Pr{e2(NI ,K |U0)} ≥
∫ 1/4K′2

0

(
1− 4K′2u)NB NI !

(K−1)!(NI−K)!
uK−1[1− u]NI−Kdu. (5.128)
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We can expand the binomial (1− 4K′2)NB and interchange sum and integral to obtain

Pr{e2(NI ,K |U0)}

≥
NB∑

l=0

(−1)l

(
NB

l

)(
2K′)2l

∫ 1/4K′2

0

NI ! ul+K−1[1−u]NI−K

(K−1)!(NI−K)!
du

:=
NB∑

l=0

(−1)lil, (5.129)

where we defined il as the absolute value of the lth summand of the previous expression.

All these integrals can be evaluated in closed form. In particular, i0 is given by

i0 :=
∫ 1/4K′2

0

NI !
(K − 1)!(NI −K)!

uK−1[1− u]NI−K du

=
NI∑

j=K

(
NI

j

)
(1/4K′2)j

(
1− 1/4K′2)NI−j

. (5.130)

The latter can be either computed directly or simply obtained by noting that the integral

in (5.130) is the CDF of the Kth order statistic of a uniform random variable.

The summation in (5.130) can also be interpreted as the CDF of a binomial random

variable with NI trials and probability of success K′−2/4. As NI → ∞, the distribution

converges to a normal and we have that

lim
NI→∞

i0 = lim
NI→∞

Q

(
K −NI/4K′2√

NI/2K′
)

= lim
NI→∞

Q

(
K − ρ2/αNI/4K2

ρ1/α
√

NI/2K

)
(5.131)

where Q(x) :=
∫∞
x 1/(

√
2π) exp(−u2/2)du is the cumulative Gaussian function, and we

used the definition of K′ in the last equality. But note that if K < ρ2/αNI/4K2, then the

expression in (5.131) converges to 1, and this is true since the hypothesis K/(ρ2/αNI) →
0 implies that for any 4K2 there exists a K/(ρ2/αNI) such that (K/ρ2/αNI) < 1/4K2.

Accordingly, we established that

lim
NI→∞

i0 = 1. (5.132)
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Consider now the remaining integrals that can be bounded as follows:

il :=
(

NB

l

)(
2K′)2l

∫ 1/4K′2

0

NI ! ul+K−1[1− u]NI−K

(K − 1)!(NI −K)!
du

<

(
NB

l

)(
2K′)2l

∫ 1

0

NI ! ul+K−1[1− u]NI−K

(K − 1)!(NI −K)!
du

=
(

NB

l

)
(2K′)2l

NI !
(K − 1)!(l + K) . . . (l + NI)

(5.133)

where the inequality is obtained from the positivity of the integrand, and the second equality

can be obtained after repeatedly integrating by parts. Moreover, it is easy to bound the

factorials in the previous expression to obtain

il <
1
l!

(
NBK′2
KN

)l

=
1
l!

(
NBK2

Kρ2/αNI

)l

. (5.134)

But for ρ2/αNI/K →∞ and K →∞, we have that il → 0 for l 6= 0 for arbitrary K. Taking

limit in (5.129) and using the results summarized in (5.132) and (5.134), it follows that

lim
NI→∞

Pr{e2(NI ,K |U0)} = 1. (5.135)

To complete the proof, just note that (5.135) is a stronger result than the one desired, since

the limit is conditioned on U0. ¤

Proof for event e1(NI ,K)

Note that if Lemma 4 is valid for all U0, it is also valid unconditionally when averaged over

all possible U0’s. From there, we obtain the inequality

Pr{‖U0‖ < r} =
r2

R2
≤ 4Pr{‖Bj − U0‖ < r} , (5.136)

for arbitrary Bj . But now note that by definition ‖Bj−U0‖ ≥ ‖B(1)
0 −U0‖; and consequently,

Pr{‖U0‖ <(K/ρ)‖I(K)
0 − U0‖}

≤ 4Pr{‖B(1)
0 − U0‖ < (K/ρ)‖I(K)

