
Joining a Real-Time Simulation: Parallel Finite-State Machines and
Hierarchical Action Level Methods for Mitigating Lag Time

Jianping Shi
Norman I. Badler

Michael B. Greenwald
Department of Computer & Information Science

University of Pennsylvania
Philadelphia, PA 19104-6389

215-898-1976
jshi@graphics.cis.upenn.edu
badler@central.cis.upenn.edu

greenwald@cis.upenn.edu

Keywords:
DVE; simulation; pilot/drone; checkpoint/restart; action level of detail; dead reckoning; avatar

ABSTRACT: Distributed virtual environments, which simulate an actual physical or imaginary world on a network
and allow multiple participants to interact simultaneously with one another within it, are becoming increasingly
important for both research and practical purposes. As the number of participants and the amount of information
exchanged among participants increase, it is crucial to large-scale distributed virtual environments to overcome
bandwidth limitations and resolve network latency and synchronization problems. We present a new framework, called
MELD, for modeling distributed virtual environments using the pilot/drone paradigm, which allows each host to locally
model remote entities in order to resolve latency problems and improve responsiveness. Our approach uses shared
event queues and a cache coherence protocol to synchronize the pilot/drone. To further improve the system's scalability,
interest management is used to filter unneeded data before a host receives it for processing. The partition, however,
introduces the problem of dynamically joining a group in a real-time simulation. We address this problem by presenting
a checkpoint/restart mechanism based on an action hierarchy and a parallel finite-state machine structure.
Additionally, ALOD (action level of detail) is employed to mitigate the lag between pilot and drone at any joining time.

1. Introduction

A virtual environment (VE) is an interactive computer
model that simulates an actual physical or imaginary
world. Users can navigate within this virtual world,
experience a logical series of events, and interact with 3D
objects simulated by the system as well as with other
users. A simulation model can be specified by a set of
states and events. The execution of a simulation includes
advancing the simulated virtual time, mimicking the
occurrence of the events happening up to and including
the simulation time, and calculating the effects of these
events to modify the states and schedule newly generated
events [1]. We are interested in the actions of human
participants in a VE — entities that have significant non-
linear movements and action vocabularies.

A distributed system is a collection of sequential
processes P1, P2, ..., and Pn, and a network of
unidirectional communication channels. Each channel

connects a pair of processes and delivers messages
between them [2]. Distributed simulations typically
provide more overall host processing power and more
storage space than sequential simulation systems, and thus
support more simulation entities and more detailed
appearance and behaviors of entities within the system.
The distributed structure also allows multiple users
located at geographically different sites to perceive the
illusion of a single, coherent virtual world, to interact
closely with each other as well as with the environment,
and to consistently share the same experience.

Distributed virtual environments (DVE) are seeing
increased use for a wide range of applications such as
military simulations, education and training systems,
virtual teleconferencing, collaborative modeling and
engineering, and multi-user networked video games [3, 4,
5, 6, 7, 8]. The trend of faster processors, more powerful
computer graphics hardware and software packages, and
higher-capacity networks makes it possible for large-scale

distributed virtual environment to contain well over
100,000 dynamic entities [9].

One of the critical issues facing DVE is scalability. As the
number of participants and the amount of information
exchanged among participants increase, it is crucial to
large-scale distributed virtual environments to overcome
bandwidth limitations and resolve network latency and
synchronization problems. Many mechanisms have been
developed in the literature to improve the bandwidth
requirements, end-to-end latency, and scalability of DVE
systems. Dead reckoning [20] is a promising technique
that reduces the number of messages needed on a per-
object basis. Interest management [5] is a technique that is
critically needed to reduce the number of objects that each
process observes.

However, as described in the next section, dead reckoning
suffers from some intrinsic limitations. In particular, it is
only applicable to a limited class of objects and behaviors,
and it may not always achieve a significant reduction in
the number of messages.

In this paper, we address these problems by generalizing
the notion of dead reckoning to include much richer
emulation of remote entities. However, this approach is
complicated by interactions with interest management.
We present a new distributed virtual environment
framework, called MELD (Mitigating Entry Lag Delays),
for modeling remote entities, synchronizing modeling
processes at different hosts, solving the dynamic joining
problem, and mitigating the lag time due to message
delay. MELD adopts the pilot/drone paradigm and is thus
efficient in terms of network bandwidth, latency, and
responsiveness. It extends dead reckoning by specifying
per-object extrapolation procedures.

