
Research Overview

Alejandro Ribeiro
aribeiro@seas.upenn.edu

Dept. of Electrical and Systems Engineering
University of Pennsylvania

Philadelphia, PA 19104



Table of Contents

Contents

A Optimal wireless communication and networking systems . . . . . . . . . . . . . . . B-2
A.1 Optimal wireless system design: Dual functions, duality gap, and separability B-4
A.2 Ergodic stochastic optimization algorithms . . . . . . . . . . . . . . . . . . . B-5
A.3 Acknowledgments and references . . . . . . . . . . . . . . . . . . . . . . . . . B-6

B Communication networks for autonomous robot teams . . . . . . . . . . . . . . . . . B-7
B.1 Decentralized communications protocols . . . . . . . . . . . . . . . . . . . . . B-9
B.2 Decentralized motion planning . . . . . . . . . . . . . . . . . . . . . . . . . . B-9
B.3 Acknowledgments and references . . . . . . . . . . . . . . . . . . . . . . . . . B-10

C Bayesian network games . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B-11
C.1 Asymptotic learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B-12
C.2 Quadratic network game filter . . . . . . . . . . . . . . . . . . . . . . . . . . . B-13
C.3 Acknowledgments and references . . . . . . . . . . . . . . . . . . . . . . . . . B-14

D Circles of trust: Hierarchical clustering in asymmetric networks . . . . . . . . . . . . B-14
D.1 Axioms of value and transformation . . . . . . . . . . . . . . . . . . . . . . . B-15
D.2 Ongoing work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B-16
D.3 Acknowledgments and references . . . . . . . . . . . . . . . . . . . . . . . . . B-17

E Distributed optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B-17
E.1 Accelerated dual descent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B-19
E.2 Acknowledgments and references . . . . . . . . . . . . . . . . . . . . . . . . . B-20

F Wireless Control Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B-21
F.1 Single plant over point-to-point channel . . . . . . . . . . . . . . . . . . . . . B-22
F.2 Ongoing work, acknowledgements, and references . . . . . . . . . . . . . . . . B-24

G What’s in Shakepeare’s name?
Authorship attribution from word adjacency networks . . . . . . . . . . . . . . . . . B-24
G.1 Ongoing work, acknowledgments and references . . . . . . . . . . . . . . . . . B-26



Research Overview

Although networks cannot be claimed to be a recent invention it is safe to assert that the irruption
of networks into everyday life is a determinant feature of the late 20th century. Technological
networks have transformed the way in which we interact with each other and the way in which we
acquire and manipulate information. At the same time, we have come to realize that underlying
networks of influence and interaction play a fundamental role in explaining the behavior of large
scale natural and social phenomena. Understanding networks has thus emerged as one of the great
intellectual challenges of the 21st century. My research is about the application of Signal and
Information Processing tools to the design of networks, the development of network algorithms,
and the understanding of networked phenomena.

For the most part my research is about the foundational understanding of these topics in what
many have come to call the emerging field of Network Theory. There are myriad contexts in which
networks play a fundamental role but a common thread that weaves them together is the local
interaction versus global behavior dichotomy. In networked systems we only have knowledge and
control on local actions but want to explain or enforce network-wide behavior. As a Network Theory
researcher my expertise is in various tools that can be used to bridge this dichotomy. Besides this,
my philosophy is to be agnostic with respect to tools and applications.

Agnosticism notwithstanding, the different projects that constitute my current research program
accept a taxonomy that differentiates between situations in which the goal is to design algorithms
suitable for implementation on networked infrastructures, analyze phenomena in which underlying
network interactions explain a significant part of the observed behavior, or, design the network
infrastructure itself:

Network algorithms. Algorithms are the typical deliverable of research efforts in Signal and Infor-
mation Processing. E.g., the solution of an estimation problem is an algorithm to compute good
estimates for a given data set. In network algorithms the information to be processed is distributed
throughout the network and the goal is to design mechanisms to process this information based
on local interactions between neighboring nodes. In, e.g., distributed estimation problems, obser-
vations are acquired by different nodes and the estimation algorithm intends to accumulate global
information through message exchanges that are restricted to neighboring nodes. I currently have
three active research projects in this space, namely, “Bayesian Network Games,” “Distributed Op-
timization,” and “Wireless Control Systems.” These projects are discussed in sections C, E, and
F, respectively.

Networked data structures. A networked data structure is one in which there is some notion of
locality. In the count of pairwise message exchanges between members of a group most messages
sent by a given individual are concentrated on a few recipients, the level of expression of a gene
affects the level of expression of just a few other genes, the output of an economic sector has
significant direct effect on just a few other sectors, and so on. Conventional information processing
algorithms that ignore this local structure can be applied. However, if the networked structure
is ignored we should not expect to be able to understand what is the role the network plays in
explaining observed behaviors. In this problem category our goal is to perform analysis of networked
data structures that do not ignore the fact that the network is, indeed, a network. The two projects
that belong in this category are “Hierarchical Clustering in Asymmetric Networks” and “Authorship
Attribution using Word Adjacency Networks.” These projects are discussed in sections D and G,
respectively

Network infrastructure. While it has taken humanity a century to realize, our society’s infrastruc-
ture is about connectivity. The transportation infrastructure connects places, the energy infras-



tructure connects generators with consumers, the communication infrastructure connects people,
and the market infrastructure connects savers with developers. In network infrastructure design
problems we are given resources that we administer to establish desirable connectivity patterns. My
work on network infrastructure is on the design of wireless communication networks. In such case
we are given resources in the form of power budgets and bandwidth that we allocate to establish
direct communication links in order to support end-to-end communication flows. On top of deciding
which connections should be established among those possible for the given bandwidth and power,
we also want to determine suitable routes, link shares, and admission control variables to support
the required level of service. I am currently working on “Optimal Design of Wireless Communi-
cation and Networking Systems” and the design of “Communication Networks for Autonomous
Robot Teams.” These projects are discussed in sections A and B, respectively

A Optimal wireless communication and networking systems

In their classical work on limit distributions Gnedenko and Kolmogorov wrote that the “episte-
mological value of the theory of probability is based on this: that large-scale random phenomena
in their collective action create strict, nonrandom regularity”. In simpler words, randomness gen-
erates structure. It is often possible to infer properties of large-scale stochastic systems even if
analogous deterministic counterparts are intractable. Randomness, in the form of fading – random
variations in propagation coefficients between network nodes –, is inherent in wireless networks. My
technical approach to the optimal design of wireless systems is to explore the structure introduced
by fading so as to understand their fundamental properties. An example of the desired outcomes
are recent results concerning the optimality of separating wireless networking problems in layers
and per-fading state subproblems.
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Figure 1: Wired network. In wired networks communication is
possible between nodes sharing a physical connection. The goal
of the communication network is to administer link resources to
support information flows with some required level of service.

To explain these results consider a
communication network deployed to sup-
port information flows with some required
level of service. The goal of the commu-
nication network is to administer given re-
sources to sustain said flows. In conven-
tional wired networks the resource given
is a set of physical connections between
nodes; see Fig. 1. Supporting infor-
mation flows requires finding routes be-
tween source and destination, determining
link sharing strategies, and controlling the
amount of traffic injected into the network.
It was an early design specification to sep-
arate these problems in layers – routing,
link and transport for the problems in the
previous sentence – that operate more or
less independently, and interact through standardized interfaces. While this was mostly a matter
of ensuring inter-operability it is remarkable that this separation can be optimal. Specifically, it
is possible to define separate per-layer optimization problems whose outcome coincides with the
solution of a joint non-layered optimization. Mathematically, separability comes from the fact that
the wired networking problem is convex – a linear program in fact. The Lagrangian dual problem
can thus be solved instead. As it often happens, the Lagrangian exhibits a separable structure,
which, as it turns out coincides with the conventional layers.



In a wireless network the given resources are not connections but bandwidth and power; see Fig.
2. Therefore, on top of routes, link shares, and rate control, a wireless networking problem entails
determining which connections, among those possible for the given bandwidth and power, should
be established to support the required level of service. Earlier approaches to wireless networking
migrated the conventional layers and defined the power and frequency assignment as physical layer
subproblems. This yields poor results though, and over time lead to the surge of cross-layer design
as synonym of joint optimization across layers. Ultimately, the poor performance of layered wireless
networks stems from the non-convexity of the joint cross-layer networking problem. As in wired
networks, the Lagrangian exhibits a separable structure that can be mapped to layers. But non-
convex problems have positive duality gap explaining the poor results of layered wireless networks.
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Figure 2: Wireless networks. In wireless networks (middle and
bottom) links are established by a resource allocation decision
to spend power and bandwidth on a specific connection for a
specific fading state. Links can be different at different times
and have time varying capacities.

In what constitutes an interesting ex-
ample of structure introduced by random-
ness, we have proven that general wire-
less networking problems in the presence
of fading, while non-convex, have zero La-
grangian duality gap. Exploiting the sep-
arability of the Lagrangian, this result
yields the following principles:

First separation principle. This princi-
ple pertains to the separability of wire-
less networking problems into layers. It
states that it is possible to define separate
optimization problems to obtain optimal
routes, optimal link capacity allocations,
and optimal power/frequency assignments.

Second separation principle. Another dif-
ficulty in optimal wireless networking is
the need to optimize jointly for all fading
states. Given that fading coefficients take
on a continuum of values, this is a vari-
ational problem that requires finding op-
timal functions of the fading coefficients.
This principle states that network opti-
mization is further separable in per-fading-
state subproblems. The practical impor-
tance of this result is that it is not neces-
sary to find optimal functions but only the
values of the functions for those channels
actually observed.