0 − U0‖}. (5.137)

But the events involved in the previous inequality are the complements of e1(NI ,K) and

e2(NI ,K), which implies that

1− Pr{e1(NI ,K)} ≤ 4[1− Pr{e1(NI ,K)]. (5.138)
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Since we just proved that Pr{e2(NI ,K)} → 1, we deduce that Pr{e1(NI ,K)} → 1. ¤

Proof for event e3(NI ,K)

Repeat steps (5.124) to (5.135) in the proof for e2(NI ,K). ¤

5.9.4 Proof of Theorem 10

Let us first recall the following fact that will be used in the proof of claims [a] and [b].

Fact 1 If we have SINRk
0 → ∞ in (5.57), then Pr{Ik ∈ C0} → 1. Indeed, if SINRk

0 → ∞
then for all but a zero-measure set of fading channel realizations the packet transmitted by

U0 is correctly received by Ik. Likewise, if SINRk
0 → 0 in (5.57), then Pr{Ik ∈ C0} → 0.

Proof of claim [a]

If Ck
j ∈ Cj , then it successfully decoded Bj ’s active-A packet in the previous slot. Consider

SINRk
j for the reception of Bj ’s active-B packet by the user Ik in the previous slot that can

be bounded by

SINRk
0 ≤

P (Uo → Ik)
N0

=
ρP0

N0

‖Bj‖α

‖Bj − I
(k)
j ‖α

, (5.139)

where we just considered the noise term and neglected the other users’ interference.

Assuming that ‖Bj − Ik‖/‖Bj‖ > ε and letting NI →∞ in (5.139), we obtain

lim
NI→∞

SINRk
0 ≤ lim

NI→∞
ρP0

εN0
= 0. (5.140)

But now recall Fact 1 to claim that since SINRk
0 → 0 we must have

lim
NI→∞

Pr{Ik ∈ Cj} = lim
NI→∞

P 1
e (SINRk

0) = 0 . (5.141)

Thus, if ‖Bj − Ik‖/‖Bj‖ > ε for some ε, then Ik /∈ Cj with probability 1. It thus follows

that for those that did become cooperators, (5.81) must hold true. In particular, it is true

for C
(Kj)
j . ¤
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Proof of claim [b]

We start by establishing a simple consequence of claim [a] in the following corollary:

Corollary 7 The event

e4(NI ,K) :={‖U0 −Bj‖ > 2‖Bj − C
(Kj)
j ‖ ∀ j = 1, . . . , NB} (5.142)

has probability 1 as the number of idle users NI →∞; i.e.,

lim
NI→∞

Pr{e4(NI ,K)} = 1 . (5.143)

Proof:Consider the complement of e4(NI ,K), and use the union bound and Lemma 5 to

claim that

1− Pr{e4(NI ,K)} < 4NB Pr{‖Bj‖ < 2‖Bj − C
(Kj)
j ‖}. (5.144)

But the latter goes to 0 according to Theorem 10-[a], with ε = 1/2.

We now continue with the proof of claim [b].

Proof - [b]: According to Fact 1 it suffices to prove that SINR(k)
0 → ∞ in probability, or

equivalently,

lim
NI→∞

Pr{SINR(k)
0 > K′} = 1 ∀ K′ > 0 . (5.145)

The inverse SINR is given by (5.71) and can be rewritten as

(SINR(k)
0 )−1 = S−1

NB∑

j=1

Kj∑

i=0

P (Ci
(j) → I

(k)
0 )

P (U0 → I
(k)
0 )

+ S−1
NA−1∑

j=1

P (A(j)
0 → I

(k)
0 )

P (U0 → I
(k)
0 )

+
N0

P (U0 → I
(k)
0 )

(5.146)

where we have just reordered the summands according to their closeness to U0.

