Social Learning, Information Heterogeneity, and Coordination

Ali Jadbabaie

Alfred Fitler Moore Professor of Network Science
Electrical and Systems Engineering, Computer & Information Sciences
Operations & Information Management
University of Pennsylvania

ARO MURI 1st Year Review
with Pooya Molavi (MIT Economics), Alireza Tahbaz Salehi(Columbia GSB)
Outline

1. Task S2 Social learning, Heterogeneous Information and Network Structure
 ▶ motivation: diffusion/aggregation of information from heterogeneous sources
 ▶ model (from last year) and a behavioral foundation (new)
 ▶ rate of social learning: dependence on centrality and discriminative power of observations
 ▶ Informed agents vs. allocation of information
 ▶ Influential agents

2. Task S1 Learning for coordination/ emergence of conventions
 ▶ How do individuals coordinate when there is a pay-off relevant unknown state?
 ▶ How does one coordinate on the most advantageous yet unknown set of rules of action,
 ▶ Emergence of conventions (Shin & Williamson '96)
 ▶ reaching consensus on optimal action: when and how?
 ▶ Key new result: failure of optimal information aggregation is nongeneric
Outline

1. Task S2 Social learning, Heterogeneous Information and Network Structure
 ▶ motivation: diffusion/aggregation of information from heterogeneous sources
 ▶ model (from last year) and a behavioral foundation (new)
 ▶ rate of social learning: dependence on centrality and discriminative power of observations
 ▶ Informed agents vs. allocation of information
 ▶ Influential agents

2. Task S1 Learning for coordination/ emergence of conventions
 ▶ How do individuals coordinate when there is a pay-off relevant unknown state?
 ▶ How does one coordinate on the most advantageous yet unknown set of rules of action,
 ▶ Emergence of conventions (Shin & Williamson ’96)
 ▶ reaching consensus on optimal action: when and how?
 ▶ Key new result: failure of optimal information aggregation is nongeneric
Task S2: Information aggregation and social learning

Challenges

- Information is dispersed
- No central mechanisms for aggregation
- Interactions are local
- Related: Diffusion, gossip in
 - face to face communications
 - online social media
- examples:
 - diffusion of micro finance programs (Banerjee, Chandrasekhar, Duflo, Jackson (’13))
 - Coordinating events during popular uprisings (Ali (2011), Hassanpour (’12))
 - decision making in organizations (Calvó-Armengol, Beltran (’09))
 - Making consumption decisions (Kotler (’86))
 - Learning new agricultural techniques (Hagerstrand (’69), Rogers (’83))
Model (agents and observations)

- \(\{1, \ldots, n\} \): finite set of agents
- Agents want to learn an underlying state \(\theta \in \Theta \).
- \(t \in \mathbb{N} \): discrete time. ‘State’ drawn at \(t = 0 \) according to agents’ common prior.
- \(\omega_{it} \in S \): private observations of agent \(i \) at time \(t \)
- Conditional on \(\theta \) being realized, \(\omega_{it} \sim \ell_i^\theta \in \Delta S \).
- \(\ell_i = \{\ell_i^\theta\}_{\theta \in \Theta} \): agent \(i \)’s signal structure: what is the likelihood of \(\omega_{it} \in S \), if \(\theta \) is the truth?

Assumption (identifiability)

For all \(\theta, \hat{\theta} \in \Theta \), there exists \(i \) such that \(\ell_i^\theta \neq \ell_i^{\hat{\theta}} \). Globally, there is enough to discover the truth

Question posed last year:

Role of network and information structure?
Classical setting, no networks, What to expect?

Doob (1949), Blackwell and Dubins (1962)

Merging of opinions with increasing information: The belief of a Bayesian agent i with absolutely continuous prior observing a stream of signals will merge to the truth; i.e., she will learn the likelihood function ℓ_i.

We can't disagree forever: Two agents with a common prior exchanging beliefs repeatedly will reach agreement; moreover, their consensus belief will generically be as if they commonly knew each others' private information.
Classical setting, no networks, What to expect?