The separation principles hold under
specific assumptions, e.g., networks operating in an ergodic setting and availability of perfect chan-
nel state information that restrict applicability of the separation principles to particular settings.
Part of the research undertaken in the context of this project is to study the extent to which these
assumptions can be lifted and what implications follow when this is not possible. Nonetheless, it
has to be recognized that they do establish a fundamental property of wireless networks in the
presence of fading that is not true for networks in a deterministic setting.

Our current research agenda utilizes the separation principles as motivation for part of the



proposed research and as an example of the types of result that can be expected from the combi-
nation of optimization techniques and stochastic structure. Specific research activities include the
construction of a generic framework to reduce the complexity of finding optimal operating points
for wireless systems and the development of stochastic optimization algorithms to operate in envi-
ronments where channel probability distributions are not known. We also apply this framework to
the solution of specific problems in optimal wireless communications and networking. Of particular
notice is the work on cognitive access algorithms and protocols. This is an effort to understand
optimal wireless networking when terminals have different beliefs about the global state of the
network.

A.1 Optimal wireless system design: Dual functions, duality gap, and separability

Operating variables of a wireless system can be separated in two types. Resource allocation variables
p(h) determine instantaneous allocation of resources like frequencies and transmitted powers as a
function of the fading coefficient h. Average variables x capture system’s performance over a large
period of time and are related to instantaneous resource allocations via ergodic averages. A generic
representation of the relationship between instantaneous and average variables is

x ≤ E
[
f1
(
h,p(h)

)]
, (1)

where f1
(
h,p(h)

)
is a vector function that maps channel h and resource allocation p(h) to instan-

taneous performance f1
(
h,p(h)

)
. The system’s design goal is to select resource allocations p(h) to

maximize ergodic variables x in some sense.
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Figure 3: Power allocations in a wireless network using adap-
tive modulation and coding over an interference limited physical
layer. Optimal power distribution consists of transitions between
AMC modes and within each mode a cloud of allocations roughly
proportional to the inverse channel.

An example of a relationship having
the form in (1) is a code division mul-
tiple access channel in which case h de-
notes the vector of channel coefficients,
p(h) the instantaneous transmitted power,
f1
(
h,p(h)

)
the instantaneous communica-

tion rate determined by the signal to inter-
ference plus noise ratio, and x the ergodic
rates determined by the expectation of the
instantaneous rates. The design goal is to
allocate instantaneous power p(h) subject
to a power constraint so as to maximize a
utility of the ergodic rate vector x. This
interplay of instantaneous actions to opti-
mize long term performance is pervasive
in wireless systems. A brief list of ex-
amples includes optimization of orthogonal
frequency division multiplexing, cognitive
radio, random access, communication with
imperfect channel state information, and various flavors of wireless network optimization.

In many cases of interest the functions f1
(
h,p(h)

)
are nonconcave and as a consequence find-

ing the resource allocation distribution p∗(h) that maximizes x requires solution of a nonconvex
optimization problem. This is further complicated by the fact that since fading channels h take on
a continuum of values there is an infinite number of p∗(h) variables to be determined. A simple
escape to this problem is to allow for time sharing in order to make the range of E

[
f1
(
h,p(h)

)]
convex and permit solution in the dual domain without loss of optimality. While the nonconcave



function f1
(
h,p(h)

)
still complicates matters, working in the dual domain makes solution, if not

necessarily simple, at least substantially simpler. However, time sharing is not easy to implement
in fading channels.

At the heart of this research endeavor there is a general methodology that can be used to solve
optimal resource allocation problems in wireless communications and networking without resorting
to time sharing. The fundamental observation is that the range of the expectation E

[
f1
(
h,p(h)

)]
is convex if the probability distribution of the channel h contains no points of positive probability.
This observation can be leveraged to show lack of duality gap of general optimal resource allocation
problems making primal and dual problems equivalent. The dual problem is simpler to solve and
its solution can be used to recover primal variables with reduced computational complexity due to
the inherently separable structure of the problem Lagrangians. The separation principles outlined
above are a direct consequence of these observations but these properties can also be used to develop
specific algorithms and protocols for optimal wireless communication and networking. An example
of that is the ergodic stochastic optimization algorithm that we explain next.

A.2 Ergodic stochastic optimization algorithms

Wireless link capacities are expressed as expected values over fading channel realizations. Their
evaluation, therefore, requires access to the channel probability distribution function (pdf). As-
suming a particular fading model the channel pdf is acquired by estimating channel moments; e.g.,
for Raleigh fading estimating mean channels is sufficient. While this is a possible approach it does
restrict practical applicability as fading models are only rough approximations of distributions
observed in field deployments. To overcome this limitation we developed the ergodic stochastic
optimization algorithm that learns channel distributions simultaneously with the determination of
optimal operating points.
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Figure 4: Optimal routes to node 7. Circles’ areas are proportional to the
amount of traffic terminals handle on behalf of terminal 7. Line widths are
proportional to the packets routed through that link. Links of lower average
quality are exploited, e.g., nodes 4 and 11 deliver information directly to
node 7 bypassing the better quality links to nodes 5 and 9.

These algorithms are ob-
tained through the implemen-
tation of stochastic subgradi-
ent descent in the dual domain
and have been shown to ex-
hibit almost sure convergence
to optimal operating points in
an ergodic sense. The er-
godic stochastic optimization al-
gorithm is implemented to find
optimal operating variables for
the network in Fig. 2 using
adaptive modulation and cod-
ing over an interference limited
physical layer. Nodes operate
on 5 frequency bands, using di-
rect sequence spread spectrum in
each of them with spreading gain
S = 16. Three AMC modes cor-
responding to capacities 1, 2 and
3 bits/s/Hz are used with tran-
sitions at SINR 1, 3 and 7. Fading channels are generated as i.i.d. Rayleigh with average pow-
ers 1/2 for the links 4 ↔ 7, 5 ↔ 9, 7 ↔ 11, 9 ↔ 10, 11 ↔ 8, 10 ↔ 6, 8 ↔ 4 and 6 ↔ 5



and 1 for the remaining links. Noise power is Nf
i = 0.1 for all terminals and frequency bands.

The maximum average power consumption per terminal is pmax = 2 – chosen so that if a ter-
minal with 4 neighbors spreads power uniformly across all neighbors and frequencies the signal
to noise ratio is 0dB. Powers pi are also constrained to be positive, i.e., pmin = 0. A spectral
mask P(h) := {pfij(h) : 0 ≤ pfij(h) ≤ pmask} is further defined with pmax = 2 the same value
used to limit average power consumption. Link capacities and routing variables are constrained by
cmin = rmin = 0 bits/s/Hz and cmax = rmax = 6 bits/s/Hz. Four flows with destination at termi-
nals 1, 7, 8 and 14 are considered with all other terminals required to deliver at least amin = 0.5
bits/s/Hz and at most amax = 2 bits/s/Hz to each of these flows. Beyond that, the optimality
criteria is sum rate maximization. Simulation results are presented in Figs. 3, 4, and 5.

Power allocation for the link from terminal 1 to terminal 4 is shown in Fig. 3. Optimal power
distribution consists of transitions between AMC modes and within each mode a cloud of allocations
roughly proportional to the inverse channel.
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Figure 5: Optimal link capacities. The width of the link is proportional to
the capacity of the link. For each pair of terminals i < j the capacity cij
between the smaller index i and the larger index j is shown first (in blue)
and the capacity cji second (in red). Links to nodes 1, 7, 8 and 14 have the
largest capacities as it should be of flows’ destinations. Notice how some
links, e.g. 11 to 9, despite having good average values are assigned small
powers, thus having small capacity.

Routes to terminal 7 are
sketched in Fig. 4. The cir-
cles’ area is proportional to the
amount of traffic that each ter-
minal handles on behalf of the
flow with destination at termi-
nal 7. It is apparent that pack-
ets are indeed being delivered to
the destination. It is also worth
noting that links of lower aver-
age quality are exploited. E.g.,
nodes 4 and 11 deliver informa-
tion directly to node 7 bypassing
the better quality links to nodes
5 and 9.

Ergodic link capacities are
shown in Fig. 5. The width of
the link is proportional to the ca-
pacity of the link. For each pair
of terminals i < j the capacity
cij between the smaller index i
and the larger index j is shown
first (in blue) and the capacity cji second (in red). Links to nodes 1, 7, 8 and 14 have the largest
capacities as it should be of flows’ destinations. Also notice how some links, e.g. 11 to 9, de-
spite having good average values are assigned small powers, thus having small capacity. This is
a consequence of the joint – albeit separable – optimization of routes, link capacities and power
allocations.
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The separation principles were introduced in [6] and the ergodic stochastic optimization algo-
rithm in [5]. Both of these topics are covered in the tutorial paper [3], which is the best starting
point to understand this project. Paper [7] deals with how to solve optimal resource allocation
problems in networks with interference limited physical layers. Papers [1], [2], and [4] are the work
of Yichuan Hu on understanding optimal wireless networking when terminals have different beliefs
about the global state of the network.

B Communication networks for autonomous robot teams

The confluence of advances in robotics and wireless communications has led to the emergence of
autonomous robot teams that cooperate to accomplish tasks assigned by human operators. A typi-
cal scenario is search and rescue missions in hazardous situations where a team is deployed to scout
points of interest. While a designated lead member of the team moves to a specified location, the
remaining robots provide mission support. Critical for task accomplishment is the availability of
wireless communications. Communication is required to exchange information between robots as
well as to relay information to and from the human operators. Availability of wireless communi-
cation infrastructure, however, is unlikely in the harsh environments in which autonomous robot
teams are to be deployed. Rather, we want the robots to self organize into a wireless network
capable of supporting the necessary information exchanges. The goal of this project is to de-
sign cyber-physical controllers that determine (physical) trajectories for the robots while ensuring
(cyber) availability of communication resources.