We will first bound the noise term. To this end, supposing that e1(NI ,K) is valid, we

obtain

N0

P (U0 → I
(k)
0 )

=
N0

ρP0

‖U0 − I
(k)
0 ‖α

‖U0‖α
<

N0

ρP0

‖U0 − I
(K1)
0 ‖α

‖U0‖α

<
N0ρ

α−1

KαP0
<

N0

KαP0
, (5.147)
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where the first inequality follows since ‖U0 − I
(k)
0 ‖ < ‖U0 − I

(K1)
0 ‖ holds by definition for

k ≤ K1, and in the last inequality we used that ρ < 1 and α > 2.

Consider now the active-B users’ interference terms. Since the transmitted powers are

proportional to the distance to the AP as per [h3], we have

P 1/α(Ci
(j) → I

(k)
0 ) =

(P0/Kj)1/α‖Ci
(j)‖

‖Ci
(j) − I

(k)
0 ‖

<
P

1/α
0

K
1/α
j

‖I(k)
0 ‖+ ‖Ci

(j) − I
(k)
0 ‖

‖Ci
(j) − I

(k)
0 ‖

=
P

1/α
0

K
1/α
j


1 +

‖I(k)
0 ‖

‖Ci
(j) − I

(k)
0 ‖


 . (5.148)

where the inequality follows from the triangle inequality applied to the triangle with vertices

AP, I
(k)
0 , Ci

(j). Application of the same inequality to the triangle AP, U0, I
(k)
0 , yields

‖I(k)
0 ‖ < ‖U0‖+ ‖U0 − I

(k)
0 ‖ < ‖U0‖+ ‖U0 − I

(K)
0 ‖, (5.149)

where the second inequality follows from the definition of I
(k)
0 (the kth closest to U0 idle

user), and the fact that k ≤ K. Applying once again the triangle inequality to the triangles

I
(k)
0 , B

(j)
0 , Ci

(j) and U0, B
(j)
0 , I

(k)
0 , yields (see also Fig. 5.13)

‖Ci
(j) − I

(k)
(0) ‖ > ‖U0−B

(j)
0 ‖−‖U0−I

(k)
0 ‖ − ‖B(j)

0 −Ci
(j)‖

> ‖U0−B
(j)
0 ‖−‖U0−I

(K)
0 ‖ − ‖B(j)

0 −C
(Kj)

(j) ‖

> 1/2‖U0 −B
(j)
0 ‖ − ‖U0 − I

(K)
0 ‖

> 1/2‖U0 −B
(1)
0 ‖ − ‖U0 − I

(K)
0 ‖. (5.150)

In deriving the second inequality we used that ‖U0 − I
(k)
0 ‖ < ‖U0 − I

(K)
0 ‖ and ‖B(j)

0 −
Ci

(j)‖ < ‖B(j)
0 − C

(Kj)

(j) ‖ which follows by definition since k ≤ K and i ≤ Kj . In the

third inequality, we assumed the validity of e4(NI ,K); and the fourth one follows from

‖U0 −B
(j)
0 ‖ > ‖U0 −B

(1)
0 ‖, which also is valid by definition.

If we also assume that the event e2(NI ,K) holds, we obtain that [c.f., (5.77), (5.150)]

‖Ci
(j) − I

(k)
0 ‖ > (K/2ρ1/α − 1)‖U0 − I

(K)
0 ‖. (5.151)
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Figure 5.13: Repeated use of the triangle inequality bounds the SNR with the distance

quotients considered in Lemma 5.

And the interfering power received at I
(k)
0 from Cj

(j) can be bounded as [c.f., (5.148), (5.151)]

P 1/α(Ci
(j) → I

(k)
0 ) <

P
1/α
0

K
1/α
j

×
[
1 +

‖U0‖
(K/2ρ1/α − 1)‖U0 − I

(K)
0 ‖

+
1

K/2ρ1/α − 1

]
. (5.152)

On the other hand, the power received at I
(k)
0 from U0 is P 1/α(U0 → I

(k)
0 ) = (ρP0)1/α‖U0‖

/ ‖U0 − I
(k)
0 ‖ > (ρP0)1/α‖U0‖/‖U0 − I

(K)
0 ‖, from where we arrive at


P (Ci

(j) → I
(k)
0 )