The remainder of this paper is organized as follows. The
next section provides a brief description of dead
reckoning and interest management. In Section 3, we
present our new framework MELD. Section 4 provides an
example system that is used to compare our framework
with dead reckoning. Finally, Section 5 summarizes the
contributions of this work.

2. Dead Reckoning and Interest Management

Dead reckoning is used in SIMNET [3], DIS [4], and
other distributed virtual environments that incorporate the
DIS application protocol (such as NPSNET [5]). Dead
reckoning is a technique to reduce network traffic. In a
dead reckoning system, the database containing the initial
state of the virtual world is replicated at all participating
clients at the beginning of a simulation session. Then each
client is responsible for maintaining its own replica of the
database. The state of a remote entity is modeled by

extrapolating from the last reported state sent from the
entity's local host [20]. The entity's local host generates a
new state update message and sends it to the remote hosts
only if the discrepancies in the remote extrapolations
exceed an error threshold.

SIMNET provides a concrete example. The virtual world
in SIMNET consists of a collection of entities that interact
with each other via events [3]. There is no central server
process to schedule events or resolve conflicts between
entity states among simulation nodes. A pilot is the
graphical version of the avatar controlled on the user's
own client; the drones are the avatar copies executing on
other clients [10]. Note that sometimes player and ghost
are used in place of pilot and drone to refer to exactly the
same paradigm [5]. Each node is responsible for sending
out the events caused by its pilot entities to other nodes,
receiving event reports from other nodes, and calculating
the effects of the received events on its own entities. Each
simulation node is completely autonomous, and the
simulation node sending out an event is not responsible
for keeping track of the effects of the event on other
nodes.

Between receipt of state update messages a local node
extrapolates from the last reported states of remote
entities that are of interest to the entities it is simulating,
and uses the result of the extrapolation to generate
displays for human crews or detection probabilities for
automated crews [3]. In order to allow remote
extrapolation, each simulation node must maintain a dead
reckoning model that exactly corresponds to those used
by remote nodes. The entity’s local node tracks both the
actual states of their entities and the predicted states
calculated with dead reckoning, and generate new state
update messages before the discrepancies among the
nodes become unacceptably large. Since it is not
necessary to transmit state update messages at every
frame in a dead reckoning system, bandwidth
requirements can be reduced.

Dead reckoning merely reduces the per-entity bandwidth,
but as the number of entities increases, the bandwidth still
scales linearly. In a large-scale distributed virtual
environment, interest management is critical to improve
the system's scalability by filtering unneeded data before a
client receives it for processing. For example, Macedonia
et al [5] show that without interest management,
NPSNET-IV can accommodate a maximum of 300
players on an Ethernet LAN (10 Mbps, saturated at
roughly 70% utilization) without modification to the DIS
protocol. However, in an exercise containing 1000 or
more active entities, the number of entities that each
player is interested in (those that are in the neighboring
geographical regions and those that belong to related
organizations) may be well below 300. If each player only

receives and processes data packets from entities that it
cares about, it is then possible to support many more
players with the same underlying hardware capacity.

Reducing the traffic requirement by dead reckoning has
two limitations: First, in order to support large-scale
distributed simulations, dead reckoning protocols have to
accept imperfect remote modeling and potential
discrepancies. Second, dead reckoning uses simple
extrapolation schemes to predict future location of remote
entities, so it is effective only in modeling simple,
predictable, and continuous motions or actions, such as
the change of position of a tank, and does not apply to
modeling unpredictable, complex, discrete actions, such
as rich human behaviors.

3. MELD

3.1 Overview of MELD

MELD uses a pilot/drone paradigm similar to the
pilot/drone paradigm used in SIMNET, but rather than
using dead reckoning to model drone-behavior, we fully
emulate the entity on every node. This is a reasonable
trade-off considering the rapid increase in processing
power relative to commodity network speeds. Given
identical code on every node, we synchronize by simply
ensuring that the set of external inputs seen by the pilot
are also seen by each drone in the same order. Each avatar
maintains a shared input event queue which remains
consistent by using standard cache-coherency protocols.

