
Production and Playback of Human Figure

Motion for Visual Simulation

John P� Granieri� Jonathan Crabtree� Norman I� Badler

University of Pennsylvania� Philadelphia

Abstract

We describe a system for o��line production and real�time playback of
motion for articulated human �gures in �D virtual environments� The key
notions are ��	 the logical storage of full�body motion in posture graphs

which provides a simple motion access method for playback
 and ��	 map�
ping the motions of higher DOF �gures to lower DOF �gures using slaving
to provide human models at several levels of detail
 both in geometry and
articulation
 for later playback� We present our system in the context of
a simple problem� Animating human �gures in a distributed simulation

using DIS protocols for communicating the human state information� We
also discuss several related techniques for real�time animation of articu�
lated �gures in visual simulation�

CR Categories and Subect Descriptors� I��� �Simulation and Modeling��
Applications� I���� �Three�Dimensional Graphics and Realism�� Anima�

tion� E�� �Data Structures�� graphs�

General Terms� Animation

Additional Key words and phrases� posture graphs
 real�time animation

multi�resolution motion
 visual simulation

�

�Authors� address� Center for Human Modeling and Simulation� University of Pennsylva�
nia� Philadelphia� PA ����	�
���� USA
This work was presented in an earlier form during the Virtual Reality Annual International
Symposium VRAIS� ���� March ����� ����� sponsored by the IEEE�
This work was supported in part by ARO DAAL������C����� including U�S� Army Research
Laboratory� Naval Training Systems Center N
��������M���	�� Sandia Labs AG�
��
� ARPA
AASERT DAAH�	��	�G���
�� DMSO DAAH�	��	�G��	��� ARPA DAMD����	�J�		�
� U�S�
Air Force DEPTH through Hughes Missile Systems F��
������C������ DMSO through the
University of Iowa� and NSF CISE CDA���������

� Introduction

The ability to render realistic motion is an essential part of many virtual envi�
ronment and visual simulation applications� Nowhere is this more true than in
virtual worlds containing simulated humans� Whether these human �gures rep�
resent the users� virtual personae �avatars� or computer�controlled characters�
people�s innate sensitivity as to what looks 	natural
 with respect to human
motion demands� at the very least� that moving characters be updated with
each new frame that the image generator produces�

We �rst discuss a topical problem in visual simulation which requires the
real�time rendering of realistic human motion� and then describe our system for
authoring the motion o��line� and playing back that motion in real time� We also
address some of the issues in real�time image generation of highly�articulated
�gures� as well as look at several other methods used for real�time animation�

� Human motion in DIS

The problem we are interested in is generating and displaying motion for human
�gures� in particular soldiers� in a distributed virtual environment� Parts of the
general problem and the need for representing simulated soldiers �referred to
as Dismounted Infantry� or DIs�� are covered in ��� ��� Although primarily
driven by military requirements today� the general technologies for projecting
real humans into� and representing simulated humans within� virtual environ�
ments� should be widely applicable in industry� entertainment and commerce in
the near future�

The Distributed Interactive Simulation �DIS� ��� protocol is used for de�ning
and communicating human state information in the distributed virtual environ�
ment�

A typical distributed simulation contains many simulation hosts� each con�
cerned with simulating a portion� or sub�set� of all the objects �or entities�
involved in a simulation �here� entity can refer to a human �gure� a vehicle� or
other part of the environment� and processes involved in the simulation�

DIS de�nes a protocol for heterogeneous simulation applications to inter�
operate� typically for the real�time simulation of battle�eld operations� It de�
�nes the packets of information �which are referred to as protocol data units
� PDUs� and the set of rules for exchanging the packets between simulation
applications� with the goal of achieving a shared and correlated synthetic envi�
ronment between the applications� For a good example of the software structure
inside a simulation application in this environment� the reader is referred to �����

A simple example con�guration of a distributed simulation is shown in Fig� ��
Simulator A runs a simulation of a soldier entity moving across a terrain �we are
not particularly interested in how that is done in this paper� but an example
system would be the SAFDI system ������ As the soldier moves in simulator

image generator

motion

network

PDUs

Simulator Simulator
A B

Figure �� A simple distributed simulation

A� his essential state information is propagated over time to simulator B via a
stream of Entity State PDUs� Simulator B monitors this stream and updates it�s
internal state information concerning the soldier� Simulator B also has an image
generator as a component� to visually display the simulated environment and
entities� In this paper� we are interested in that part of the system in simulator
B which is used to create animations of the soldier �gure in the image generator�
according to the stream of PDUs coming from simulator A� Note that simulator
B may be simulating a set of it�s own soldiers� whose state information would
be propagated back to simulator A� via the same mechanisms� The techniques
used in this paper for animating a human �gure in a DIS�based distributed
simulation introduce several issues relating to latency and coherence between
the soldier�s state information in simulator A and B� The interested reader is
referred to �����

The DIS protocol� at least the part relating to human entities� is in its early
stages of development� and fairly limited in what it can specify about a human
�gure ����� but is a good baseline to start with�

The information representing a human entity is currently de�ned by several
discrete enumerations in the appearance �eld of an Entity State Protocol Data
Unit �PDU� in the DIS protocol ����� The relevant information we are interested
in from the Entity State PDU is shown in Fig� � The human is always in
one of the four postures� along with a weapon state� The heading de�nes the
forward direction� Although there are enumerations for walking and crawling�
we use combinations� such as �posture�standing���velocity��� to be equivalent
to walking or running� Although the protocol allows for up to three weapons of
di�erent types on a soldier� we only modeled one� a ri�e�

If the human can be in any of n possible postures� there are potentially n�

transitions between the postures� Rather than create n� posture transitions� we
encode the postures and transitions into a posture graph ���� The graph de�nes
the motion path to traverse to move the human �gure from any one posture to

Field Value Units

Posture Standing
Kneeling
Prone
Dead n�a

Weapon Deployed
Firing n�a

Position Px� Py� Pz meters

Velocity Vx� Vy� Vz meters�second
Heading theta degrees

Figure � Essential human state information in a DIS Entity State PDU

another� These graphs are directed and may include cycles� It also provides the
logical structure for the run�time motion database�

The posture graph we are using is shown in Fig� �� partitioned into two sub�
graphs for facilitating discussion �the dotted lines around the Standing Deployed
and Prone Deployed nodes merely represent duplicate nodes in the diagram �
they are the same as the similarly labeled nodes with solid lines� attached via
the dotted line��

When the velocity of the human is zero� the possible transitions between
�xed postures are encoded in the right�hand posture graph of Fig� �� We use
the term 	�xed
 as it is descriptive of when this graph is used� typically the
soldier �gure transitions to one of the �xed postures� represented in a node� and
stays �xed in that posture for some time�

A few of the actual �xed postures are shown in Fig� ��
When the velocity of the �gure is non�zero� the possible transitions between

locomotion postures are shown in the left�hand posture graph of Fig� �� In this
graph� the nodes are static postures� but the �gure would never be in the posture
for more than one frame�

In the posture graph� the nodes represent postures� and the directed arcs
represent the animated full�body transitions� or movements� from posture to
posture� Each arc stores the intermediate postures� or motion� and has an
associated time for traversal� The time associated with the transition arc is
used to �nd the shortest path� in time� if more than one path exists between a
starting posture and a goal posture� The human �gure is always in a posture
de�ned in a node� or in one of the intermediate postures de�ned along the arcs�
A useful analogy for visualizing the graph is shown in Fig� �� Three strips of
�lm are pasted together� representing three arcs of the graph converging on a
node �the shared frame in the middle�� In the left sequence� the stick �gure is
raising its left arm �its looking at you�� In the upper sequence� it is raising its

Backwards
Walking

Backwards

Right foot
forward

Left foot
forward

Walking
Forwards

Walking
Forwards

Dead

Walking

Locomotion sub-graph

Standing

Deployed

Right foot
forward

Running Running

Left foot
forward

forward
Left foot

forward
Right foot

Standing

Kneeling

Deployed

Deployed

Deployed

Standing

Firing

Kneeling

Firing

Crawling

Firing

ProneProne

Crawling

Prone

Deployed

...

