Predicting and Steering Social Systems

Team members:
Jon Kleinberg Jure Leskovec

With Lada Adamic, Ashton Anderson, Justin Cheng, Alex Dow, and Dan Huttenlocher
Increasingly we learn information through channels that are simultaneously on-line and social.

- Social sharing of information with friends.
- Collective production of knowledge.
- Question-answering by self-identified experts.

Rich source of data via digital traces.

And: these are designed social systems.

- Algorithmic filtering of content.
- Reward systems to motivate participation and effort.
Algorithmic filtering based on prediction.

- Your friends share many things over the course of a day.
- Can we predict which will be the most popular?
- We can use reshares as one measure of popularity.

Prediction as an ingredient in:

- Steering the social networking system
- Trying to understand the principles behind cascades.
Predicting Reshares
Population of cascades is highly skewed.

- Only 5% of all photos are ever reshared at all.
- But over 50% of all photo reshares occur on photos with > 500 reshares.

Predicting eventual size of a cascade is a pathological task.

- High accuracy via a trivial answer (1).
- Creating a balanced variant leads to a highly artificial distribution.

Cascade growth prediction.

- Let \(f(k) \) be median size of cascade conditional on reaching size \(k \).
- Observation on reshare cascades: \(f(k) \approx 2k \) for all \(k \).
- Given a cascade up to a certain point in time, of size \(k \), predict whether it will reach size \(f(k) \).
- Balanced task, and performance can be parametrized by \(k \).
Cascade Growth Prediction

- Given a cascade up to a certain point in time, of size k, predict whether it will reach size $f(k)$.

Categories of features:

- **Content**: objects in photo; caption; pos/neg emotion in photo text
- **Root**: page vs. user; degree; age/gender; facebook-age; activity level
- **Resharer**: average user properties over first j resharers
- **Structural**: degrees; induced subgraph properties on first j resharers; tree properties on first j resharers; how many resharers escape root’s neighborhood
- **Temporal**: time until j^{th} reshare; acceleration parameters
Cascade Growth Prediction

Some general observations:

- Accuracy increases with k.
- Temporal features very powerful, and remain important as k grows.
- Features of content and original poster get less important with increasing k.
- High resharer depth predicts larger growth.
Further Questions

- Can fix content, vary network starting point.
- Alternately: fix root, vary content.
- Different types of content activate different sub-populations
- Clustering among resharers?
- Methodological challenge: prediction to gauge which features are important.

Next, a different design problem: motivating users via rewards.
Systems of rewards are a crucial feature of many domains:

- Government, Military
- Scientific community
- On-line participatory settings

Many can be seen as “badges.”
Badges

On-line domain has embraced the use of badges as rewards.

- Can recognize skills and achievements
- Can encourage participation and contribution

Multiple social-psychological dimensions [Antin-Churchill 2011]

- Goal-setting, instruction, reputation, status, affirmation, group identification
Focus here on incentive properties of rewards and badges.

- Part of the broad trend toward gamification [Deterding et al 2011]; see also [Easley-Ghosh 2013]

Many other approaches: e.g.

- contest/auction-based [DiPalatino-Vojnović 09, Cavallo-Jain 12, 13, Chawla-Hartline-Sivan 12]

- elicitation and evaluation of quality [Ghosh-McAfee 11, Mao et al 13, Witkowski et al 13]
I am trying to get the list of connected components in a graph with 100 million nodes. For smaller graphs, I usually use the `connected_components` function of the Networkx module in Python which does exactly that. However, loading a graph with 100 million nodes (and their edges) into memory with this module would require ca. 110GB of memory, which I don't have. An alternative would be to use a graph database which has a connected components function but I haven't found any in Python. It would seem that Dex (API: Java, .NET, C++) has this functionality but I'm not 100% sure. Ideally I'm looking for a solution in Python. Many thanks.

SciPy has a `connected_components` algorithm. It expects as input the adjacency matrix of your graph in one of its `sparse matrix formats` and handles both the directed and undirected cases.

Building a sparse adjacency matrix from a sequence of \((i, j)\) pairs `adj_list` where \(i\) and \(j\) are (zero-based) indices of nodes can be done with

```
ij_indices = indices = np.array(*adj_list)
```
Our Model

A population of users and a site designer.

- Designer would like a certain frequency of activities.
- Designer creates badges, which have value to users.

- User trades off between preferred mix of activities and reaching the badge.
- We’d like to see this produce effects on both engagement and “steering” – balancing activities differently.
Our Model

- Action types A_1, A_2, \ldots, A_n. (ask, answer, vote, off-site, ...)
- User’s state is n-dimensional.
- User has preferred distribution p over action types.
- User exits system with probability $\delta > 0$ each step.

- Each badge b is a monotone subset of the state space; reward V_b is conferred when the user enters this subset.
- User can pick distribution $x \neq p$ to get badge more quickly; comes at a cost $g(x, p)$.
- Sets up an optimization problem for the user.
What a Solution Looks Like

![Graph showing the number of A_1 actions vs the number of A_2 actions. The graph illustrates the solution space, where each point represents a combination of actions. The x-axis represents the number of A_1 actions, ranging from 0 to 20, and the y-axis represents the number of A_2 actions, ranging from 0 to 20. The graph is populated with arrows indicating possible combinations of actions.](image-url)
A One-Dimensional Version

Example: Badge at 25 actions of type 1.

- Canonical behavior: user “steers” in A_1 direction; then resets after receiving the badge.
Evaluating Qualitative Predictions

Consider two cumulative badges on StackOverflow.

- **Civic Duty badge**: Vote at least 300 times.
- **Electorate**: Vote on at least 600 questions (plus some other technical conditions).

5-dimensional state space: \((Q, A, Q\text{-vote}, A\text{-vote}, \text{off-site})\).

![Graphs showing Civic Duty and Electorate badges](image)
The Badge Placement Problem

General question: how should you “place” badges in action space to achieve desired effects?

- Current collaboration with Coursera on badge placement.

Concrete question: Suppose you can define a badge b of value V_b, and you want to achieve an aggregate action distribution of q. Where should you place the badge?

Example: Place badge on type 1 to achieve max number of type 1 actions.

$\delta = 0.01$ in example.
An Experiment on Coursera

Top byline:

Thread byline:

Badge ladder:

Badge Series (2 earned)

<table>
<thead>
<tr>
<th>Badge Series</th>
<th>BRONZE</th>
<th>SILVER</th>
<th>GOLD</th>
<th>DIAMOND</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Reader</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>The Supporter</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>The Contributor</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>The Conversation Starter</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Top Posts</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The Reader
To earn the next badge (Silver), you must read 30 threads from your classmates.

The Supporter
To earn the next badge (Silver), you must vote on 15 posts that you find interesting or useful.

The Contributor
To earn the next badge (Bronze), you must post 3 replies that your classmates find interesting.

The Conversation Starter
To earn the next badge (Bronze), you must start 3 threads that your classmates find interesting.

Top Posts
To earn the next badge (Bronze), you must write a post that gets 5 upvotes from your classmates.
Multiple ways in which rewards can create incentives.

- Choice of threshold: absolute standard or top-k [Easley-Ghosh 2013].
- Incentivizing certain rates/speeds of activity [Ghosh-Kleinberg 2013].
- Estimation of parameters from trace data, for purposes of designing badges or other incentives.
- Where does the value of rewards/badges/credit come from? Intrinsic sense of progress, social interaction, ...?