Processor resources are cheap but not free. Network
traffic is reduced, but not eliminated. There is still a need
for interest management. Unfortunately, joining an
interest group now means migrating a copy of the entire
pilot process to the new drone. Fortunately, MELD can
exploit its representation of pilots and drones to avoid
much of the problems and complexity of process
migration. However, migration still may take a non-
negligible time, and after joining the interest group a
drone may lag behind the pilot by a constant time. We
propose a technique, Action Level of Detail (ALOD), to
allow us to narrow the lag by accelerating the drone.

3.2 Components of MELD

MELD uses PaT-Nets (Parallel Transition Networks) to
specify simulations in our framework. PaT-Nets are
essentially finite automata executing in parallel. In our
system, PaT-Nets execute in the Jack environment [11,
12]. Together with the Jack API, they provide an intuitive
interface to control simulation and behavior of processes
and agents in Jack.

The node is the basic building block of the PaT-Net [12].
There are several different types of nodes, but each has a
similar structure and behavior. Each node has an
associated action, and the transitions between nodes
determine the path through the PaT-Net. Transitions can
be randomly assigned, weighted with probability, or given
as a set of ordered conditions from which the first valid
condition will be selected. Conditions and actions can
manipulate a set of local variables. A set of monitors adds
control within the PaT-Net.

We then define a logical process (LP) as follows:

• An LP is a collection of active PaT-Nets, which are
advanced at a fixed frame rate.

• Each LP is used to control an avatar's behavior,
whether it is a pilot or a drone.

• An LP always has a distinguished PaT-Net, which we
call the behavior manager. We will explain its
responsibilities later on.

3.3 Pilot/drone synchronization

Figure 1 illustrates the pilot/drone paradigm. For
simplicity, we assume avatar Ai is controlled by LPi under
the instructing of Useri sitting in front of Hosti (in a real
application a single user may command multiple avatars
via multiple LPs), and each host is observing the activities
of all avatars (we will see later that users can choose to
observe only a subset of avatars that they are interested
in). In the figure, shaded circles represent pilot LP, blank
circles represent drone LP, and dotted arcs represent the
synchronization between pilot LP and its corresponding
drone LPs.

Figure 1: The pilot/drone paradigm

We associate a shared event queue with each avatar in the
virtual world to synchronize its pilot and drone LPs. Each

event queue has a fixed owner, which is defined as the
pilot LP of the associated avatar. To implement the shared
event queue structure, we use a fixed-owner, directory-
based invalidate protocol similar to that used in many
hardware or software based DSM (distributed shared
memory) systems [13, 14, 15]. Directory-based coherency
reduces network traffic because it does not use a
broadcast scheme for one LP to send invalidate/update
messages to all other LPs, which usually generates
network traffic that is proportional to the number of LPs
squared (M2). Invalidate coherency protocols [21] require
a writer (here pilot LP) to acquire exclusive access to a
shared variable before writing. This is accomplished by
invalidating all cached copies of the variable. In contrast,
update or broadcast coherency protocols [21] make sure
that all cached copies are consistently updated after each
write. Invalidate protocols reduce bandwidth
requirements, but have the potential to increase latency
until up-to-date values are available at all nodes. “Fixed-
owner” refers to the ownership of the directory entry for
each shared variable, and does not imply any access
privileges. Both the owner and non-owner LPs can write
and read a state variable. However, when a state variable
is flushed from a node’s cache, the node can later find the
current writer (with the latest value) by querying the
owner’s node.

One should note that invalidate protocols are typically a
lazy, consumer-initiated (pull) communication [16].
Update protocols, on the other hand, send the new values
to all remote copies that are consequently updated,
whenever an LP writes a shared variable. Obviously the
latter mechanism imposes an eager, producer-initiated
(push) communication. Our framework allows the
programmer to choose lazy or eager update for each
individual shared state variable, in order to trade off
bandwidth for latency according to their specific
requirements.

3.4 Joining an interest group

When a drone joins a pilot’s interest group, we must
capture the dynamic state of the pilot’s logical process.
Capturing the state of a logical process, a problem
equivalent to process migration, has been attracting a lot
of research effort. Two promising approaches to capture
dynamic state are checkpoint/restart mechanisms (e.g.
process introspection [17]) and logging mechanisms (e.g.
latecomer accommodation service [18]). Both approaches
require programmer effort to modify the code, and are
often platform dependent.