implicit arc
from every
node

Fixed sub-graph

Figure �� The posture graph� The dotted lines represent duplicated nodes� to
facilitate discussion� The dashed line partitions the graph into the left sub�
graph� refered to as the locomotion graph� and the right sub�graph� referred to
as the �xed posture graph

Figure �� Some of the postures a soldier can take in DIS

right foot� and in the right sequence� it is waving its left arm� The motion on
individual arcs of the graph is similar to the notion of animation tracks described
in ���� Here we are putting many of the tracks together� with common starting
and ending frames� to form the posture graph�

The system we built consists of two distinct parts� �� the o��line motion
data generator� and � the on�line real�time playback mechanism� running in a
high�performance IRIS Performer�based ���� image generator application�

� O��line motion production

Motion production involves three steps� �� creating postures and motion for
each node and arc in a posture graph� for one human model� � mapping the
resulting motion onto human models with lower degrees�of�freedom �DOF� and
lower resolution geometry� and �nally �� recording the results and storing in a
format for easy retrieval during playback�

��� Authoring the motion

The �rst step in producing motion for real�time playback is to create postures
representing the nodes in the posture graphs� as well as the corresponding mo�
tions between them� represented as the directed arcs in the graphs� We used a

arc node

Figure �� Nodes and arcs of a posture graph seen as strips of �lm

slightly modi�ed version of the Jack human modeling and animation system ��
for this purpose� Jack provides a nice constraint�based� goal�driven system
�relying heavily on inverse�kinematics and primitive 	behavioral
 controls� for
animating human �gures� as well as facilities for organizing motions for general
posture interpolation ���� It is important to note that the posture graphs pre�
sented in this paper di�er from the posture transition graphs presented in ���� In
the latter� the posture transition graphs are used to organize motion primitives
for general posture interpolation with collision avoidance� In the former appli�
cation �this paper� the posture graphs are a logical mechanism for organizing
a database of pre�recorded motion� and determining motion sequences as paths
between nodes of the graph� An underlying assumption of the posture graphs
is that the articulated human �gure�s motion is continuous� and therefore can
be organized into a connected graph�

Each directed transition in the �xed posture graph typically was produced
from �� to �� motion primitives �e�g� move arm� bend torso� etc�� Many of the
directed motions from a posture node A to a posture node B are simply run in
reverse to get the corresponding motion from posture B to posture A� In several
cases� the reverse motion was scripted explicitly for more natural results�

The human �gure can also move �either forwards or backwards� depending
on the di�erence between the heading and the direction of the velocity vector� by
either locomoting �if posture is standing� or crawling �if posture is prone�� The
locomotion posture graph transitions of Fig� � were generated by Hyeongseok
Ko�s walking system ����� Six strides for each type of walking transition were

human�high human�med human�low
polygons ��� ��� ��
rigid segments �� �� �
joints �� �� ��
DOFs ��� �� �
motion ��Hz ��Hz ��Hz

Figure �� The di�erent levels of detail for the human models

generated �forward walking� backward walking� running�� left and right starting
steps� left and right ending steps� and left and right cyclic steps� The crawling
animation was generated manually� and is based on two animations � one that
goes from the prone posture to the cyclic state� and one complete cyclic motion�
Note that only straight line locomotion of �xed stride is modeled� We are
currently working on extending the system to handle variable stride length and
curved path locomotion� as possible in the system of �����

��� Slaving

The second step in the production process is concerned with preparing the mo�
tion for the real�time playback system� We wish to have tens� and potentially
hundreds� of simulated humans in a virtual environment� This necessitates hav�
ing multiple level�of�detail �LOD� models� where the higher resolution models
can be rendered when close to the viewpoint� and lower resolution models can be
used when farther away �see Section ��� for the reasoning�� We reduce the level
of detail in the geometry and articulation by creating lower�resolution �both in
geometry and articulation� human �gures� with the characteristics listed in the
table of Fig� ��

All the motions and postures of the �rst step are authored on a �relatively�
high resolution human body model which includes fully articulated hands and
spine� This model is referred to as 	human�high
 in the above table� We
manually created the two lower�resolution models� human�med and human�
low� Because of the di�erence in internal joint structure between human�high
and the lower LOD models� their motions cannot be controlled by the available
human control routines in Jack �which all make assumptions about the structure
of the human �gure � they assume a structure similar to human�high�� Instead
of controlling their motion directly� we use the motion scripts generated in the
�rst step to control the motion of a human�high� and then map the motion onto
the lower resolution human�med and human�low� We call this process slaving�
because the high resolution �gure acts as the master� and the low resolution
�gure acts as the slave�

Figure �� human�high and human�med models during slaving� human�high is
the master� Upper window is the skeletal articulation� Models are o�set for
illustrative purposes�

Even though the di�erent LOD human models have di�erent internal joint
structures and segment shapes� their gross dimensions �e�g�� length of arms�
torso� etc�� are similar� The slaving process consists of interpolating the mo�
tions for the full human �gure� generating all the in�between frames� and si�
multaneously having a lower LOD human model �human�med or human�low�
slaved� and then saving the in�between frames for the soldier� We will describe
the process used for slaving from human�high to human�med� the case with
human�low is similar�

For each frame of an animation� we �rst compute the position and joint
angles for human�high� Then� an approximation of the joint angles for human�
med are computed� This is straightforward� as certain joints are the same �the
elbow� for example� is only one DOF on both human models�� and others can

be approximated by linear combinations �for example� the �� DOFs of the spine
on human�high can be summed and mapped directly onto the � DOF torso of
human�med�� This gives a good �rst approximationof the posture mapping� and
provides an initial con�guration for the �nal mapping� For the resulting motion
of human�med to look correct� we need to have certain landmark sites of the two
bodies match exactly �the hands must be on the ri�e�� The �nal mapping step
involves solving a set of constraints �point�to�point and orientation�� to bring
the key landmark sites into alignment� The constraints are solved using an
iterative inverse kinematics routine ��� to move the body parts into alignment�

Because of di�erences in geometry between the master and slave� in general
we cannot expect all the landmark sites to match exactly� For the problem
domain of this paper� animating a soldier �gure from a stream of DIS Entity
State PDUs� the hands are always holding a ri�e� so matching the hand positions
accurately from the master is very important �otherwise the slave�s hands may
penetrate the ri�e�� Using a priority scheme in evaluating constraints� we assign
higher priority to the hand�matching constraints than others� to account for this
fact� If the slaving procedure cannot �t the master and slave within a certain
tolerance� it will generate a warning for the animator�

��� Recording

The �nal step in the motion production process is to record the resulting motions
of the human �gures� The recorded motion for one transition is referred to as
a channel set �where each joint or �gure position is referred to as a channel�
the channel is indexed by time�� Again� the channel set is analogous to an
animation track in ���� For each LOD human �gure� a homogeneous transform
is recorded� representing �gure position relative to a �xed point� and for each
joint� the joint angles are recorded �one angle per DOF�� Also for joints� the
composite joint transform is pre�computed and stored as a �x� matrix �which
can be plugged directly into the parenting hierarchy of the visual database of
the run�time system�� Each channel set has an associated transition time� The
channels of human�high are interpolated and stored at ��Hz� human�med at
��Hz� and human�low at ��Hz� These rates correspond to the motion sampling
during playback �see below��

� Real�time motion playback

The real�time playback functions are packaged as a single linkable library� in�
tended to be embedded in a host IRIS Performer�based visual simulation ap�
plication� The library loads the posture graphs shown in Fig� �� as well as
the associated channel set motion �les� Only one set of motions are loaded� and
shared amongst any number of soldier �gures being managed by the library� The
articulated soldier �gures themselves are loaded into the Performer run�time vi�

visual database

DRAW
process

process

APP

process

MOTION

Network

motion database

CULL
process

edits

DIS PDUs

PDU
info

motion frames

Figure �� Overview of multi�processing framework for run�time system� Circles
are processes� rounded�squares are data structures� and arrows are data �ows

sual database� The library runs as a separate process� the motion process�
serving motion data to the app process �the app� cull and draw process are
de�ned in the Performer multiprocessing framework� and form a software ren�
dering pipeline� which increases rendering throughput� and also latency�� See
Fig� � for a schematic overview of the runtime system� The app process is the
main controlling process� and would be where any simulation processing would
occur� For a good description of what goes on in the app process of a typical
DIS�based simulation application� the reader is referred to �����

An update function in the app process is provided which maps joint angle
values into the joint transforms of the soldier �gures in the Performer visual
database�

The app process receives PDUs containing state information for remotely�
simulated soldier �gures� It extracts the essential information �as shown in
Fig� � and sends this as requests to the motion process� The motion process
translates these requests into playbacks of channel sets �the traversal of arcs of
the posture graphs�� and continuously sends joint angle packets back to the app
process� The app process then performs the necessary edits to the articulation
matrices in the visual database� and then initiates a frame to be rendered� The
cull and draw processes form the software rendering pipeline� where the cull

culls the visual database to a viewing frustum� and then passes this modi�ed
database to the draw process� which e�ciently feeds it to the head of the
hardware graphics rendering pipeline� which then renders the �nal image to the
frame bu�er�

In the case of a �xed posture change �a motion between any two nodes in
the �xed posture graph of Figure ��� the system will �nd the shortest path �as
de�ned by traversal time� between the current and goal postures in the graph�
and execute the sequence of transitions� For example� if the posture graph is
currently at Standing Deployed� and Prone Firing is requested� it will transition
from Stand Deployed to Crawl to Prone Deployed� and �nally to Prone Firing�
The Dead posture node in Fig� � is special in that there is an implicit arc from
every node in the graph to this node� The motion along these implicit arcs is
not recorded and stored� as along all other arcs� but generated on the �y via
simple joint interpolations�

A posture change is made with a node of the �xed graph as a destination
only upon receipt of a DIS Entity State PDU indicating that the agent is in
such a posture� In the absence of further information� the agent remains in
that posture� Conversely� when a posture change is made with a node of the lo�
comotion graph as the destination� something that will occur if a PDU indicates
the agent now has a non�zero speed� the agent does not remain in that posture
once it is reached� absence of further information in this case means that the
agent�s speed is still nonzero� and hence the agent must take another step� or
crawl another meter forwards� or whatever is appropriate for the current mode
of locomotion� This continued motion requires that another posture change be
made immediately�

A simple �nite�state controller manages the posture transitions within the
locomotion graph� For instance� the transition from Standing Deployed toWalk�
ing Forwards �left foot forward� is taken whenever the agent�s speed becomes
non�zero and the agent�s heading vector agrees with the velocity vector� On the
other hand� if the vectors are not pointing in approximately the same direction�
a transition is instead made to one of the Walking Backwards states� While
the agent�s speed remains nonzero �as it is assumed to in the absence of PDU
updates�� the controller continually makes transitions back and forth between�
for example� the Walking Forwards �left foot forward� and Walking Forwards
�right foot forward� nodes� This cycle of transitions creates a smooth walking
motion by concatenating successive left and right steps� Note that since we cur�
rently have no cycles of more than two nodes� �nding the shortest path between
postures in a cycle is a trivial matter� Crawling is handled similarly� though it
is a simpler case� there is no need for separate 	left foot forward
 and 	right
foot forward
 states�

The system samples all the pre�recorded motion using elapsed time� so it is
guaranteed to always play back in real time� For a second posture transition
recorded at ��fps� and a current frame rate of the image generator of �fps� the
playback system would play frames �� �� �� ������� It recomputes the elapsed

transition time on every frame� in case the frame rate of the image generator is
not uniform�

The motion frame update packets sent from the motion process back to the
app process are packaged to include only those joint angles which have changed
from the last update� This is one way we can minimize joint angle updates�
and take advantage of frame�to�frame coherence in the stored motions �� A full
update �all joint angles and �gure positions� is about ��� bytes�

��� Motion level�of�detail

It is recognized that maintaining a constant frame rate is essential to the be�
lievability of a simulation� even if it means accepting an update speed bounded
by the most complex scene to be rendered� Automatic geometric level�of�detail
selection� such as that supported by the IRIS Performer toolkit� is a well�known
technique for dynamically responding to graphics load by selecting the version
of a model most appropriate to the current viewing context ��� �� ���

The LOD selection within the visual database seeks to minimize polygon �ow
to the rendering pipeline �both in the software CULL and DRAW components
of the software pipeline� as well as to the transformation engines within the
hardware pipeline��

Given our representation� which enforces the separation of geometry and
motion� it is possible to expand level of detail selection into the temporal do�
main� through motion level�of�detail selection� In addition to reducing poly�
gon �ow� via selecting lower LOD geometric models� we are also selecting
lower LOD articulation models� with fewer articulation matrices� as well as
sampling motion at lower frequencies� This reduces the �ow of motion up�
dates �joint angles and matrices� to the articulation matrices in the visual
database� The models we are using are listed in Fig� ��� For example� a
motion sequence lasting � second� rendered on human�high� would generate
��� joints��� second���� updates�sec� � ���� jointupdates� On human�low�
the same motion sequence generates ��� joints��� second���� updates�sec� �
��� jointupdates�

Techniques which employ data represented at various resolutions are some�
times referred to as multi�resolution ormulti�scale techniques or analyses� When
working with images� the resolution or scale factor is usually two �i�e� an image
would be represented at ��x��� ��x��� ��x��� etc�� and when working with
successive levels�of�detail in geometry� the scale factor is an order�of�magnitude
�i�e� a geometric model at ���� triangles� ��� triangles� and �� triangles�� We
chose a scale factor of ���Hz� ��Hz� ��Hz� between our recorded motions�
There wasn�t a tremendous amount of deep thought behind the choice� but it
does seem to work well for the current application� A more rigorous selection

�An initial implementation of the playback library was run as an independent process�
on another machine� from the host image generator� and joint angle packets were sent over
TCP�IP stream sockets� hence the desire to minimize net tra�c�

of frequencies� taking in to account rules of sampling� should be done in the
future�

In the playback system� we simultaneously transition to a di�erent geometric
representation with a simpler articulation structure� and switch between stored
motions for each articulation model� We gain performance in the image genera�
tor� while consuming more run�time storage space for the motions� Our metric
for LOD selection is simply the distance to the virtual camera� This appears to
work satisfactorily for our current application domain� but further evaluation of
the technique� as well as more sophisticated selection metrics �e�g� the metrics
described in ��� ��� need to be explored�

� Example implementations and uses

The real�time playback system has been used in two DIS�based applications to
create motion for simulated soldiers in virtual environments�

The Team Tactical Engagement Simulator ��� projects one or more soldiers
into a virtual environment� where they may engage hostile forces and practice
coordinated team activities� See Fig� � for a sample view into the training
environment� The soldier stands in front of a large projection screen� which
is his view into the environment� He has a sensor on his head and one on his
weapon� He locomotes through the environment by stepping on a resistive pad
and controls direction of movement and �eld of gaze by turning his head� The
soldier may also move o� the movement pad� and the view frustum is updated
accordingly based on his eye position �head�coupled display�� This allows the
soldier� for example� to crouch down to see under a parked vehicle� or to peek
around the corner of a building while still a�ording himself the protection of the
building� TTES also creates the necessary DIS Entity State PDUs to represent
the real soldier �mapping from sensor values into the small set of postures in the
Entity State PDU�� and sends them out over the net to other TTES stations
that are participating in the exercise� Currently� TTES uses an extension to
the system as described in this paper� Initially� they used authored motions for
the posture graphs� They currently use motion�capture data� from work done
by Boston Dynamics Inc� ���� �joint angle motion from real soldiers moving
through the postures� captured via attached magnetic or optical sensors� and
then cleaned up with post�processing �lters��

The playback system is also used in a version of the NPSNET�IV ��� system�
for generating motion of SIMNET� and DIS�controlled soldier entities� as well
as the motions for battle�eld medics�

Motion level�of�detail selection is of particular relevance to the example
projects described above� because in the situation where a hostile agent en�
ters the �eld of view of a soldier �one of the real human participants� and brings
his weapon into the deployed position� the hostile�s actions will probably be
noted only in the participant�s peripheral vision� It is well�known that humans