The fundamental roadblock to guaranteeing reliable communication is the unpredictability of
wireless propagation. The cluttered environments in which robot teams are to be deployed are
characterized by severe fading resulting in volatile communications performance even for short
distance communications. Channel strength variations in the order of 10 to 20 dB are typical when
robots move a distance comparable to the radio wavelength for reference, the wavelength is 30 cm
for communications in the 800MHz band.

This drawback notwithstanding, it has to be noted that the goal of the self-organized network
is to maintain reliable end-to-end communication between, say, the lead member of the scouting



Figure 6: System architecture for joint control of mobility and routing. Task Specification here represents a generic
spatial application defined by a convex task potential function Ψ(x) while providing a stream of data to the human
operator. Individual robot components consist of the low-level robot control, estimation, and communication. We
additionally assume that a subsystem is available to build an online model of radio communication in the environment.
The focus of this work is on developing concurrent methods for routing and mobility control.

team and the operation base. We can then exploit spatial redundancy across channels to minimize
the effect of point-to-point uncertainty in end-to-end communication rates. By splitting traffic
flows between various neighboring robots, we ensure that while failure of a particular link may
reduce end-to-end communication rates, it does not interrupt them completely. To realize this idea
we adopt a stochastic model of connectivity in which achievable point-to-point rates are random
quantities with known mean and variance. If point-to-point rates are random, end-to-end rates are
also random. The cyber part of our control algorithms assume given positions and determine routing
variables that minimize the probability of end-to-end rates falling below a minimum level of service.
The physical control block determines robot trajectories that are restricted to configurations that
ensure these probabilities stay above a minimum reliability level.

An architecture diagram is shown in Fig. 6. As with any mobility control system, there is a
block performing task specification, a second block executing the control law, and a third block
conducting actuation and state estimation. The task specification block interfaces with the human
operators and integrates robot observations and requirements to determine specifications that it
passes on to the control block. These specifications come in the form of a potential function Ψ(x)
that must be minimized and communication rates aki,min that must be maintained at all times. The
control block then determines control inputs ẋ(t) and network variables α(t) that are conducive
to task completion. Individual robots implement the control law ẋ(t) and route packets according
to variables α(t). Robots also take observations yi(t), e.g., a video feed, that they relay to task
planning and perform position estimation x̂i(t) that they feedback to the control block. Using
available technologies for mapping, control, and state estimation, each robot estimates its position
x̂i(t) and controls its velocity ẋi(t) with respect to a common known map of the environment. The
control algorithm also necessitates access to achievable rates Rij(x) which are provided by a radio
communication modeling block. Our work is concerned, for the most part, with the joint selection



of suitable communication variables α(t) and path plans x(t). Our work is concerned, for the most
part, with the joint control of mobility and routing

In the context of this project we have developed algorithms that rely on the computation of
communciation routes and trajectories by a central command center. The plans are then commu-
nicated to the individual robots that proceed to implement the plan. A proof of concept of the
overall system is shown in this video. Our current effort focuses on the development of distributed
algorithms and further experimental validation.

B.1 Decentralized communications protocols

To avoid the computation of routes at a centralized location we are developing algorithms to
determine optimal robust routes in a distributed manner. Robots are supposed to have access
to local channel information and the ability to communicate with nearby robots but are unaware
of the network’s topology beyond their local neighborhood. Using local information and variable
exchanges between neighbors we devise iterative protocols that determine optimal routing policies
as times grows.

A common approach to devise distributed optimal routing algorithms is to implement gradient
descent in the dual function of the corresponding optimization problem or subgradient descent if
the dual function is nondifferentiable. Optimal routing problems include a maximization objective
that determines the metric used to compare different configurations as well as constraints that de-
termine feasible routing variables. To formulate the dual problem we introduce Lagrange multipliers
associated with each of the constraints and proceed to find configurations that optimize the linear
combination of objective and constraints that they define. The dual problem corresponds to the
determination of multipliers that render the constrained optimization and the linear combination
optimization equivalent.

The important property of the dual function that makes it appealing to distributed implemen-
tations is that it is possible to compute gradients of the dual function in a distributed manner.
Robots maintain local routing variables and local multipliers used to enforce their local routing
constraints. They then proceed to recursively update primal variables by finding optimal routes
for given duals and dual variables by performing a gradient descent step. The first fundamental
observation is that dual gradients can be found as the constraint slack associated with the optimal
routing configuration. The second fundamental observation is that all of the required computations
can be implemented in a distributed manner. Determination of optimal routes requires access to
local and neighboring dual variables whereas dual gradients are given as functions of local and
neighboring multipliers.

B.2 Decentralized motion planning

For fully autonomous operation, decentralized networking protocols need to be integrated into
decentralized motion planning algorithms. Our networking protocols determine routing variables
that maximize the probability of survival of end-to-end communication flows. However, for some
spatial configurations it is impossible to maintain these probabilities above a minimum target
level. Since the likelihood of network survival for those configurations is not sufficient for mission
requirements, these spatial arrangements generate a virtual obstacle in configuration space. The
purpose of this task is to design decentralized reactive as well as deliberative planners to steer system
configurations away from the virtual obstacle region created by network survivability requirements.

In the context of reactive planners the solution involves the incorporation of barrier potentials to
avoid crossing into the infeasible space. The key research issue to be addressed here is the integration

http://www.seas.upenn.edu/~aribeiro/videos/robust_routing_levine.mov


of the decentralized algorithm for optimal communication with the decentralized version of motion
planning. For the development of distributed deliberative planning algorithms the challenge is to
let robots make consistent local plans based on perceptions of their different local environments.
Robots may know the position of some nearby peers and have good estimates of the communication
channels that link them. For some more distant agents this knowledge becomes more uncertain
and may even become unavailable for some robots. The foremost difficulty is not the uncertain
knowledge but the fact that network state information is different at different robots. Our objective
is to determine optimal trajectories that take into account the fact that different terminals have
different beliefs on the network state and are bound to select conflicting actions.

The resolution of conflicting actions leads naturally to the use of controllers based on partially
observable Markov Decision Processes (POMDP). POMDPs provide a general decision making
framework for acting optimally in partially observable domains. In lieu of deterministic state
estimates the system’s state is described in information space where probability distributions on
robots’ positions and channels are maintained. Planning decisions are then made to maximize a
discounted expected payoff across all possible paths. In a distributed context each robot plans
a joint optimal trajectory based on its local belief and proceeds to move according to this plan.
Since different robots have different beliefs the actual joint trajectory is different from local beliefs.
Upon observation of these different trajectories robots update their local beliefs and repeat the
process. The advantage of a POMDP formulation is that it is easy to incorporate probabilistic
safety constraints to reduce the likelihood of finding the team in spatial configurations for which it
is impossible to guarantee network connectivity.

B.3 Acknowledgments and references

This project got started on collaboration with Dr. Jon Fink, who is now at the Army Research Lab.
The work on decentralized algorithms got started on a collaboration with Prof. Mihalis Zavlanos,
who is now at Duke University. We also collaborated with Jon’s and Mihalis’s respective advisors,
Prof. Vijay Kumar and Prof. George Pappas. Currently, this project is the Ph.D. work of James
Stephan. The following is a list of papers produced in the context of this project:

[1] J. Fink, A. Ribeiro, and V. Kumar, “Algorithms for controlling mobility while maintaining
robust wireless connectivity,” IEEE Access, vol. (submitted), January 2013.

[2] M. Zavlanos, A. Ribeiro, and G. Pappas, “Network integrity in mobile robotic networks,”
IEEE Trans. Autom. Control, vol. 58, pp. 3–18, January 2013.

[3] J. Fink, A. Ribeiro, and V. Kumar, “Robust control for mobility and wireless communication
in cyber-physical systems with application to robot teams,” Proc. of the IEEE, vol. 100,
pp. 164–178, January 2012.

[4] J. Fink, A. Ribeiro, and V. Kumar, “Motion planning for robust wireless networking,” in
Proc. Int. Conf. Robotics Autom., vol. 2419-2426, Saint Paul, MN, May 14-18 2012.

[5] M. Zavlanos, A. Ribeiro, and G. Pappas, “A framework for integrating mobility and routing
in mobile communication networks,” in Proc. Asilomar Conf. on Signals Systems Computers,
pp. 1461–1465, Pacific Grove CA, November 6-9 2011.

[6] M. Zavlanos, A. Ribeiro, and G. Pappas, “Distributed control of mobility and routing in
networks of robots,” in Proc. IEEE Workshop on Signal Process. Advances in Wireless
Commun., pp. 236–240, San Francisco CA, June 26-29 2011.



[7] J. Fink, A. Ribeiro, V. Kumar, and B. M. Sadler, “Optimal robust multihop routing for
wireless networks of mobile micro autonomous systems,” in Proc. Military Commun. Conf.,
pp. 1268–1273, San Jose CA, October 31 - November 3 2010.

[8] M. Zavlanos, A. Ribeiro, and G. Pappas, “Mobility and routing control in networks of robots,”
in Proc. Conf. on Decision Control, vol. (to appear), pp. 7545–7550, Atlanta GA, December
15-17 2010.