P (U0 → I
(k)
0 )




1/α

<
1

(ρKj)1/α

[
1

K/2ρ1/α − 1

+
(

1 +
1

K/2ρ1/α − 1

) ‖U0 − I
(K)
0 ‖

‖U0‖

]
. (5.153)

Finally, note that if we assume that e1(NI ,K) is also true, we obtain the bound [c.f., (5.77),

and (5.153)]

P (Ci
(j) → I

(k)
0 )

P (U0 → I
(k)
0 )

<
1

KjKα
fα

B(K), (5.154)
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with fB(K) being a bounded function, since it is continuous and limK→∞ fB(K) = 4.

Consider finally the active-A users’ interference term that can be bounded by repeating

the steps in (5.148) - (5.154), but instead of assuming the validity of the events e2(NI ,K)

and e4(NI ,K) to go from (5.150) to (5.151), we assume that e3(NI ,K) is true. These steps

yield [
P (A(j)

0 → I
(k)
0

P (U0 → I
(k)
0 )

]1/α

<

[
1

K − 1
+

( K
K − 1

) ‖U0 − I
(K)
0 ‖

‖U0‖

]
(5.155)

from where the assumed validity of e1(NI ,K) leads to [c.f. (5.77) and (5.155)]
[

P (A(j)
0 → I

(k)
0

P (U0 → I
(k)
0 )

]
<

1
Kα

fα
A(K), (5.156)

with fA(K) bounded for the same reasons fB(K) is.

We can now combine the bounds in (5.147), (5.154) and (5.156) and the convexity of

potential functions, g(x) = xα, with α > 1, to conclude that if the events {el(NI ,K)}4
l=1

hold true, then

(SINR(k)
0 )−1 < NB

fα
B(K)
SKα

+ (NA − 1)
fα

A(K)
SKα

+
N0

KαP0

=
1
Kα

[
(NA−1)fB(K)/S+NBfA(K)/S+

N0

P0

]

<
ζ

Kα
, (5.157)

for some constant ζ. Consequently, the probability that (5.157) is satisfied is larger than

the probability of all four {el(NI ,K)}4
l=1 holding true, and thus

Pr
{

(SINR(k)
0 )−1 < C/Kα

}
> Pr

{
4⋂

l=1

el(NI ,K)

}
. (5.158)

To complete the proof, apply the union bound to the intersection in (5.158) to obtain

Pr
{

(SINR(k)
0 )−1 < C/Kα

}
> 1−

4∑

l=1

(1− Pr{el(NI ,K}). (5.159)

But according to Lemma 5, the four probabilities considered converge to 1 as NI →∞, and

we obtain that

lim
NI→∞

Pr
{

(SINR(k)
0 ) > K′

}
= 1, (5.160)
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with K′ := Kα/ζ. But as noted before, (5.160) implies that the PEP converges to 0,

and (5.82) follows readily. ¤
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Chapter 6

Future work

Shifting the routing paradigm from finding shortest paths in a graph to solving convex

optimization problems as we discussed in Chapters 2 and 3 opens up the possibility to

address a plethora of novel routing problems. Indeed, many rate maximizing criteria of

practical interest lead to simple convex optimization problems. We contend that this fact,

besides its intrinsic value, enables solution of additional routing problems that have been

deemed intractable. We discuss some future problems in the next sections.

6.1 Robust optimal routing

While there is implicit robustness built into the stochastic routing protocols (SRP), of Chap-

ters 2 and 3, a formulation that optimizes resilience against link fades and/or intentional

attacks is certainly of interest. Say that R0 is the observed reliability matrix but due to

link fades and/or intentional attacks the actual matrix R deviates from R0. We can cap-

ture this effect by modeling R ∈ R, where R is a set containing possible realizations of R,

e.g., all matrices including up to a 20% degradation in every Rij entry. A robust routing

formulation maximizes the rate ρ subject to the constraint that the optimal routing matrix

(T∗,K∗) is feasible for any R ∈ R; i.e.,

(K∗,T∗) = arg max
K∈K,R∈R

f [(I−K0)1]. (6.1)
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As long as R is convex this problem also is. If we further require Rij ∈ [Rmin
ij , Rmax

ij ], then

(6.1) is a linear program.