Doob (1949), Blackwell and Dubins (1962)
Merging of opinions with increasing information: The belief of a Bayesian agent i with absolutely continuous prior observing a stream of signals will merge to the truth; i.e., she will learn the likelihood function ℓ_i.

Geanakoplos and Polemarchakis (1982)
We can’t disagree forever: Two agents with a common prior exchanging beliefs repeatedly will reach agreement; moreover, their consensus belief will generically be as if they commonly knew each others’ private information.

What happens in the networked case?
The Bayesian Benchmark: Multi-agent setting

- Let $\mathcal{X} = \Theta \times \Omega \times \Gamma$ be the measurable space that captures all uncertainty.

- Assume agents have a common prior over the \mathcal{X}.
The Bayesian Benchmark: Multi-agent setting

- Let $\mathcal{X} = \Theta \times \Omega \times \Gamma$ be the measurable space that captures all uncertainty.

- Assume agents have a common prior over the \mathcal{X}.

Theorem

Assume

(a) agents’ common prior has full support over \mathcal{X};
(b) the realized network is strongly connected;
(c) the realized state is identifiable.

Then all agents learn the true state asymptotically almost surely; i.e., $\mu_{it} \longrightarrow 1_{\theta^*}$ for all $i \in \mathcal{N}$.

Agents need to reason about too many things. Is there a simpler behavioral model?
What is a “reasonable” Non-Bayesian alternative? Extension/modification of DeGroot learning model (Golub and Jackson 2010) with these features:

- continuous flow of new information
- heterogenous stream of private observations
- asymptotic agreement with the Bayesian benchmark

Contributions this year

- Implications of the rate analysis
- Axiomatic construction of non-Bayesian models
Model (learning rule)

- At $t \in \mathbb{N}$ agents also observe beliefs of their neighbors.
- $\mu_{it} \in \Delta \Theta$: belief of agent i at t
Model (learning rule)

- At $t \in \mathbb{N}$ agents also observe beliefs of their neighbors.
- $\mu_{it} \in \Delta \Theta$: belief of agent i at t
- The update rule:

$$
\mu_{it+1} = a_{ii} \text{BU}(\mu_{it}; \omega_{it+1}) + \sum_{j \neq i} a_{ij} \mu_{jt}.
$$

- i: Bayesian posterior belief conditioned on private signal
- ii: beliefs of the neighbors
- Weights sum to one representing network connections.
- Is there a behavioral foundation for this model?

Research question

How do the network structure and agents’ information endowments determine the extent of information aggregation?
Model (social network)

- $a_{ij} > 0 \iff$ Agent j is a neighbor of agent i.
- $A = [a_{ij}]$ row-stochastic social interaction matrix.
- Weights can be time-varying and belief-dependent.
Model (social network)

- $a_{ij} > 0 \iff \text{Agent } j \text{ is a neighbor of agent } j$.
- $A = [a_{ij}]$ row-stochastic social interaction matrix.
- Weights can be time-varying and belief-dependent.

Assumption (strong connectivity)

There is a directed path from any agent to any other one (can be generalized to switching graphs).

- Guarantees that information can flow from any agent to any other.
Proposition

If identifiability and strong connectivity assumptions are satisfied,

$$\mu_{it}(\cdot) \longrightarrow \mathbf{1}_\theta(\cdot)$$

the rate is (up to first order)

$$r \approx \min_{\theta} \min_{\theta \neq \hat{\theta}} \sum_{i=1}^{n} v_i h_i(\theta, \hat{\theta}) + h.o.t$$

- The learning process asymptotically coincides with Bayesian learning
- Unlike Bayesian models, the model is tractable
- Rate is a convex combination of relative entropies $h_i(\theta, \hat{\theta})$ with weights as eigenvector centrality v_i.
- Consistent with empirical and theoretical observations in Jackson (2013, 2014)
Towards an axiomatic view

What should a reasonable model look like?