The framework described here is presented in the journal publications [1] and [3]. The work
in [3] is more tutorial in nature. Many details are omitted and those are discussed in [1]. A
comprehensive presentation of our work on distributed implementations is available in [1]. The
conference papers [4] and [7] are preliminary versions of [1] and [3]. The conference papers [5], [6],
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C Bayesian network games

In many situations agents in a network want to take actions that are optimal with respect to an
unknown state of the world and the actions taken by other agents in the network who themselves
are trying to select actions that are optimal in the same sense. In, e.g., trade decisions in a stock
market, the payoff that a player receives depends not only on the fundamental (unknown) price
of the stock but on the buy decisions of other market participants. After all, the price of a stock
moves up as long as it is in high demand, which may or may not be because of sound fundamentals.
In such situations players must respond to both, their belief on the price of the stock and their
belief on the actions of other players. Similar games can also be used to model the coordination of
members of an autonomous team whereby agents want to select an action that is jointly optimal
but only have partial knowledge about what the action of other members of the team will be.
Consequently, agents select actions that they deem optimal given what they know about the task
they want to accomplish and the actions they expect other agents to take.
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Figure 7: Bayesian network game. Agents want to select actions
that are optimal with respect to an unknown state of the world
and the actions taken by other agents. We consider repeated
versions of this game in which agents observe the actions taken
by neighboring agents at a given time.

In both of the examples in the previ-
ous paragraph we have a network of au-
tonomous agents intent on selecting ac-
tions that maximize local utilities that de-
pend on an unknown state of the world
– information externalities – and the also
unknown actions of all other agents – pay-
off externalities. In a Bayesian setting –
or a rational setting, to use the nomencla-
ture common in the economics literature –
nodes form a belief on the actions of their
peers and select an action that maximizes
the expected payoff with respect to those
beliefs. In turn, forming these beliefs re-
quires that each network element make a
model of how other members will respond
to their local beliefs. The natural assump-
tion is that they exhibit the same behavior,
namely that they are also maximizing their expected payoffs with respect to a model of other nodes’
responses. But that means the first network element needs a model of other agents’ models which



shall include their models of his model of their model and so on. The fixed point of this iterative
chain of reasoning is a Bayesian Nash Equilibrium.

In this project we consider repeated versions of this game in which agents observe the actions
taken by neighboring agents at a given time. In observing neighboring actions agents have the
opportunity to learn about the private information that neighbors are, perhaps unwillingly, re-
vealing. Acquiring this information alters agents’ beliefs leading to the selection of new actions
which become known at the next play prompting further reevaluation of beliefs and corresponding
actions. In this context we talk of Bayesian learning because the agents’ goal can be reinterpreted
as the eventual learning of peers’ actions so that expected payoffs coincide with actual payoffs. A
schematic representation of this model is shown in Fig. 7. The payoff at time t of, say, agent 1
depends on the state of the world θ and the actions ai,t of all other agents. At the initial stage
of the game, agent 1 has access to a private signal x1 which he uses to select the action a1,1. It
then takes this action and simultaneously observes the actions ai,1 of agents in its neighborhood,
i.e., i = 1, 3, 4, 5. These observed actions reveal further information about θ and the actions that
are to be taken by other agents at time t = 2. This prompts selection of a likely different action
a1,2. Observation of actions ai,2 of neighboring agents reveals further information on the world
state and actions of other players and prompts further reevaluation of the action to be taken at the
subsequent stage.

This project involves two relatively separate thrusts respectively concerned with the asymptotic
properties of the Bayesian Nash Equilibria and with the development of algorithms that agents can
use to compute their equilibrium actions. The former thrust is conceptual and mostly of interest
as a model of human behavior in social and economic networks. The latter thrust is of interest to
enable the use of network games as distributed algorithms to plan the actions of members of an
autonomous team.

C.1 Asymptotic learning

As mentioned earlier we can reinterpret an agent’s purpose as the eventual learning of all available
information about the state of the world and the peers’ actions. The question we try to answer in
this thrust is whether this information is eventually learnt or not.

Different behavioral assumptions lead to different outcomes. In particular, the way agents revise
their views in face of new information and the actions they choose given these views determines
the long run outcome of the game. In our preliminary work we assume that agents are myopic in
that they choose actions at each stage of the game which maximize their stage payoffs, without
regard for the effect of these actions on their future payoffs. We use this behavioral assumption
to prove formal results regarding the agents asymptotic equilibrium behavior. Our analysis yields
several interesting results. First, agents actions asymptotically converge for almost all realizations
of the game. Furthermore, given a connected observation network, agents actions converge to the
same value. In other words, agents eventually coordinate on the same action. Second, agents
reach consensus in their best estimates of the underlying parameter. Finally, if some agent can
eventually observe her own realized payoffs, agents coordinate on an action which is optimal given
the information dispersed among them. This result suggests that in a coordination game – where
agents interests are aligned – repeated interactions between agents who are selfish and myopic could
eventually lead them to coordinate on the socially optimal outcome.

We are currently investigating further properties of steady state equilibrium plays for Bayesian
games with myopic players. We are also looking into networks with non-myopic players and relaxing
assumptions on the knowledge of network topology and other structural information.



C.2 Quadratic network game filter

The burden of computing a Bayesian Nash equilirium in repeated games is, in general, overwhelming
even for small sized networks. This intractability has led to the study of simplified models in which
agents are non-Bayesian and update their beliefs according to some heuristic rule. A different
simplification is obtained in models with pure information externalities where payoffs depend on
the self action and an underlying state but not on the actions of others. This is reminiscent of
distributed estimation since agents deduce the state of the world by observing neighboring actions
without strategic considerations on the actions of peers. Computations are still intractable in the
case of pure information externalities and for the most part only asymptotic analyses of learning
dynamics with rational agents are possible. Explicit methods to maximize expected payoffs given
all past observations of neighboring actions are available only when signals are Gaussian or when
the network structure is a tree. For the network games considered in this project in which there
are information as well as payoff externalities, not much is known besides the asymptotic analyses
of learning dynamics described above.This is an important drawback for the application of network
games to the implementation of distributed actions in autonomous teams. The purpose of this
thrust is to develop algorithms to enable computation of equilibrium actions.
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Figure 8: Quadratic Network Game (QNG) filter. Agents tun the
QNG filter to compute Bayesian Nash equilibrium actions in games
with quadrate payoffs and Gaussian private signals.

Our first result considers payoffs
represented by a utility function that
is quadratic in the actions of all
agents and an unknown parameter.
At the start of the game each agent
makes a private observation of the un-
known parameter corrupted by addi-
tive Gaussian noise. To determine
a mechanism to calculate equilibrium
actions we introduce an outside clair-
voyant observer that knows all private
observations. For this clairvoyant ob-
server the trajectory of the game is
completely determined but individual
agents operate by forming a belief on
the private signals of other agents.
We start from the assumption that this probability distribution is normal with an expectation
that, from the perspective of the outside observer, can be written as a linear combination of the
actual private signals. If such is the case we can prove that there exists a set of linear equations
that can be solved to obtain actions that are linear combinations of estimates of private signals.
This result is then used to show that after observing the actions of their respective adjacent peers
the probability distributions on private signals of all agents remain Gaussian with expectations that
are still linear combinations of the actual private signals. We proceed to close a complete induction
loop to derive a recursive expression that the outside clairvoyant observer can use to compute BNE
actions for all game stages. We then leverage this recursion to derive the Quadratic Network Game
(QNG) filter that agents can run locally, i.e., without access to all private signals, to compute their
equilibrium actions. A schematic representation of the QNG filter is shown in Fig. 8 to emphasize
the parallelism with the Kalman filter. The difference is in the computation of the filter coefficients
which require the solution of a system of linear equations that incorporates the belief on the actions
to be taken by other agents.

Our current research program includes developing analogues of the QNG filter for different



network types and leveraging the QNG filter to solve games where payoffs are not quadratic and
private signals are not Gaussian. The similarity with Kalman filters is instrumental here as it points
out to the existence of filters akin to extended or unscented Kalman filters as well as particle filters.
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D Circles of trust: Hierarchical clustering in asymmetric networks

Miranda trusts Billy who trusts Ariel who trusts Miranda, but there has not been enough interac-
tions in the opposite direction to establish trust. When these three people meet, shall they trust
each other? I.e., are they part of a circle of trust? The objective of this project is to develop an
axiomatic theory to provide an answer to this question. In general, we start with a network were
nodes represent individuals and directed edges represent a trust dissimilarity from the originating
node to the end node. Small values of this dissimilarity signify large amounts of trust of the edge’s
source node on the edge’s destination. Our goal is the study of the formation of trust groups in
the network. I.e., the determination of the level of trust at which two individuals are integrated
in a trust cluster given not only their direct interactions but their indirect interactions through
other members of the network. It may make sense for Miranda, Billy, and Ariel to trust each other,
because they all either trust each other directly, or have trust on someone that trusts the person
they don’t know.

Once the problem is written in this language it is clear that determining circles of trust is akin
to finding clusters in an asymmetric network for a given resolution level. The determination of
a family of clusterings indexed by this resolution parameter is a problem known as hierarchical
clustering. Simple as this sounds, the problem is that clustering in general and clustering using
asymmetric data in particular is a poorly understood problem. There are plethora of methods that
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Figure 9: Trust network. Arcs denote trust
dissimilarity, e.g., a has substantial trusts in b,
but b has little trust in a. Clustering intuition
is precarious. Nodes seem close clockwise but
far apart counterclockwise.

can be chosen to perform clustering, but these methods
are based on heuristic intuition, not fundamental prin-
ciples. Beyond purist concerns, lack of theoretical un-
derstanding is also a practical problem for clustering of
asymmetric data because the intuition backing clustering
methods is drawn from geometric point clouds. This intu-
ition does not carry when the given data is not metric as
in the case of asymmetric trust dissimilarities. E.g., in the
network in Fig. 18 nodes a and b are closest to each other
clockwise, but farthest apart counterclockwise, c and d
seem to be closest on average, yet, it seems that all nodes
are relatively close as it is possible to circle the graph
clockwise without encountering a dissimilarity larger than
3.