In this section we exploit PaT-Net semantics to present an
efficient, yet easy-to-use, mechanism to capture the
dynamic state of a logical process. Our approach uses the
checkpoint/restart mechanism, but it requires little

programmer effort, is platform-independent, and does not
introduce any extra run-time overhead to the original PaT-
Nets. In order to make it easier and less error-prone to
checkpoint the dynamic state of an LP, we organize the
LP into a hierarchy of active PaT-Nets. We will introduce
two rooted tree structures: static behavior trees and
dynamic behavior trees.

The static behavior tree is used to statically describe an
avatar's comprehensive behavior. By “comprehensive” we
mean that all possible actions of an avatar are included in
the tree. The root of the static behavior tree for avatar Ai

is Ai's behavior manager, which is responsible for reading
the shared event queue associated with Ai and taking
appropriate actions (e.g. instantiating a new PaT-Net)
according to the events contained in the event queue. All
the actions that Ai is capable of doing (called Ai's
“capabilities” in [19]) are inserted into the tree as the
root's children. Some actions are very complex and have
other complex or primitive actions as their subactions. We
add another level of action nodes in our static behavior
tree to depict the subaction relationship among Ai's
capabilities. Therefore the height of Ai's static behavior
tree is at most two, and all the nodes at level 1 form the
comprehensive set of actions that Ai can perform.

The root of the dynamic behavior tree for avatar Ai is also
Ai's behavior manager, but the tree is used to keep track
of Ai's dynamic behavior, i.e., the actions Ai is currently
performing. From the PaT-Net point of view, the tree
includes all the active PaT-Nets controlling Ai's actions.
In the Jack system there is an active PaT-Net list that
manages the advancement of all active PaT-Nets.
Therefore a one-to-one mapping exists between the nodes
of dynamic behavior trees and the PaT-Nets in the active
PaT-Net list.

Our checkpoint/restart mechanism is based on the PaT-
Nets hierarchy. The entire procedure is divided into two
phases: checkpointing an LP at its owner host, and
restarting it at a remote host.

Upon receiving a join request from Hostj, avatar Ai

performs the following steps to checkpoint its dynamic
activities:

(1) Check if Hostj is already in the interest group of Ai. If
yes, return.

(2) Externalize Ai's physical information (e.g. global
position, or joint angles) to a stream and send it to
Hostj.

(3) Externalize Ai's dynamic behavior tree to a stream
and send it to Hostj.

(4) For each active PaT-Net in Ai's dynamic behavior
tree, externalize it to a stream and send it to Hostj.

(5) Set flags so that Hostj will be notified of every update
to Ai's shared event queue, and the drone LP (being
reconstructed using the procedure discussed later on)
running at Hostj will be synchronized with Ai's pilot
LP via the shared event queue.

After receiving all of the packets generated by these steps,
Hostj can restart a replica (i.e., a drone LP) of Ai's logical
process and synchronize its execution with that of the
pilot LP. Restarting an LP is functionally the reverse of
checkpointing it, however, care must be taken to handle
packets that arrive out of order. In order to process the
incoming packets in the correct order, we divide the life
cycle of a drone LP into five different stages, as shown in
Figure 2.

At each stage, only certain types of packets are allowed to
be processed. For example, at the joining stage, only the
physical information packet can be processed. If the
dynamic behavior tree packet or a PaT-Net internal state
packet arrives at this stage, it will be buffered for later
processing; only at the physical information restored stage
can the dynamic behavior tree packet be processed. If a
PaT-Net internal state packet is received while the
receiving LP is in this state, the packet will also be
buffered; and all the PaT-Net internal state packets can
only be processed after the dynamic behavior tree has
been reconstructed.

Figure 2: The life cycle of a drone LP

After all the PaT-Nets in the dynamic behavior tree are
successfully internalized, they will be added to the active
PaT-Net list in order to get advanced at the subsequent
simulation ticks, and the stage of the drone LP will be
changed to Active, which marks the completion of our
restarting procedure.