- If private signals are uninformative \(\Rightarrow \) beliefs updated as in DeGroot ’74

- If a signal is evidence in favor of a state, the posterior belief on that state should increase (increasing function of likelihood ratio)

- Update should be separable in terms of private signal and an aggregate of belief of neighbors

- Conjecture: All such updates that converge, have the same asymptotic rate (up to first order)

- One such example: Average log beliefs of neighbors with log private posterior J, Shahinpour 2012, Tahbaz-Salehi, Rahnama-Rad 2010

- Bayesian with limited memory/ recall: take the first step of Bayesian update and apply for future steps
Relative Entropy and Eigenvector Centrality

Definition (relative entropy)

Given \(\hat{\theta} \neq \theta \),

\[
h_i(\theta, \hat{\theta}) = \sum_{s \in S} \ell^\theta_i(s) \log \left(\frac{\ell^\theta_i(s)}{\ell^\hat{\theta}_i(s)} \right)
\]

- \(h_i(\theta, \hat{\theta}) \): information in favor of \(\theta \) against \(\hat{\theta} \) when \(\theta \) is realized
- \(h_i(\theta, \hat{\theta}) = 0 \) \(\Rightarrow \) agent \(i \) cannot distinguish \(\theta \) and \(\hat{\theta} \)
- Larger \(h_i(\theta, \hat{\theta}) \) \(\Rightarrow \) easier to rule out \(\hat{\theta} \) when \(\theta \) is realized

Eigenvector Centrality

Definition (eigenvector centrality)

Given \(A \), the eigenvector centrality of agent \(i \) is

\[
v_i = \sum_{j=1}^{n} v_j a_{ji}
\]
Under which allocation of signals is learning the fastest?

Proposition

Suppose

- agents’ signals are comparable with respect to \(\succeq_{UI} \);
- \(l_i \succeq_{UI} l_j \) if and only if \(v_i \geq v_j \).

Then, no reallocation of signals increases the rate of learning.

- Positive assortative matching of centralities and signal qualities maximizes the rate of learning.
- Intuition: Irrespective of the realized state, the most informative signals receive the most attention.
- Same insight as Matt’s talk: best Info given to the most central has the most effect.
New results: what if information endowments are incomparable?

- relative informativeness of agent i’s signals for $(\theta, \hat{\theta})$:
 \[\gamma_i(\theta, \hat{\theta}) = \sup \{ \beta : h_i(\theta, \hat{\theta}) \geq \beta h_j(\theta, \hat{\theta}) \text{ for all } j \neq i \}\]

- specialty of agent i:
 \[E_i = \{(\theta, \hat{\theta}) : \theta \neq \hat{\theta} \text{ and } \gamma_i(\theta, \hat{\theta}) \geq 1\}\]

<table>
<thead>
<tr>
<th>Definition (expertise)</th>
</tr>
</thead>
<tbody>
<tr>
<td>relative expertise: $\gamma_i = \min { \gamma_i(\theta, \hat{\theta}) : (\theta, \hat{\theta}) \in E_i }$</td>
</tr>
<tr>
<td>absolute expertise: $\varepsilon_i = \min { h_i(\theta, \hat{\theta}) : (\theta, \hat{\theta}) \in E_i }$</td>
</tr>
</tbody>
</table>
Suppose that

- $E_i \neq \emptyset$ for all i;
- $\varepsilon_i \geq \varepsilon_j$ if and only if $v_i \leq v_j$.

Then, reallocations of signals do not increase the rate by more than $\alpha(\max_i \varepsilon_i)/(\min_i \gamma_i)$.

1st condition: Agents are all experts.

2nd condition: The least central agents have the highest absolute expertise.
Effect of Network topology?

Definition (regularity)

\[A \preceq_{\text{reg}} A' \]

if

\[\sum_{i=1}^{k} v[i] \leq \sum_{i=1}^{k} v'[i] \]

\[\Downarrow \]

\[\Downarrow \]

\[v \Downarrow \quad \text{FOSD}^a \quad v' \Downarrow \]

\[\downarrow \]

\[\text{afirst-order stochastically dominates} \]

\[\Downarrow \]

\[\preceq_{\text{reg}} \]

\[\downarrow \]
Consider the rate under the best allocation: r^*. Is r^* higher for regular or irregular networks?
Consider the rate under the best allocation: r^*. Is r^* higher for regular or irregular networks?