Even though asymmetric clustering intuition is diffi-
cult in general, there are some particular specks of intu-
ition that we can exploit to gain insight into the general
problem. These intuitive statements can be postulated
as axioms that restrict the space of allowable asymmetric
hierarchical clustering methods. To the extent that the axioms are true, the properties of this
reduced space of methods are fundamental properties of asymmetric hierarchical clustering and
by extension fundamental properties of the formation of circles of trust. This is the approach
advocated in this project.

D.1 Axioms of value and transformation

In our preliminary investigations we have postulated three axioms that we call the axioms of value,
influence, and transformation. These axioms are stated formally in our published work but they
correspond to the following intuitions:

(A1) Axiom of Value. For a network with two nodes the nodes are clustered together at the
resolution at which both trust each other, namely, the maximum of the two trust dissimilarities
between them.

(A2) Axiom of Transformation. If we consider a network and reduce all pairwise trust dissimi-
larities, the level at which two nodes become part of the same circle of trust is not larger than
the level at which they were clustered together in the original network.
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Figure 10: Axiom of Value. For a two node network nodes are clustered
together at the resolution at which both can influence each other.

Axiom (A1) says that in a network
with two nodes p and q and dissimi-
larities AX(p, q) = α and AX(q, p) =
β, the nodes are reported as separate
clusters for resolutions δ < max(α, β)
and as a single cluster for resolutions
δ ≥ max(α, β). This is reasonable
because at resolutions δ < max(α, β)
one node can influence the other but
not vice versa, which in most situa-
tions means that the nodes are not
alike since trust flows in a single direction. Axiom (A2) states that increasing the level of trust



between some nodes may result in the formation of additional circles of trust but cannot result in
the dissolution of existing circles. This is erasable because a reduction in trust dissimilarities is
expected to generate more trust in the network.
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Figure 11: Axiom of Transformation. A dissimilarity reducing map φ :
X → Y produces dendrograms where clusters in the original network
may be combined in the transformed network but cannot be separated.

Despite their apparent weakness,
axioms (A1)-(A2) are a source of
strong structure. Our first pre-
liminary result is the derivation of
two asymmetric hierarchical cluster-
ing methods that abide to these ax-
ioms. The first method insists that
trust propagate only through arcs in
which there is bidirectional trust and
is therefore termed reciprocal clus-
tering. The second method allows
trust to propagate unidirectionally
and is thus termed nonreciprocal clus-
tering. That these methods comply
with (A1)-(A2) is not particularly surprising. However, we have proved that any clustering method
that satisfies axioms (A1)-(A2) lies between reciprocal and nonreciprocal clustering in a well defined
sense. Specifically, any clustering method that satisfies axioms (A1)-(A2) forms circles of trust at
resolutions larger than the resolutions at which they are formed with nonreciprocal clustering, and
smaller than the resolutions at which they are formed with reciprocal clustering. These preliminary
result endows reciprocal and nonreciprocal clustering with special meaning. For a given resolution
level, nodes that do not cluster together with nonreciprocal clustering cannot be part of a circle
of trust. Nodes that do cluster together with reciprocal clustering are definitely part of a circle
of trust. In between, the answer depends on the extent to which reciprocal trust propagation is
required or nonreciprocal trust propagation is acceptable.

D.2 Ongoing work

These preliminary results are enticing but far from a complete axiomatic exploration on the for-
mation of circles of trust. To enrich this exploration we are currently pursuing four interrelated
research thrusts that we preview in the following.

Circles of trust. Nonreciprocal and reciprocal clustering set lower and upper bounds in the forma-
tion of circles of trust providing the basis for their empirical study in social networks. This thrust
encompasses a data collection effort and corresponding data analysis. Questions of interest include
the symmetry and segmentation of trust. We associate symmetry of trust with the difference be-
tween reciprocal and nonreciprocal clusters. We identify segmentation of trust as the number of
separate clusters as a function of the resolution level.

Further axiomatic constructions. Reasonable though they are, axioms (A1)-(A2) are a particular
selection. This research thrust leverages the developed techniques to study additional axiomatic
constructions. We consider different versions of axioms (A1) and (A2) that could lead to more
general, more restricted, or simply different sets of admissible clustering methods. We are also
studying additional axioms that can be added on top of (A1)-(A2) with the objective of finding a
set of axioms leading to uniqueness results.

Stability. Two networks that are close to each other shall yield hierarchical clusters that are also
close to each other. While this sense of stability looks like, and should be, a precondition for



practical applicability, many (symmetric) clustering algorithms used in practice are not stable in
this sense. Studying stability in asymmetric clustering is further complicated by the nonexistence
of suitable tools to formalize the proto-continuity statement of “networks close to each other.” The
first objective of this research thrust is to define generalized versions of Gromov-Hausdorff and
Gromov-Wasserstein distances that can be used to formalize a notion of continuity in the space of
networks. With this tool in hand we derive conditions to guarantee that networks arbitrarily close
to each other yield hierarchical clusters that are also arbitrarily close to each other.

Intermediate clustering methods. Nonreciprocal and reciprocal clustering lower and upper bound
the range of hierarchical clustering methods. A first question that arises is if there really are
clustering methods lying between these two. We believe the answer to that question is probably
positive. The reason for this belief is that the outputs of hierarchical clustering algorithms are trees.
If we have two trees that satisfy axioms (A1)-(A2) we can combine them with each other by pruning
branches that we then graft in the other tree. It seems reasonable that we could accommodate this
grafting process so that axioms (A1)-(A2) are satisfied in the rearranged tree. We are currently
studying this and other techniques that may lead to intermediate clustering methods.
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E Distributed optimization

In distributed optimization problems agents want to find local variables that are optimal with
respect to a local utility while satisfying linear coupling constraints with variables of neighboring
nodes. For a more precise definition consider a network composed of N nodes indexed by i and
denote as n(i) the set of neighbors of i and as C the directed edge incidence matrix of the graph.
Each of the nodes keeps track of a local variable xi and a local concave utility function fi(xi). We
want to select variables that maximize the sum utility

∑
i fi(xi) subject to the requirement that

the variables xi are such that xi = xj for all nodes j ∈ n(i) in its neighborhood. For a connected
network this is the same as requiring that the variables xi have the same value for all nodes and this
particular problem formulation is therefore termed a consensus optimization problem. Defining the
vector x = [x1, . . . , xN ]T grouping all local variables and letting 0 be the all-zero vector of proper
dimension we can write the consensus optimization problem as

x∗ = arg max
∑
i

fi(xi), s.t. CTx = 0. (2)

A particular application of a consensus optimization problem is distributed maximum likelihood
estimation. In such case the variables xi take the place of a local estimate, the functions fi(xi)
represent local log likelihoods determined by local observations, and the goal is for each agent to
compute a local estimate using global information. Another important application can be obtained
by replacing the matrix C in (2) to model optimal flow problems.
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Figure 12: Infinity norm distance from primal iterates to optimal
arguments for ADD-1 (red) and ADMM (blue). The curvature
correction of ADD retains reasonable convergence times for prob-
lems that are not well conditioned. (Directed cycle network with
50 nodes and 50 random edges. Quadratic primal objectives with
condition number 10.)

Regardless of the particular application
it is of interest to derive distributed op-
timization algorithms to solve distributed
optimization problems. These algorithms
rely on iterative computation of candidate
solutions xi(t) and variable exchanges be-
tween neighboring nodes so that as time
progresses the iterates xi(t) approach the
optimal variable x∗i . The original use of
distributed optimization algorithms was
for distributed control and information ag-
gregation in wireless sensor networks. Cur-
rently, there is renewed interest in these al-
gorithms as per their applicability to solve
massive dimensional optimization prob-
lems in server clusters. In the latter setting
there is interest in subdividing the opti-
mization problem into separate servers while keeping communication requirements subdued.

There are different approaches that lead to distributed optimization algorithms. Our work
concentrates on methods that operate in the dual domain. Without digressing into technical details
the structure of the dual function is such that it is possible to compute gradients of the dual function
in a distributed manner. These gradients can then be used to implement a dual gradient descent
algorithm that converges toward the optimal dual variables from which the optimal primal variables
of the optimization problem introduced above can be recovered as a byproduct. Dual gradient
descent algorithms are valuable for their simplicity but their application is limited to problems
whose dual functions are well conditioned. Since the condition number of the dual function is
roughly given by the product of the condition number of the primal function and the ratio between
the largest and smallest eigenvalues of the graph’s Laplacian, this requires tame networks and
primal functions. Tame primal functions are those with good condition numbers. Tame networks
are those that have small diameter and some form of regularity on the number of connections per
node.