3.5 Lag mitigation

When a drone LP is first restarted, there is a lag between
its state and that of the pilot LP due to message delay.
This delay consists of the time it takes to generate,
deliver, and process messages containing checkpoint
streams between two logical processes. Figure 3
illustrates this lag, and a general way of mitigating it. For
simplicity, we assume that the local clocks of all logical
processes are perfectly synchronized, i.e., for all t, and any
two processes p and q, Cp(t) = Cq(t), where Cp(t) and Cq(t)
are the readings of the local clocks of processes p and q,
respectively, at real-time t (this constraint will be relaxed
later on). In Figure 3, the pilot LP checkpoints its
dynamic state at time t1, while the drone LP does not
finish restoring it until t2. Since the pilot LP proceeds
during the time period from t1 to t2, the drone LP will be
behind the pilot LP at time t2 when it is just restarted. To
mitigate such lag between the drone and pilot LPs, we
must somehow accelerate the execution of the drone LP
from t2 on, until both are synchronized (t3 in the figure),
and then resume normal execution for the drone LP.
Therefore, we have two questions to answer:

(1) How to accelerate the execution of the drone LP so
that it can catch up with the pilot LP?

(2) How does the drone LP know that it is in
synchronization with the pilot LP? In other words,
when to stop the acceleration session and resume the
normal execution for the drone LP?

Figure 3: Lag mitigation

To solve the first problem, we introduce a new paradigm
for distributed simulation: action level of detail (ALOD).
ALOD is analogous to geometric level of detail. A
number of PaT-Nets at different levels of detail are
provided to describe the same action for an avatar, and so
is a mechanism to switch back and forth among different
levels of detail on the fly. Assume during its normal
execution a logical process uses the PaT-Nets from the
highest level and with the greatest degree of detail for all
the actions in its dynamic behavior tree. When a drone LP
is just restarted, it will switch to a lower level that
consumes fewer resources, shorter time, and smaller
number of frames for each action due to its lower quality.
Then after it has been synchronized with the pilot LP at
the end of the acceleration session, the drone LP will
switch back to the highest level of detail and resume its
normal execution.

It may seem that we can simply utilize our
checkpoint/restart mechanism to switch back and forth
among different levels of detail. Unfortunately it is not
that straightforward, because the source and target LPs
here are not identical. That is, we checkpoint the dynamic
state of one LP, but try to restore the state of another LP
later on from this checkpoint. Therefore, to enable the
usage of our checkpoint/restart mechanism in the ALOD
transition procedure, we have to enforce the following
constraints on the relationships among behavior trees and
PaT-Nets at all possible levels of detail: for all avatars Ak,
and all i ≠ j,

• ALODi (the ith level of detail) and ALODj have
exactly the same structure for their static behavior
trees. That is, Ak has the same capabilities at both
ALODi and ALODj, and the subaction relationships
among the actions in both static behavior trees at
ALODi and ALODj are also the same. Therefore, at
any time a transition is made from ALODi to ALODj,
it is guaranteed that the dynamic behavior trees at
both levels of detail have exactly the same structure
too.

• Suppose PNi and PNj are two PaT-Nets used to
simulate the same action of avatar Ak at ALODi and
ALODj, respectively. Then there must be bi-
directional mappings between the set of local
variables of PNi and that of PNj, and between the set
of nodes of PNi and that of PNj. However, their
internal transitions, actions and conditions can be
defined differently in order to achieve different levels
of detail, but precaution must be taken to ensure that
the mapping between PNi and PNj is well defined so
that the dynamic state of PNj can be inferred from
that of PNi in a straightforward way.

To solve the second problem, we need to know the lag
between the drone LP and the pilot LP. The drone LP can
exploit this information to decide which lower level of
detail it will switch to, and how long it will stay at this
lower level of detail before switching back to the normal
level (i.e., the highest level). Assume local clocks of all
logical processes are perfectly synchronized. The drone
can compute the lag if, in Figure 3, the pilot timestamps
its messages containing checkpoint streams, and also
sends an extra value τ along with the checkpoint
information to the drone, where τ is an estimate of the
interval of time between two consecutive simulation ticks
at the pilot. Then, we have

where δ is the message delay, and η is the number of
frames by which the drone is behind the pilot at time t2.