Proposition

Suppose agents’ signals are comparable with respect to \succeq_{UI}. Then,

$$A \succeq_{reg} A' \implies r^* \leq r'^*$$
Network Regularity and Learning

- Consider the rate under the best allocation: \(r^* \).

Is \(r^* \) higher for regular or irregular networks?

Proposition

Suppose agents’ signals are comparable with respect to \(\succeq_{ul} \). Then,

\[
A \succeq_{reg} A' \implies r^* \leq r'^*
\]

- The gap can grow unboundedly in large networks.
Network Regularity and Learning: An Example

- $\Theta = \{\theta_0, \theta_1, \ldots, \theta_n\}$
- $S = \{\text{Head}, \text{Tail}\}$
- $\pi > \frac{1}{2}$

$\ell_\theta^i(s) :$

- $\theta_0 (\begin{pmatrix} 1 - \pi & \pi \\ \pi & 1 - \pi \end{pmatrix})$
- $\theta_1 (\begin{pmatrix} 1 - \pi & \pi \\ \pi & 1 - \pi \end{pmatrix})$
- \vdots
- $\theta_i (\begin{pmatrix} \pi & 1 - \pi \\ 1 - \pi & \pi \end{pmatrix})$
- $\theta_n (\begin{pmatrix} 1 - \pi & \pi \\ \pi & 1 - \pi \end{pmatrix})$

Proposition

| $A \; \succeq_{\text{reg}} \; A'$ | \Rightarrow | $r^* \; \geq \; r'^*$ |

- Ordering of networks is reversed with expert agents!
- The gap does not grow unboundedly.
 \Rightarrow Rates of learning in all large networks are similar.
Part 2: Learning to Coordinate
Motivating Example: Popular Uprising

- Pay-off relevant state = government willingness to use force
- Unknown, but individuals receive noisy signals about it.
- The optimal level of unrest for an individual depends on:
 - Her belief about the willingness of government to use force.
 - Her belief about the aggregate level of protest. Will optimal coordination occur?
 - Each agent only observes the action of her friends
- Lewis('69), Ullman-Margalit ('77), Gilbert ('90), Miller ('90), Shin & Williamson ('96), Acemoglu & Jackson (2013): conventions and norms viewed as equilibrium strategies in coordination games.

\[-(1 - \lambda)(a_i - \theta)^2 - \lambda (a_i - \bar{a})^2,\]

where $\lambda \in (0, 1)$ and $\bar{a} = \frac{1}{n} \sum_{j=1}^{n} a_j$.
Model

- \{1, \ldots, n\}: finite set of agents
- Agents want to coordinate on \(\theta \in \mathbb{R} \).
- \(t \in \mathbb{N} \): discrete time
- \(a_{it} \): time \(t \) action of agent \(i \)
- \(-(1 - \lambda)(a_{it} - \theta)^2 - \lambda(a_{it} - a_{\text{average}})^2 \): payoff of agent \(i \) at \(t \) (could be a general coordination payoff)
- \(s_{it} \): time \(t \) private signal of agent \(i \)
Model

- \(\{1, \ldots, n\} \): finite set of agents
- Agents want to coordinate on \(\theta \in \mathbb{R} \).
- \(t \in \mathbb{N} \): discrete time
- \(a_{it} \): time \(t \) action of agent \(i \)
- \(- (1 - \lambda) (a_{it} - \theta)^2 - \lambda (a_{it} - a_{\text{average}})^2 \): payoff of agent \(i \) at \(t \)
 (could be a general coordination payoff)
- \(s_{it} \): time \(t \) private signal of agent \(i \)

Endogenous Signals

\(s_{it} \) could be a function of the agents’ previous actions.
Social Network

- At t agents observe the time $t - 1$ actions of their time $t - 1$ neighbors.

- Random and time-varying social network

Assumption (independence)

Networks are independent of the signals.