A similar algorithm with better convergence properties is the Alternating Direction Method
of Multipliers (ADMM) which is based on the addition of a quadratic regularization term to the
the problem’s Lagrangian. The ADMM is less sensitive to the condition of the dual function. It’s
performance still degrades with increasing condition number but the degradation is much smaller
than the degradation corresponding to dual gradient descent. Whereas dual descent is all but
impractical for problems having more than a few nodes and condition numbers not close to one,
ADMM is slow but acceptable for problems with moderate number of nodes and moderate condition
numbers. A convergence rate illustration is shown in Fig. 12 that depicts the infinity norm distance
between ADMM iterates and the primal optimal argument x∗. The network is a directed cycle graph
with 50 nodes to which 50 random edges have been added. The primal objective is a quadratic
function with condition number 10. A distance to optimality of about 4× 10−2 is attained in 103

iterations.
While better behaved than dual descent, convergence of ADMM is still inadequate and can be

made arbitrarily slow by increasing the condition number of the primal function or modifying the
network to increase the ratio between the largest and smallest eigenvalue of the graph’s Laplacian.
Ultimately, this drawback can only be corrected by implementing curvature corrections as in Newton
and quasi-Newton methods. Our research on this project is concerned with the development of



distributed optimization methodologies that emulate Newton’s method as a means of attaining
quadratic convergence rates. We discuss these methods in the following section but a preliminary
simulation is shown in shown in Fig. 12 depicting the infinity norm distance between iterates
obtained by our distributed optimization methods and the primal optimal argument x∗. For the
same problem parameters used for ADMM, we converge to distance 10−2 in less than 100 iterations
and to distance 10−4 in 200 iterations.

E.1 Accelerated dual descent

The natural alternative to accelerate convergence rate of first order gradient descent methods is
to use second order Newton methods, but these methods cannot be implemented in a distributed
manner. Indeed, since (centralized) implementation of the Newton method necessitates computa-
tion of the inverse of the dual Hessian, it follows that a distributed implementation would require
each node to have access to a corresponding row of this inverse Hessian. It is not difficult to see that
the dual Hessian is in fact a weighted version of the networks Laplacian and that as a consequence
its rows could be locally computed through information exchanges with neighboring nodes. Its
inversion, however, requires global information.
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Figure 13: Relative convergence times of ADMM with respect to ADD-
1 for a well conditioned problem. Convergence times are similar since
ADD’s curvature correction is of little help in a problem that already
has a tractable shape. (Directed cycle network with 20 nodes and 40
random edges. Quadratic primal objectives with condition number 1.
Time to reach infinity norm distance 10−4 to optimal arguments)

The insight at the core of this re-
search thrust is to consider a Tay-
lor’s expansion of the inverse Hessian
which, being a polynomial with the
Hessian matrix as variable, can be
implemented through local informa-
tion exchanges. More precisely, con-
sidering only the zeroth order term
in the Taylor’s expansion yields an
approximation to the Hessian inverse
based on local information only. The
first order approximation necessitates
information available at neighboring
nodes and in general, the Nth order
approximation necessitates informa-
tion from nodes located N hops away.
The resultant family of Accelerated
Dual Descent (ADD) algorithms per-
mits a tradeoff between accurate Hes-
sian approximation and communication cost. We use ADD-N to represent the N th member of the
ADD family. ADD-N uses the Nth order Taylor approximation of the Hessian inverse by collecting
information from terminals N hops away.

Our research on ADD has shown that convergence of algorithms in the ADD family follows three
distinct phases. The behavior during the first phase is defined by an approximate backtracking line
search which ensures a constant decrease towards the optimal objective. During the second phase
ADD-N algorithms exhibit quadratic convergence despite the fact that they rely on approximate
Newton directions. In the third and terminal phase convergence slows down to linear as errors in
the Newton step become comparable to the steps magnitude. The first two phases are akin to the
linear and quadratic phases of Newton algorithms. The transition between the second and third
phase can be delayed by increasing N , although this may result in increased overall communication
cost. Our numerical studies corroborate substantial imporvements in convergence times. Fig. 13



shows the ratio of times required by ADMM and ADD-1 to reach an infinity norm distance to
the optimal arguments of at least 10−4 for a primal quadratic objective with condition number
1 in a directed cycle network with 20 nodes to which 40 random edges have been added. Since
the curvature of the original problem is benign both methods exhibit similar convergence rates.
Modifying the objective to yield a condition number of 10 results in convergence times for ADD-1
that are 20 times faster than the convergence times of ADMM as we show in Fig. 14.
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Figure 14: Relative convergence times of ADMM with respect to ADD-
1 for an ill conditioned problem. Convergence times are more than
one order of magnitude faster for ADD. The curvature correction is
essential to achieve reasonable convergence times. (Quadratic primal
objectives with condition number 1. Other parameters as in Fig. 13.)

Our current work includes exten-
sions of ADD to problems with dual
functions that have singular Hessians
and that are not differentiable at all
times. We are also considering to
stochastic optimization problems and
alternative approaches based on dif-
ferent matrix splittings and quasi-
Newton methods. We also have a par-
allel research project in which we con-
sider dynamic optimization problems
characterized by time varying objec-
tives. In the latter case the challenge
is that in the time it takes for iter-
ative algorithms to converge to the
optimal argument the objective has
changed enough for the optimal op-
erating point to be different.
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F Wireless Control Systems

In this project we want to study networked control systems characterized by the separation of sens-
ing and actuation in different physical devices with control loops incorporating the communication

Figure 15: Wireless control system architecture. The sensor measures
plant state xk and fading channel hk and transmits with power pk. Mes-
sages are decoded at the controller with probability qk that depends on
the channel state hk and the power pk. We want to find policies that are
jointly optimal with respect the aggregate costs of plant regulation and
information transmission from sensors to controllers.

of plant state information over a
wireless channel. When sensors
and controllers communicate over
a wireless channel the cost of con-
trolling the plants gets mixed with
the cost of sending plant state
information from sensors to con-
trollers. The more information
the sensors convey the more pre-
cise actuation becomes, but the
resulting increase in power con-
sumption at the sensors leads to
rapid depletion of its energy re-
sources. It is therefore apparent
that a tradeoff emerges between
plant performance and power con-
sumption. To quantify this trade-
off we study the problem of select-
ing plant inputs and power man-
agement policies that are jointly optimal with respect to a cost that accounts for plant regulation
costs and the costs of conveying information from sensors to controllers.



A popular alternative to regulate communication cost in wireless control systems is the notion of
event triggered control where the idea is to prolong the time elapsed between successive communi-
cations by avoiding transmission as long as the plant performance does not deteriorate much. Such
triggering of transmissions implicitly reduces the communication cost but transmission expenses
are not explicitly accounted. A related approach is to assign a fixed cost to each transmission
attempt and proceed to minimize the combination of a control error cost and an aggregate commu-
nication penalty. Optimal transmission policies that minimize the aggregate estimation error and
communication cost can be characterized using a formulation in terms of infinite horizon Markov
decision processes.

Event triggered control and communication penalty formulations are sufficient in some settings
but they do not permit the modeling of fading effects neither allow flexibility in the allocation of
power to protect some transmissions more than others. Furthermore, it is not possible to incorporate
contention effects into either formulation making it difficult to consider cases in which multiple
sensors and multiple controllers operate over a shared wireless channel. In this project we model
communication cost as the transmitted power at the sensor side. Powers are selected as a function
of the plant state and the fading channel realization and affect the likelihood of successful packet
decoding through a known complementary error function. The transmitted power is combined with
the conventional linear quadratic regulator (LQR) cost to define an aggregate infinite horizon cost
that we seek to minimize through proper joint selection of plant and power control policies. Taking
advantage of this problem formulation we can mitigate fading through power adaptation to channel
conditions and adapt transmitted power to plant conditions so as to, e.g., increase the likelihood of
successful packet decoding when the plant state deviates from target. Channel contention is also
easily incorporated by modifying the complementary error function to account for packet losses due
to simultaneous transmissions.

F.1 Single plant over point-to-point channel

In the context of this project we have begun by studying the (simple) case in which we have a
single control loop closed over a point to point channel. The corresponding system architecture
is shown in Fig. 15. A sensor measures the plant state xk and the fading channel state hk and
transmits with power pk. Messages are successfully decoded at the controller with a probability qk
that depends on the channel state hk and the power pk. If the information is successfully decoded
by the controller he learns the current plant state. Otherwise, he propagates past estimates to
update his belief on the plant state. In either case a control input uk is computed and applied to
the plant. The goal is to find control inputs uk and power controls pk that are good in terms of
keeping the state xk close to target and the power consumption pk small.

Conceptually, we expect the target successful decoding probability qk to be close to 1 when the
channel and plant state are large and close to zero when they are small. A conceptual colormap
of target decoding probability versus channel realization in the horizontal axis and plant state in
the vertical axis is shown in Fig. 16-left. When the channel realization is close to zero, successful
communication requires investment of a significant amount of power. Thus, the sensor abstains
from transmitting unless it is indispensable due to the plant state being far from target – southeast
region of the plot. When the channel realization is large transmission is cheap in terms of power
and a message is sent even if the plant is close to target – northwest region of the plot. When the
channel realization as well as the plant state are large, the target decoding probability is close to 1
because it is both, cheap and necessary – northeast region of the plot. When channel and state are
small the target decoding probability is zero because transmission is expensive and unnecessary –
sowthwest region of the plot.



Figure 16: Decoding probability (left) and transmitted power (right) as a function of channel (horizontal axis) and
plant (vertical axis) states. When channel and state are small the target decoding probability and the transmitted
power are zero because transmission is expensive and unnecessary – sowthwest. When both are large target decoding
probability is null and transmit power small – northeast. For large channel and small state transmission doesn’t
help much but is cheap – northwest. For small channel and large plant transmission is expensive but necessary –
southeast.

The corresponding conceptual power map is shown in Fig. 16-right. When channel and state
are small the transmitted power are zero because transmission is expensive and unnecessary –
sowthwest region go the plot. When both are large a small amount of power is invested to yield
a large decoding probability that is instrumental in bringing the plant closer to target – northeast
region go the plot. For large channel and small state transmission doesn’t help much but is cheap
and a small amount of power is invested in a transmission attempt – northwest region go the plot.
When the channel realization is small and the plant is far from traget transmission is expensive but
necessary resulting in the investment of a significant amount of power in the transmission attempt
– southeast region go the plot.