Based on the value of η, the drone can decide whether or
not it will switch to a lower ALOD, and if yes, which
ALOD it will switch to in order to catch up with the pilot.
If η is very small, say only a couple of frames, the drone
may not bother to switch ALODs because the transition
itself would introduce a certain amount of overhead.
Otherwise the drone will select an ALOD to switch to
according to the value of η. Then finally, it is necessary to
calculate the length of the acceleration session. Suppose
the normal execution is at ALODi, and the drone decides
to go to ALODj to accelerate its execution, then we have

where ρ is the speedup of ALODj over ALODi. Hence,
the length of the acceleration session is

where η’ is the number of frames contained in the
acceleration session, and λ is the overhead introduced by
the transition procedure from one ALOD to another.
Therefore, the complete lag mitigation procedure works
just as follows: the drone switches to ALODj at time t2,
stays at ALODj for η’ number of frames, and then
switches back to ALODi to resume its normal execution.

Figure 4: Measuring the message delay when local clocks
are not perfectly synchronized

Now we relax the constraint about the local clocks by
only assuming that our distributed simulation system is
synchronous [22]. Under this relaxed constraint, the
message delay δ is not simply equal to t2 - t1 any more
because the local clocks of the pilot and the drone are not
perfectly synchronized. However, we can get rid of the
clock offset by timestamping the join request sent from
the drone to the pilot too, as shown in Figure 4. Hence,

,

,12

τ
δ

η

δ

=

−= tt

,
1

)2(
'

−
⋅⋅+

=
ρ

ρλη
η

,
j

i

ALODattimesimulationthe

ALODattimesimulationthe
=ρ

.
2

)()(1210 tttt −+−
= −δ

Note that t-1 and t2 are the readings of the drone's local
clock, and t0 and t1 are the readings of the pilot's local
clock.

4. Example System

Consider an avatar's behavior in a shoot-out video game.
There are four states associated with the avatar: standing,
shooting, dodging, and falling down. Initially, the avatar
is standing there with a pistol in his holster. When the
player of the avatar instructs him to shoot, the system will
change the avatar to the shooting state, at which point the
avatar will perform a sequence of actions including
drawing the pistol, aiming it at the target, and firing. In
either of those two states, if the avatar sees somebody
shooting at him, he will immediately transition to the
dodging state, trying to protect himself from the bullet
first (obviously he is not a brave cowboy). At any of those
three states, if a bullet's trajectory intersects any polygon
composing the avatar's body (e.g. the avatar did not see
the bullet coming, or he could not get out of the way in
time), the system will move to the falling down state, and
the avatar will fall down to the ground (he is not a strong
one either).

Figure 5: An example of a pilot LP, in both dead
reckoning and MELD. Note that the corresponding drone
LP in MELD is also identical to this

Figure 5 displays a finite-state machine representing this
simple model. The external events/inputs are shown as
solid arcs of the finite-state machine, and the internal
transitions are shown as dotted arcs in the figure. This
example has only one external event, which is that the
user inputs the shooting instruction; all the others are
internal transitions that take place when certain conditions
on the state set of the model are satisfied. For example, at

the standing state, if the intersection of a bullet's trajectory
and the avatar's body is detected, the system will switch to
the falling down state. Note that “intersected by a bullet”
and “see somebody shooting at you” are internal because
they are the result of outputs of other drone LPs or local
pilots. This graph is a collection of related behaviors, not
just an animation mechanism (e.g. posture graph [23]).

Note that in our framework both pilot and drone LPs are
identical because we duplicate both the static database
and the modeling processes at all of the clients. In
contrast, dead reckoning systems model the drones by
using simple extrapolation procedures to predict the
future state of an entity. Figure 6 displays the finite-state
machine representing the corresponding drone LP of that
shown in Figure 5. We can see that all of the transitions
are now external events, because the change of the state
(discontinuity in the state space) cannot be predicted
using simple extrapolation schemes.

In MELD, an event message is needed to be sent to the
drone to induce the state transition only when the player
inputs a shooting instruction. In the absence of such input,
no network communication is necessary, and no
discrepancies between pilot and drone exist. On the other
hand, in a dead reckoning system, every time there is a
state change, a state update message will be sent to the
drone to induce the state transition. The situation gets
even worse if we consider how poorly the simple
extrapolation schemes can predict within some states. For
example, pure position dead reckoning is obviously not
effective in modeling the complex shooting action, which
includes a sequence of subactions such as drawing the
pistol, aiming, and pulling the trigger.