A different approach to optimizing robustness is to consider that each entry Rij of R is

a random variable with known mean R̄ij and variance Σij . In this case, the resulting rates

ρj are also random variables with mean ρ̄j and variance σj . Two formulations of interest in

this setup are to: i) maximize the average rate subject to a maximum tolerable variance,

i.e., maxσ≤σmin f(ρ̄); and ii) minimize the variance subject to a minimum acceptable rate,

i.e., minρ̄≥ρ̄min g(σ).

6.2 Routing in ad-hoc networks

In an ad-hoc network every terminal is a potential destination. Mimicking notation in

Chapter 2, let {ρ(j)}J
j=1 denote the arrival rates for delivery to node Uj . With λ(j) denoting

the corresponding departure rates and T(j),K(j) the routing matrices, we deduce that

ρ(j) = (I−K(j))λ(j) [cf. (2.24), with K = K0]. Interestingly, each matrix K(j) ∈ K adheres

to the same set of constraints considered in (3.1). The difference is that there are now many

outgoing flows implying that the constraint 0 ¹ λ ¹ 1 is replaced by 0 ¹ ∑J
j=1 λ(j) ¹ 1.

Rate maximizing routes in ad-hoc networks can thus be pursued by solving

(K∗,T∗) = arg max f [(I−K(1))λ(1), . . . , (I−K(J))λ(J)]

s.t. K(j) ∈ K, 0 ¹
J∑

j=1

λ(j) ¹ 1. (6.2)

As formulated here, stochastic routing in ad-hoc networks leads to a bilinear program. We

will pursue reformulations of (6.2) analogous to those in Chapter 2.

6.3 Cross-layer optimization

As described in Chapter 2, matrix R is chiefly determined by transmitted power. If termi-

nals transmit over orthogonal channels, then Rij(Pj) and the specific functional dependence

changes with, e.g., the fading model. In contention- or interference-limited networks we have
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that in general R(p,λ), even though we can in many cases use R(p,1) as an upper bound

on achievable rates. In a cross-layer optimal formulation it will be interesting to jointly

optimize the routing matrix and the vector p of transmission powers to obtain

(K∗,T∗,p∗) = arg max f [(I−K)1]

s.t. Kij = Rij(p), KT1 = 1, TT1 = 1, 0 ¹ p ¹ p(max). (6.3)

Depending on Rij(Pj), this problem can be tractable or not. Our preliminary analysis

suggests that for block fading channels and orthogonal transmissions at sufficiently high

SNR, (6.3) belongs to a class of convex optimization problems called geometric programs.

For interference-limited networks (6.3) amounts to a non-convex signomial program.

6.4 Opportunistic routing

The SRPs in Chapters 2 and 3 do not fully exploit the broadcast nature of the wireless

channel. Indeed, before transmission Uj tags the packet with its intended destination,

say Ui, thus preventing the possibility of terminals Uk 6= Ui keeping a successfully decoded

packet. An alternative strategy could be for terminals Ui 6= Uj to take independent decisions

as to whether they keep a successfully decoded packet or not. This opportunistic approach

can be captured in our framework by simply requiring Kij ≤ Rij for i 6= j. The packet

remains in Uj ’s queue if it is not kept by any terminal, i.e., Kjj =
∏J+Jap

i=1 (1−Kij), where we

supposed that terminals make independent decisions on whether to keep correctly decoded

packets. In short, a worthwhile future direction is to find opportunistic routes as

K∗ = arg max f [(I−K)λ]

s.t. Kij ≤ Rij ,

J+Jap∏

i=1

(1−Kij) = Kjj , 0 ¹ λ ¹ 1. (6.4)

Interestingly, this is also a signomial program suggesting that techniques developed to solve

cross-layer optimization routing problems can be used to solve opportunistic routing prob-

lems as well. Note that in (6.4) we are allowing packet duplication. We foresee that for the

same R the stability region for opportunistic routing is larger than the non-opportunistic

region in (2.29).
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Figure 6.1: More than 400 wireless access points provide seamless 802.11 coverage through-

out the UoM Twin cities campus.