Figure 17: Power allocation of a rollout policy for joint optimization of
control inputs and transmitted power. Allocated power is consistent
with the conceptual plot in Fig. 16-right.

The conceptual allocation in Fig.
16 has been corroborated by our anal-
ysis and algorithmic development.
We have identified a restricted in-
formation structure that permits de-
coupling of optimal plant and power
control policies. For this particu-
lar information structure the usual
LQR control law becomes optimal at
the controller side while the optimal
communication policy follows from a
Markov decision process (MDP) for-
mulation involving transmitted power
and the state estimation error at the
controller side. We then leverage this
separation principle to express opti-
mal power control policies in terms of
a value function. While this does not
allow computation of optimal policies
it does allow us to understand their qualitative properties. These qualitative properties are the
source of the target decoding probability map in Fig. 16 and the transmitted power map in Fig. 16.



We can think of the event-triggered paradigm as a special case in our formulation, where instead
of deciding how much power to allocate to the transmission attempt we just decide whether to
transmit or not. This interpretation is fostered by the realization that conventional event triggered
policies emerge as the optimal communication strategy if the sensor uses capacity achieving for-
ward error correcting codes. We have also derived suboptimal power control policies using a rollout
algorithm. Numerical simulations of this algorithm yield power allocations like the one shown in
Fig. 17, which is consistent with the conceptual plot in Fig. 16-right.

F.2 Ongoing work, acknowledgements, and references

Most of our current effort is centered on developing generalizations where there are multiple sensors
and controllers sharing a common wireless channel. We are considering different contention proto-
cols which give rise to different policies to manage channel scheduling along with power allocation
and plant control policies. We are also working on alternative formulations where we account not
only for the transmitted power at the sensor but also by standby power consumption at the receiver
and transmitter ends. In this case sleeping becomes important and leads to policies where sleeping
times needs to be prearranged based on beliefs about the evolution of the plant state.

This is the Ph.D. work of Konstantinos Gatsis who should the one to congratulate on whatever
is good about the results obtained in the context of this project. We also count on the substantial
expertise of Dr. Miroslav Pajic and Prof. George Pappas. The list of publications resulting from
this project is the following:

[1] K. Gatsis, A. Ribeiro, and G. Pappas, “Optimal power management in wireless control sys-
tems,” IEEE Trans. Autom. Control (submitted), October 2012.

[2] K. Gatsis, A. Ribeiro, and G. Pappas, “Optimal power management in wireless control sys-
tems,” in Proc. American Control Conf. (to appear), Washington DC, June 17-19 2013.

If you want to understand our work here, the journal paper submission [1] is the place to start.
The conference paper [2] is an abridged version of [1] and is a finalist for the best student paper
award the 2013 American Control Conference (ACC).

G What’s in Shakepeare’s name?
Authorship attribution from word adjacency networks

For more than a century several crank theories have been popular in some literary circles stating that
he whom we call Shakespeare didn’t write any of the plays for which he is famous. There are some
who believe that Shakespeare’s plays were written by Francis Bacon, while some others believe the
plays were written by Christopher Marlowe, and yet another group who thinks that Edward de Vere,
Earl of Oxford, is the author of the plays that we attribute to William Shakespeare of Stratford
upon Avon. This latter theory has recently captivated popular imagination upon the release of
the movie “Anonymous.” Although these alternative Shakespearean authorship hypotheses have
had prominent advocates throughout history reputable Shakespearean scholarship gives them little
credence. Nevertheless, there are many open questions about the authorship of some Shakespearan
plays going from the uncertain attribution of the “The Taming of the Shrew” to the almost certain
fact that some plays where written in collaboration with contemporary authors.

There are, therefore, several important questions regarding Shakespearean plays: (i) Who wrote
these plays. (ii) Were these plays written by a single person? (iii) If there are collaborators, who
were they? To put it in Shakespearean language the question is: What’s in Shakepeare’s name?



Shakespeare himself, whomever he, she, or they were, provided an answer to the most fundamental
aspect of this question:

“What’s in a name? That which we call a rose
by any other word would smell as sweet.”

In the end, it doesn’t matter if “The Tempest” was written by William Shakespeare, Francis Bacon,
Christopher Marlowe, Edward de Vere, or a team of anonymous writers. It would still be a beautiful
play and two of my children would still be called Miranda and Ariel. Yet, the third one may not had
been named Guille (the Spanish language version of William). His name could had been Francisco
(Francis), Cristobal (Christopher), or Eduardo (Edward) instead. This would be catastrophic in
many accounts, but it could be worse. It is possible that he should have multiple names some of
which may not be known at all. On a more important note, it is impossible to get a researcher to
waste enough time on a question he believes he can answer. The purpose of this project is therefore
to answer the question: What’s in Shakespeare name? Or to put in less poetic terms our goal is
to develop methods for authorship attribution. Besides its use in answering authorship questions
about playwrights of the English Renaissance, the tools we are developing are applicable in data
forensics as well as well as to the detection of plagiarism and other forms of academic malfeasance.
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Fig. 1. Clustering of Twain’s (T) and Melville’s (M) relational profiles
and the 11 unknown texts. Two clusters, blue and red, emerge corre-
sponding to both authors with perfect accuracy.

Author Texts Author Texts
Shakespeare, W. 10 Twain, M. 9

Austen, J. 7 Allen, G. 7
Cooper, J.F. 6 Dickens, C. 6
Marlowe, C. 8 Bacon, F. 6

Beaumont, F. & Fletcher, J. 7 Hawthorne, N. 6
Abbott, J. 7 James, H. 8
Alger, H. 7 Jonson, B. 6

Alcott, L.M. 7 Aldrich, T.B. 7
Garland, H 8 Melville, H. 8

Table 2. Authors and total number of texts per author considered for the
second numerical experiment, Table 3. See details in [20].

of being observed in both MCs [19]. Using (8) we generate the attribu-
tion function r̂U (u) by assigning the text u to the author with the most
similar relational structure

r̂U (u) = ap, where p = argmin
c

H(Pu, P̂c). (9)

We evaluate this classifier in the next section after the following remark.

Remark 1 In (9) we assume that the unknown texts are long enough
for the corresponding MC to be ergodic. This ensures that the limiting
distribution ⇡ is well defined. If this is not achieved, we replace ⇡(fi)
with the expected fraction of time a randomly initialized walk spends in
state fi. The random initial function word is drawn from a distribution
proportional to the word frequencies in the text.

4. NUMERICAL RESULTS

In this section we fix ↵ = 0.8, D = 10 and the set of sentence delimiters
to be { . ( ) ? ! ; : }. Moreover, we consider state spaces of 10 function
words except in Section 4.1 where we vary the number of function words
considered.

To illustrate the method developed, we begin by solving an author-
ship attribution problem with two candidate authors: Mark Twain and
Herman Melville. For each author we have 3 known texts. We are given
11 unknown texts where the first 6 belong to Twain and the other 5 were
written by Melville [20]. Every text in this simulation belongs to a dif-
ferent book and corresponds to a 10,000 words extract, i.e. around 25
pages of a paper back mid size edition. With the method here developed,
the 11 unknown texts are attributed with perfect accuracy. An intuitive
reason of why this works is depicted in Fig. 1. In this figure, we plot

Known texts per author Rnd.
1 2 3 4 5 6 Attr.

N
um

be
ro

fA
ut

ho
rs

2 1.00 1.00 1.00 1.00 1.00 1.00 .50
3 .87 1.00 1.00 1.00 1.00 1.00 .33
4 .76 .92 1.00 1.00 1.00 1.00 .25
5 .74 .90 1.00 1.00 1.00 1.00 .20
6 .74 .82 .93 .90 .93 1.00 .17
7 .63 .85 .94 .92 .94 1.00 .14
8 .67 .86 .94 .93 .95 1.00 .13
9 .60 .83 .92 .90 .95 .92 .11

10 .55 .77 .90 .91 .95 .92 .10
11 .53 .74 .89 .86 .88 .85 .09
12 .57 .76 .90 .87 .89 .87 .08
13 .60 .78 .91 .88 .90 .88 .08
14 .59 .78 .90 .86 .87 .88 .07
15 .61 .77 .89 .87 .88 .88 .07
16 .57 .73 .85 .84 .88 .89 .06
17 .58 .74 .85 .85 .89 .90 .06
18 .54 .69 .79 .83 .88 .86 .06

Table 3. Accuracy for different number of candidate authors and number
of known texts per author. Expected accuracy of random attribution is
also informed. Accuracy decreases with increasing number of authors
and decreasing number of training texts per author.

the average linkage hierarchical clustering dendrogram [21] of the au-
thor profiles (T and M) and the eleven unknown texts. Relative entropy
(8) is used as a dissimilarity measure. Two different clusters arise, corre-
sponding to the two authors. This means that in average two texts by the
same author are not further apart than 0.06 but two texts from different
authors are at a distance greater than 0.09.

The second numerical experiment varies the number of authors, see
Table 2, as well as the number of known texts per author. The corpus
of texts analyzed can be found in [20]. The text lengths vary from just
over 4,000 to 100,000 words each. Texts longer than this were truncated
to this maximum word count. The accuracy obtained can be observed in
Table 3. E.g. focus on the 92% accuracy of the attribution with 4 authors
and 2 known texts per author. To understand the source of this accuracy
value, consider the first four authors in Table 2, these are Shakespeare,
Twain, Austen, and Allen. Take 2 of their texts as known. In this way,
there are 8+7+5+5 = 25 unknown texts to attribute among these four
authors. The accuracy of 92% indicates that 23 out of the 25 texts were
correctly attributed by our method. The expected accuracy of random
attribution is also informed in the last column of the table. The consistent
difference between the accuracy of the proposed method and the one
corresponding to random attribution is an indicator that the relational
data in the MCs capture stylistic features of the authors.