Assumption (connectivity)

There is a directed path from any agent to any other one such that: the edges of the path appear almost surely infinitely often.
Model (social network)

- “Connected” social network

- Agents observe the previous actions of their neighbors

- \(h_{it} \): agent \(i \)'s private history at time \(t \),
 \[h_{i,t} = \{ h_{i,t-1}, \{ a_{j,t-1} \}_{j \in N_i}, s_{i,t-1} \} \]
 where \(h_{i,0} = \emptyset \)

- \(\mathcal{H}_{it} \): \(\sigma \)-field generated by \(h_{it} \)

- \(j \) is a neighbor of \(i \) \(\Rightarrow \) \(a_{jt-1} \) is \(\mathcal{H}_{it} \)-measurable

- \(\sigma_i : h_{it} \mapsto a_{it} \): strategy of agent \(i \)

- \(\sigma = (\sigma_1, \ldots, \sigma_n) \): strategy profile
Model (payoffs)

\[u_i(a, \theta) = -(1 - \lambda)(a_i - \theta)^2 - \lambda(a_i - \bar{a}) \]

\[\bar{a} = \frac{1}{n} \sum_{j=1}^{n} a_j \]

\[U_{it;\sigma}(\sigma) = \mathbb{E}_{\sigma}[u_i(\sigma_1(h_{1t}), \ldots, \sigma_n(h_{nt}), \theta)|H_{it}] \]
Equilibrium

Definition (Myopic Perfect Bayesian equilibrium)

(a) Agents’ beliefs are consistent given their priors and strategies.
(b) Agents’ strategies are expected stage payoff maximizing given their beliefs.

\[E_{\sigma^*}[u_i(\sigma_{i,t}^*, \sigma_{-i,t}^*, \theta) \mid h_{i,t}] \geq E_{\sigma^*}[u_i(\sigma_{i,t}, \sigma_{-i,t}^*, \theta) \mid h_{i,t}] \text{ for all } i. \]

- Agents are myopic (Folk theorems if non-myopic).
- FOC: Optimal action linear in private best-estimates and in actions (cf. Blume’s talk last year).
Equilibrium

Definition (Myopic Perfect Bayesian equilibrium)

(a) Agents’ beliefs are consistent given their priors and strategies.
(b) Agents’ strategies are expected stage payoff maximizing given their beliefs.

\[E_{\sigma^*}[u_i(\sigma_{i,t}^*, \sigma_{-i,t}^*, \theta) \mid h_{i,t}] \geq E_{\sigma^*}[u_i(\sigma_{i,t}, \sigma_{-i,t}^*, \theta) \mid h_{i,t}] \quad \text{for all } i. \]

- Agents are myopic (Folk theorems if non-myopic).
- FOC: Optimal action linear in private best-estimates and in actions (cf. Blume’s talk last year).

Proposition

(a) An equilibrium exists.
(b) The equilibrium actions are unique up to sets of measure zero.
Consensus in Actions

- \(a_{it}^*\): equilibrium time \(t\) action of agent \(i\)

Proposition

For all \(i\),

\[a_{it}^* \rightarrow a_{i\infty}^* .\]
Consensus in Actions

- a^*_t: equilibrium time t action of agent i

Proposition

For all i,

$$a^*_t \longrightarrow a^*_i$$

Proposition

For all i, j,

$$a^*_{i\infty} = a^*_{j\infty}$$
Consensus in Estimates

- \mathcal{H}_it: i’s information at time t
- E^*: equilibrium-induced probability distribution

Proposition

For all i,

$$a^*_{it} \rightarrow E^*[\theta|\mathcal{H}_i\infty].$$

- The coordination motive asymptotically disappears.
Consensus in Estimates

- \mathcal{H}_{it}: i’s information at time t
- \mathbb{E}^*: equilibrium-induced probability distribution

Proposition

For all i,

$$a^*_{it} \longrightarrow \mathbb{E}^* [\theta | \mathcal{H}_{i\infty}].$$

- The coordination motive asymptotically disappears.