Figure 6: An example of a drone LP in dead reckoning

This example illustrates several advantages our
framework has over dead reckoning. First, in the absence
of external events, discrepancies between pilot and drone
do not exist because we use per-class custom
extrapolation procedures (which can be simple copies of
the pilot's code) to model remote entities. Second,
network bandwidth requirements are reduced compared to
a dead reckoning system because, in our framework, state
update messages are sent only on external events/inputs.
Finally, MELD can model discontinuous and
unpredictable actions such as rich human behaviors
because, in our framework, the drones manipulate the
entire state (including internal state), not just the external
behaviors.

5. Conclusions

The contributions of our work can be summarized as
follows:

• Provides a new framework to implement distributed
virtual environments, which adopts the pilot/drone
paradigm and is thus efficient in terms of network
bandwidth, latency, and responsiveness.

• Extends dead reckoning by specifying per-object
extrapolation procedures. The extrapolation
procedure in the drone is identical to the simulation
specification in the pilot. MELD drones model the
entire state of each object of interest, not simply the
subset of states that represent external behavior.
Therefore MELD pilots need only send updates when
external events change the state of the pilot (reducing
communication needs in the common case). In the
absence of external events, discrepancies between
pilot and drone do not exist. MELD can therefore
model richer behaviors such as discontinuous and
unpredictable motions or human actions.

• Incorporates interest management to filter unneeded
data to further improve the system's scalability, and
addresses the dynamic joining problem introduced by
interest management using a checkpoint/restart
mechanism, which is based on the action hierarchy
and the parallel finite-state machine structure.

• Provides a straightforward yet efficient mechanism
for an agent to smoothly join an ongoing simulation.
This mechanism includes an extension of geometric
level of detail to action level of detail (ALOD).

• Extends the notion of uniprocessor time-critical
human animation [24]. The hierarchy of PaT-Nets we
described provides a convenient framework for the

multiple motion generators required by each human
model.

6. Acknowledgments

This research is partially supported by Office of Naval
Research K-5-55043/3916-1552793, NSF IIS99-00297,
and NASA NRA NAG 5-3990.

7. References

[1] Alois Ferscha and Satish K. Tripathi: "Parallel and
Distributed Simulation of Discrete Event Systems"
Technical Report CS-TR-3336, University of
Maryland, August 1994.

[2] Ozalp Babaoglu and Keith Marzullo: "Consistent
Global States of Distributed Systems: Fundamental
Concepts and Mechanisms" In Sape Mullender,
editor, Distributed Systems. ACM Press, 1993.

[3] Duncan C. Miller and Jack A. Thorpe: "SIMNET:
The Advent of Simulator Networking" Proceedings
of the IEEE, 83(8), August 1995.

[4] J. Mark Pullen and David C. Wood: "Networking
Technology and DIS" Proceedings of the IEEE,
83(8), August 1995.

[5] M. Macedonia, M. Zyda, D. Pratt, P. Barham and S.
Zeswitz: "NPSNET: A Network Software
Architecture for Large-Scale Virtual Environments"
Presence, 3(4): 265-287, Fall 1994.

[6] C. Carlsson and O. Hagsand: "DIVE — A Platform
for Multiuser Virtual Environments" Computers and
Graphics, 17(6): 663-669, 1993.

[7] Gurminder Singh, Luis Serra, Willie Png and Hern
Ng: "BrickNet: A Software Toolkit for Network-
Based Virtual Worlds" Presence: Teleoperators and
Virtual Environments, 3(1): 19-34, Winter 1994.

[8] Chris Greenhalgh and Steve Benford: "MASSIVE: a
Distributed Virtual Reality System Incorporating
Spatial Trading" Proceedings of the 15th
International Conference on Distributed Computing
Systems, pages 27-34, May 30-June 2 1995.

[9] Sandeep Kishan Singhal: "Effective Remote
Modeling in Large-Scale Distributed Simulation and
Visualization Environments" PhD thesis, Department
of Computer Science, Stanford University, 1996.

[10] Living Worlds, 1997.
http://www.vrml.org/WorkingGroups/living-
worlds/draft_2/index.htm.

[11] N. Badler, C. Phillips and B. Webber: "Simulating
Humans: Computer Graphics Animation and
Control" Oxford University Press, New York, 1993.

[12] John P. Granieri, Welton Becket, Barry D. Reich,
Jonathan Crabtree and Norman I. Badler: "Behavioral
Control for Real-Time Simulated Human Agents"

Symposium on Interactive 3D Graphics, ACM Press,
April 9-12, 1995.