The attribution between two authors in the first row of Table 3 is
done between Shakespeare and Twain, who lived more than two cen-
turies apart. Perfect accuracy is achieved with one known text from each
author. This hints that little information is needed to distinguish between
authors with marked differences in writing styles. Moreover, based on 2
known texts per author, the method can distinguish with maximum accu-
racy between three authors, these are Shakespeare, Twain, and Austen.
For 3 known texts, the perfect attribution holds for 5 authors and for 6
known texts the method can correctly attribute the texts among 8 authors.
The accuracy is deteriorated by increasing the number of candidate au-
thors. For example, if we fix the known texts per author to be 3, then by
increasing the number of candidates authors from 4 to 16 the accuracy is
reduced from 100% to 85%. Furthermore, the accuracy increases when
the number of known texts per author is increased. E.g., fixing the num-
ber of authors as 8, if we go from 1 training text to 6, we increase the
accuracy from 67% to 100%. In columns with higher number of known
texts, the accuracy deteriorates with the incorporation of more authors

Figure 18: List of authors used to test accuracy of classification with
word adjacency networks. The total number of texts available for each
author are also shown.

The goal of authorship attribution
is to match a text of unknown or dis-
puted authorship to one of a group
of potential candidates. More gen-
erally, it can be seen as the search
for a compact representation of an
author’s writing style, or stylomet-
ric fingerprint. Applications of this
study range from forensics to ques-
tions of plagiarism in the works of
both published authors as well as stu-
dents. With recent developments in
computational efficiency and informa-
tion processing, authorship attribu-
tion studies are of both increasing in-
terest and accuracy. The study of authorship attribution, sometimes called stylometry, has its
beginnings in works published over a century ago which proposed distinguishing authors by looking
at word lengths and average sentence lengths. These two rudimentary ideas have improved since.
A significant development came with the introduction of the influential idea of analyzing function
words as a way to characterize authors’ styles. Function words are words like prepositions, conjunc-
tions, and pronouns which on their own carry little meaning but instead help define grammatical
relationships between words. The study of function words is beneficial as they primarily inform
about syntax rather than content. Since the introduction of function words as stylometric finger-
prints many methods have been introduced to analyze the frequency of these words in texts written
by different authors. Attention has also been given to analyzing features other than appearances
of high-frequency words. Examples of these are the use of vocabulary richness, word stability – the
extent to which a word can be replaced by an equivalent –, or syntactical markers like part-of-speech
taggers.
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Fig. 1. Clustering of Twain’s (T) and Melville’s (M) relational profiles
and the 11 unknown texts. Two clusters, blue and red, emerge corre-
sponding to both authors with perfect accuracy.

Author Texts Author Texts
Shakespeare, W. 10 Twain, M. 9

Austen, J. 7 Allen, G. 7
Cooper, J.F. 6 Dickens, C. 6
Marlowe, C. 8 Bacon, F. 6

Beaumont, F. & Fletcher, J. 7 Hawthorne, N. 6
Abbott, J. 7 James, H. 8
Alger, H. 7 Jonson, B. 6

Alcott, L.M. 7 Aldrich, T.B. 7
Garland, H 8 Melville, H. 8

Table 2. Authors and total number of texts per author considered for the
second numerical experiment, Table 3. See details in [20].

of being observed in both MCs [19]. Using (8) we generate the attribu-
tion function r̂U (u) by assigning the text u to the author with the most
similar relational structure

r̂U (u) = ap, where p = argmin
c

H(Pu, P̂c). (9)

We evaluate this classifier in the next section after the following remark.

Remark 1 In (9) we assume that the unknown texts are long enough
for the corresponding MC to be ergodic. This ensures that the limiting
distribution ⇡ is well defined. If this is not achieved, we replace ⇡(fi)
with the expected fraction of time a randomly initialized walk spends in
state fi. The random initial function word is drawn from a distribution
proportional to the word frequencies in the text.

4. NUMERICAL RESULTS

In this section we fix ↵ = 0.8, D = 10 and the set of sentence delimiters
to be { . ( ) ? ! ; : }. Moreover, we consider state spaces of 10 function
words except in Section 4.1 where we vary the number of function words
considered.

To illustrate the method developed, we begin by solving an author-
ship attribution problem with two candidate authors: Mark Twain and
Herman Melville. For each author we have 3 known texts. We are given
11 unknown texts where the first 6 belong to Twain and the other 5 were
written by Melville [20]. Every text in this simulation belongs to a dif-
ferent book and corresponds to a 10,000 words extract, i.e. around 25
pages of a paper back mid size edition. With the method here developed,
the 11 unknown texts are attributed with perfect accuracy. An intuitive
reason of why this works is depicted in Fig. 1. In this figure, we plot
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5 .74 .90 1.00 1.00 1.00 1.00 .20
6 .74 .82 .93 .90 .93 1.00 .17
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8 .67 .86 .94 .93 .95 1.00 .13
9 .60 .83 .92 .90 .95 .92 .11
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Table 3. Accuracy for different number of candidate authors and number
of known texts per author. Expected accuracy of random attribution is
also informed. Accuracy decreases with increasing number of authors
and decreasing number of training texts per author.

the average linkage hierarchical clustering dendrogram [21] of the au-
thor profiles (T and M) and the eleven unknown texts. Relative entropy
(8) is used as a dissimilarity measure. Two different clusters arise, corre-
sponding to the two authors. This means that in average two texts by the
same author are not further apart than 0.06 but two texts from different
authors are at a distance greater than 0.09.

The second numerical experiment varies the number of authors, see
Table 2, as well as the number of known texts per author. The corpus
of texts analyzed can be found in [20]. The text lengths vary from just
over 4,000 to 100,000 words each. Texts longer than this were truncated
to this maximum word count. The accuracy obtained can be observed in
Table 3. E.g. focus on the 92% accuracy of the attribution with 4 authors
and 2 known texts per author. To understand the source of this accuracy
value, consider the first four authors in Table 2, these are Shakespeare,
Twain, Austen, and Allen. Take 2 of their texts as known. In this way,
there are 8+7+5+5 = 25 unknown texts to attribute among these four
authors. The accuracy of 92% indicates that 23 out of the 25 texts were
correctly attributed by our method. The expected accuracy of random
attribution is also informed in the last column of the table. The consistent
difference between the accuracy of the proposed method and the one
corresponding to random attribution is an indicator that the relational
data in the MCs capture stylistic features of the authors.

The attribution between two authors in the first row of Table 3 is
done between Shakespeare and Twain, who lived more than two cen-
turies apart. Perfect accuracy is achieved with one known text from each
author. This hints that little information is needed to distinguish between
authors with marked differences in writing styles. Moreover, based on 2
known texts per author, the method can distinguish with maximum accu-
racy between three authors, these are Shakespeare, Twain, and Austen.
For 3 known texts, the perfect attribution holds for 5 authors and for 6
known texts the method can correctly attribute the texts among 8 authors.
The accuracy is deteriorated by increasing the number of candidate au-
thors. For example, if we fix the known texts per author to be 3, then by
increasing the number of candidates authors from 4 to 16 the accuracy is
reduced from 100% to 85%. Furthermore, the accuracy increases when
the number of known texts per author is increased. E.g., fixing the num-
ber of authors as 8, if we go from 1 training text to 6, we increase the
accuracy from 67% to 100%. In columns with higher number of known
texts, the accuracy deteriorates with the incorporation of more authors

Figure 19: Accuracy for different number of candidate authors and
number of known texts per author. Expected accuracy of random at-
tribution is also informed. Accuracy decreases with increasing number
of authors and decreasing number of training texts per author but
remains large in most situations.

Our approach to authorship attri-
bution focus on function words but in-
stead of using their frequency distri-
bution as an author signature we pro-
pose the use of the relational struc-
ture of function words. In order to
classify the authorship of a text we
compute an asymmetric network of
function word adjacencies capturing
how likely it is to find a particular
function word within the next few
words conditional on the occurrence
of another given word. The resulting
matrices can be interpreted as transi-
tion probabilities of a Markov chain.
The similarity of different texts is
then estimated by the relative en-
tropy of these transition probabilities.
We have tested the proposed method-
ology in authorship attribution prob-
lems including texts from up to 18
different authors using training sets
consisting of between 1 and 6 known
texts per author – see Fig. 19. Estimation accuracy in the order of at least 90% is observed in
most cases. We have further demonstrated that our classifier performs better that classifiers based
in word frequencies. Perhaps more important, numerical experiments show that classifiers based
on word frequencies encode different stylometric fingerprints than the classifiers proposed here and
can then be combined for increased attribution correctness.

G.1 Ongoing work, acknowledgments and references

We are currently performing a comparative study of word adjacency networks for English authors
of the Renaissance. From this study it can be easily seen that Bacon as well as Marlowe have
stylometric fingerprints very different from the stylometric fingerprint of Shakespeare. This is,
however, still on a preliminary stage. The technical ideas to generate and compare word adjacency
networks for different authors come from the prolific imagination of Santiago Segarra. The actual
legwork of comparing networks and running numerical analyses has been undertaken by Mark Eisen.
Our preliminary results have appeared here:

[1] S. Segarra, M. Eisen, and A. Ribeiro, “Authorship attribution using function words adjacency
networks,” in Proc. Int. Conf. Acoustics Speech Signal Process., vol. (submitted), Vancouver
Canada, May 26-31 2013.
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