Proposition

For all i, j,

$$\mathbb{E}^* [\theta | \mathcal{H}_{i\infty}] = \mathbb{E}^* [\theta | \mathcal{H}_{j\infty}]$$

- Agents reach consensus in their bests estimates of θ.
Optimal Information Aggregation

- \mathcal{H}_∞: total information available to the agents at the end of the game

Best estimate of θ given all the information

$$E^*[\theta|\mathcal{H}_\infty],$$
Optimal Information Aggregation

- \mathcal{H}_∞: total information available to the agents at the end of the game

Best estimate of θ given all the information

$$E^*[\theta | \mathcal{H}_\infty],$$

- $E^*[\theta | \mathcal{H}_\infty]$ optimal action given all the information

- $E^*[\theta | \mathcal{H}_\infty] \neq E^*[\theta | \mathcal{H}_i\infty] \Rightarrow$ failure of full information aggregation
An Example of Failure of Information Aggregation

- two connected agents
- supp $\mu = \{-1, 1\}$
- $\mu P(-1) = \mu P(1) = \frac{1}{2}$
- $S_1 = S_2 = \{H, T\}$
- signaling function

\[
(s_1 t, s_2 t) \sim \begin{cases}
\frac{1}{2} \delta(H,H) + \frac{1}{2} \delta(T,T) & \text{if } \theta = 1, \\
\frac{1}{2} \delta(H,T) + \frac{1}{2} \delta(T,H) & \text{if } \theta = -1,
\end{cases}
\]
An Example of Failure of Information Aggregation

- two connected agents
- $\text{supp } \mu = \{-1, 1\}$
- $\mu P(-1) = \mu P(1) = \frac{1}{2}$
- $S_1 = S_2 = \{H, T\}$
- signaling function

$$\left(s_1 t, s_2 t\right) \sim \begin{cases}
\frac{1}{2} \delta(H, H) + \frac{1}{2} \delta(T, T) & \text{if } \theta = 1, \\
\frac{1}{2} \delta(H, T) + \frac{1}{2} \delta(T, H) & \text{if } \theta = -1,
\end{cases}$$

- $0 = \mathbb{E}^*[\theta|\mathcal{H}_{i\infty}] \neq \mathbb{E}^*[\theta|\mathcal{H}_{\infty}] = \theta$.
- The example is nongeneric.
Exogenous Signals and Optimal Information Aggregation

Assumption (exogenous private signals)

Private signals are \textit{independent} of the history of the game.

Assumption (connectivity)

Network is \textit{fixed and strongly connected}.

Assumption (finite signal space)

Private signals belong to \textit{finite} spaces.
Exogenous Signals and Optimal Information Aggregation

Assumption (exogenous private signals)
Private signals are independent of the history of the game.

Assumption (connectivity)
Network is fixed and strongly connected.

Assumption (finite signal space)
Private signals belong to finite spaces.

Theorem
For a generic set of priors and likelihood functions, information is optimally aggregated.

\(^a\)a residual set of probability distributions given the topology of uniform convergence
Contribution to Bayesian Social Learning

» Special case: $\lambda = 0$

» Agents only care about learning the true state

» Agents communicate their best estimate of the state to their neighbors

» Agents reach consensus in their estimates

» The consensus estimate is generically optimal

» Punchline: no need to communicate full beliefs: just optimal estimates! counterpart to the results where agents communicate full posteriors:
 » Borkar and Varaiya (1978)
 » Geanakoplos, Polemarchakis (1982)
 » Jadbabaie, Molavi, Sandroni, Tahbaz-Salehi (2012)
 » Mueller-Frank (2013)
Conclusions and Future Work

- two models of social learning:
 - learning with heterogeneous information

- analytical characterization of rate of learning in terms of network and information structures.

- rate of learning under different allocations of information

- comparative statics of rate with respect to network structure

- How much memory recall is needed for update to converge? diameter of graph? what if actions are observed?

- future work: conventions and norms as coordination games with unknown state: non myopic case?

- optimal aggregation of information except sets of measure zero