[13] Agarwal, R. Bianchini, D. Chaiken, K. Johnson, D.
Kranz, J. Kubiatowicz, B. Lim, K. Mackenzie and D.
Yeung: "The MIT Alewife Machine: Architecture
and Performance" Proceedings of the 22nd Annual
International Symposium on Computer Architecture,
pages 2--13, June 1995.

[14] D. Lenoski, J. Laudon, K. Gharachorloo, W. Weber,
A. Gupta, J. Hennessy, M. Horowitz and M. Lam:
"The Stanford Dash Multiprocessor" IEEE Computer,
pages 63--79, March 1992.

[15] Kirk Johnson, M. Kaashoek and D. Wallach: "CRL:
High-Performance All-Software Distributed Shared
Memory" Proceedings of the 15th Symposium on
Operating Systems Principles, December 1995.

[16] Daniel E. Lenoski and Wolf-Dietrich Weber:
"Scalable Shared-Memory Multiprocessing" Morgan
Kaufmann Publishers, 1995.

[17] Adam J. Ferrari, Stephen J. Chapin and Andrew S.
Grimshaw: "Process Introspection: A heterogeneous
checkpoint/restart mechanism based on automatic
code modification" Technical Report CS-97-05,
Department of Computer Science, University of
Virginia, March 1997.

[18] Goopeel Chung, Prasun Dewan and Sadagopan
Rajaram: "Generic and Composable Latecomer
Accommodation Service for Centralized Shared
Systems" 1998 IFIP Working Conference on
Engineering for Human-Computer Interaction,
September 1998.

[19] N. Badler, R. Bindiganavale, J. Allbeck, W. Schuler,
L. Zhao, and M. Palmer: "Parameterized Action
Representation for virtual human agents" In J. Cassell
(ed.), Embodied Conversational Agents, MIT Press,
2000.

[20] Sandeep Singhal and Michael Zyda: "Networked
Virtual Environments: Design and Implementation"
Addison-Wesley Pub Co, 1999.

[21] John Hennessy and David Patterson: “Computer
Architecture: A Quantitative Approach, Second
Edition” Morgan Kaufmann Publishers, 1996.

[22] Vassos Hadzilacos and Sam Toueg: “Fault-Tolerant
Broadcasts and Related Problems” In Sape
Mullender, editor, Distributed Systems. ACM Press,
1993.

[23] J. P. Granieri, J. Crabtree, and N. I. Badler:
"Production and Playback of Human Figure Motion
for Visual Simulation" ACM Transactions on
Modeling and Computer Simulation, 5(3): 222-241,
July 1995.

[24] J. P. Granieri: "Time-Critical Human Figure
Animation for Interactive 3D Visual Simulation
Applications" PhD thesis, Department of Computer
& Information Science, University of Pennsylvania,
2000.

Author Biographies

JIANPING SHI is a PhD candidate in computer and
information science at the University of Pennsylvania. His
research interests include distributed virtual
environments, computer networking and computer
animation. Shi received a BE in computer science from
the University of Science and Technology of China in
1993; and an MS in computer science from the University
of Pennsylvania in 1996.

NORMAN I. BADLER is a Professor of Computer and
Information Science at the University of Pennsylvania
and has been on that faculty since 1974. Active in
computer graphics since 1968 with more than 180
technical papers, his research focuses on human figure
simulation and animation control. Badler received the
BA degree in Creative Studies Mathematics from the
University of California at Santa Barbara in 1970, the
MSc in Mathematics in 1971, and the Ph.D. in Computer
Science in 1975, both from the University of Toronto. He
is Co-Editor of the Journal Graphical Models and Image
Processing and also directs the Center for Human
Modeling and Simulation at UPenn.

MICHAEL B. GREENWALD is an Assistant Professor
in the department of Computer and Information Science,
at the University of Pennsylvania. His research interests
include synchronization in distributed systems, congestion
control in large-scale computer networks, and
performance measurement and analysis of computer
systems. Greenwald received an S.B. in Mathematics
from the Massachusetts Institute of Technology and a
PhD in Computer Science from Stanford University.

	Jianping Shi
	Keywords:
	DVE; simulation; pilot/drone; checkpoint/restart; action level of detail; dead reckoning; avatar