6.5 Experiments and trials

The University of Minnesota (UoM) Twin cities campus is the second largest university

campus in the nation boasting a student population of 51, 175, thriving in a 2, 730-acre

urban setting [66]. To serve this student population, as well as faculty and staff, the Office

of Information Technology (OIT) has deployed a 802.11b (“Wi-Fi”) wireless network with

421 access points (APs) providing seamless coverage throughout campus; see also Fig. 6.1.

Even though the 802.11b specification provides 11 channels, they overlap so that at most

three channels can be used in the same space. In the UoM Wi-Fi network, channels 1, 6,

and 11 are being used. Channel 11 is reserved for the campus-wide infrastructure deployed

by OIT, whereas channel 1 is reserved for departmentally deployed units and channel 6

for future uses such as adding additional capacity or filling in weak spots. Most of the

APs on campus work on the OIT-operated channel 11 with channel 1 being pervasive in

technology-oriented departments and a few APs operating in channel 6 to cover difficult

spots around campus. Its large size, heavy traffic, large number of users, and the inherent
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Figure 6.2: The UoM wireless network operates far from peak capacity except during the

late morning to early afternoon rush-hour, leaving significant spare capacity for research

trials.

wireless propagation difficulties of a urban setting make the UoM 802.11b network an ideal

test-bed for the protocols and algorithms proposed in this thesis.

Consistent with the research initiatives of the UoM strategic positioning process [66] it

is possible to test our protocols and algorithms using the UoM 802.11b network. We have

gathered data to characterize the daily traffic behavior leading to the results summarized

in Fig. 6.2. We show there how traffic (in Mbps) varies during different times of the day,

plotting several individual data sequences as well as the average of 9 different days. As

expected, traffic is negligible in the evenings and increases during the morning to reach

its maximum during the late-morning to early-afternoon rush-hour; we then have a small

decrease but traffic remains steady for the rest of the afternoon to finally start decreasing

as the night approaches.

Interestingly, we also observed weekly variations with a characteristic pattern for Mon-

days, a different one for Tuesdays and so on (data in Fig. 6.2 is for all Tuesdays during

September and October of 2005).

Taking into account the daily traffic distribution and the 802.11b channel assignment
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we have developed an experiment and trial protocol consisting of 4 levels of experiments

classified according to the risk of service disruptions:

[L1] Data collection. Passive data collection not entailing a traffic increase can be carried

at any time during the day. Active data collection entailing traffic increase can be

done between 8 pm and 10 am of the following day but never occupying more than

10% of installed capacity.

[L2] Invasive experiments. Experiments entailing traffic increases of more than 10% of

installed capacity and/or requiring reconfiguration of APs will be performed from 11

pm to 7 am.

[L3] Friendly users’ trial. System trials involving software installed in terminals of

willing end users can be done in the reserved channel 6. These trials cannot use

OIT-operated APs.

[L4] Trial. System trials in channel 11, using OIT-operated APs can be done after suc-

cessful completion of [L3].

According to this plan the path conducing to the development of a working SRP should

start with an [L1] experiment to collect information regarding the packet success probability

matrix R, i.e., its rate of change to understand how accurate the R estimate can be. We

can then follow up with an [L2] experiment in which we reconfigure APs to communicate

with each other and compare our SPRs with traditional routing alternatives to verify that

the gains predicted in theory actually materialize in practice. After successful completion of

this stage it is possible to move on to a friendly user trial with the Electrical and Computer

Engineering departmental wireless network (level [L3]), and finally to a trial open to the

whole UoM community (level [L4]).
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