Figure �� A View of Battle Town with several soldiers in di�erent postures

can detect the presence of motion in their peripheral vision very easily� but
that resolution of detail is very low� When head�tracking data is available or a
head�mounted display is in use� it is possible to designate areas of the viewing
frustum as peripheral and reduce geometric and motion detail accordingly �not
just based on linear distance to the camera� but angular o�sets also�� In the
TTES environment this 	focus of attention
 information can be obtained from
the aim of the real soldier�s ri�e when it is in the raised position� as the real
soldier will almost certainly be sighting in this situation�

The system has also been integrated with a behavioral simulation which can
navigate a pedestrian agent about a simple urban environment� while respect�
ing sidewalks� crosswalks� streetlights� and other pedestrians� The behavioral
simulation is decoupled from the motion generation� it simply schedules steps
for the pedestrian� and the motion system described here creates a smoothly
locomoting human �gure ����

� Comparison of production	playback methods

One of the most obvious criteria for evaluating a given motion representation is
size� there is a clear progression in the methods used to animate humans �or any
entity whose geometric representation varies over time� based on the amount of
space required to store a given motion� We look at three methods�

The �rst method� requiring the most storage� involves generating and ren�
dering the movements of characters in an o��line fashion� Frame�by�frame� a
sequence of two�dimensional snapshots is captured and saved for later play�
back� The image generator then displays the bit�mapped frames in sequence�

possibly as texture maps on simple rectangular polygons� Hardware support
for texture mapping and alpha blending �for transparent background areas in
the texture bitmaps� make this an attractive and fast playback scheme� Fur�
thermore� mip�mapping takes care of level�of�detail management that must be
programmed explicitly in other representations� Since the stored images are two�
dimensional� it is frequently the case that artists will draw each frame by hand�
In fact� this is precisely the approach utilized in most video games for many
years� It is clear that very little computation is required at run�time� and that
altering the motions incurs a high cost and cannot be done in real time� In fact�
modifying almost any parameter except playback speed must be done o��line�
and even playback speed adjustments are limited by the recording frequency�
However� one real problem with using two�dimensional recording for playback
in a three�dimensional scene is that non�symmetric characters will require the
generation of several or many sets of frames� one for each possible viewing angle�
increasing storage requirements still further� The authors of the popular game
DOOM ���� record eight views of each animated character �for each frame� by
digitizing pictures of movable models� and at run time the appropriate frames
for the current viewing angle �approximately� are pasted onto a polygon� These
eight views give a limited number of realistic viewing angles� it is impossible� for
instance� to view a DOOM creature from directly above or below� Interestingly
enough� an article on plans for a follow�up to DOOM reveals that the authors
intend to switch to one of the two remaining representations we describe here�

Unlike the previous games� the graphic representation of characters
will be polygon models with very coarse texture mapping� This will
make it hard to emulate natural locomotion� so they�ll stay away
from creating too many biped characters���

Making the move to the second method involves a relatively slight concep�
tual change� namely taking ��dimensional snapshots instead of �dimensional
snapshots� This means storing each frame of a �gure�s motion as a full three�
dimensional model� Doing so obviates the need for multiple data sets corre�
sponding to multiple viewing positions and shifts slightly more of the compu�
tational burden over to the image generator� Instead of drawing pixels on a
polygon the run�time system sends three�dimensional polygonal information to
the graphics subsystem� It is still an in�exible approach because the �gures are
stored as solid 	lumps
 of geometry �albeit textured�� from which it is extremely
di�cult� if not impossible� to extract the articulated parts of which the origi�
nal model is comprised� Modi�cations must still be e�ected o��line� although
rendering is done in real time� This is essentially the approach used by the
SIMNET image generators to display soldiers on a simulated battle�eld ����

The �nal method is the one implemented by the system described in this
paper� in which we record not the results of the motions� but the motions
themselves� We store a single articulated three�dimensional model of each

agent� and from frame to frame record only the joint angles between articulated
segments� Modern rendering toolkits such as the IRIS Performer system used
in this project increasingly allow support for storing coordinate transformations
within a visual database� with relatively little cost associated with updating the
transformation matrices in real time� As a result of adopting this approach�
storage space is reduced and it is far easier to accurately perform interpolation
between key frames because articulation information is not lost during motion
recording� It also allows for virtual agents with some motions replayed strictly
	as�is
 and some motions which may be modi�ed or generated entirely in real
time� For instance� the slight changes in shoulder and elbow joint orientation
required to alter the aim of a weapon held by a virtual soldier could be generated
on demand�

We believe that the smallest representation presented in our list� the third
method� actually retains the most useful information and a�ords the most �ex�
ibility� while placing an acceptable amount of additional computational burden
on the run�time display system�

 Extensions � future work

We are currently exploring several extensions to the techniques described above�
to add more expressive power to the tool bag of the real�time animator�

Key�framing and interpolation The use of the pre�recorded motions in the
above posture graphs trades time for space� We do not compute joint
angles on the �y� but merely sample stored motions� As the motions
become more complex� it becomes very time�consuming to produce all the
motions in the o��line phase� so we only produce key frames in a transition�
every � to �� frames� and then use simple interpolations to generate the
inbetweens during real�time playback� This technique can�t be extended
much beyond that� as full�body human motion does not interpolate well
beyond that many frames� This also reduces the amount of stored motions
by a factor proportional to the spacing of the key frames� but increases
computation time when a playback frame lands between two key frames�
Also� replacing the recorded motion in some transition arcs with purely
procedural motion generators can further reduce storage� For example� a
sub�graph of a posture graph which only contains a few joints moving �a
left�handed wave� can easily be replaced with a simple function of time
which returns the correct shoulder� elbow� and wrist angles during di�erent
phases of the transition�

Partitioning full�body motion In the posture graphs described previously�
each motion transition included all the joint angles for the whole body� A
technique to reduce motion storage� while increasing playback �exibility�

is to partition the body into several regions� and record motion inde�
pendently for each region� For example� the lower body can be treated
separately during locomotion� and the upper body can have a variety of
di�erent animations played on it� Also� to support the mapping of motion
from partially sensed real humans �i�e� sensors on the hands� onto the
animated human �gures� we want to animate the lower body and torso
separately� then place the hands and arms using a fast inverse kinematics
solution�

Articulation level�of�detail The various LOD models we used for the hu�
man �gures were all built manually� Techniques for synthesizing lower
LOD geometric models are known� but they don�t apply to building lower
articulation LOD models� Some techniques for automatically synthesizing
the lower articulation skeletal models� given a high resolution skeleton and
a set of motions to render� would be very useful�

Other dynamic properties A limitation is currently imposed by the fact that
the segments of our articulated �gures must be rigid� However� this is more
an implementation detail than a conceptual problem� since with su�cient
computational power in the run�time system real�time segment deforma�
tion will become possible� In general it seems likely that the limiting factor
in visual simulation systems will continue to be the speed at which the
graphics subsystem can actually render geometry� The adoption of coarse�
grained multiprocessing techniques ���� will allow such operations as rigid
or elastic body deformations to be carried out in parallel as another part
of the rendering pipeline� The bottom line is that greater realism in VR
environments will not be obtained by pouring o��line CPU time and run�
time space into rendering and recording characters in exacting detail� the
visual e�ect of even the most perfectly animated �gure is signi�cantly
reduced once the viewer recognizes that its movements are exactly the
same each and every time it does something� We seek to capitalize on the
intrinsically dynamic nature of interacting with and in a virtual world by
recording less information and allowing motions to be modi�ed on the �y
to match the context in which they are replayed� Beginning e�orts in this
direction may be found in �����

Real�time animation can be viewed as one of many 	enabling
 technolo�
gies for simulations� An animation� or visual simulation� of the activities and
processes occuring in a simulation multiplies the e�ectiveness and communica�
tive ability of the simulation� making its results more intuitively understood by
non�expert viewers and participants� Unfortunately� when coupling real�time
�D animation to a simulation� one requires the presence of expensive render�
ing hardware in the simulation computer for generating the visuals� One also
needs a high�performance general purpose processor� used for executing the sim�
ulation application itself� and for 	feeding
 the rendering hardware� Advances

Inverse
Kinematics

1/30 sec

Dynamics

Table lookup (method of this paper)

Forward
Kinematics (interpolation schemes)

R
un

-t
im

e
ge

ne
ra

lit
y

Time to compute 1 frame of motion

Figure ��� Intuitive relation between compute time and run�time generality for
some motion generation techniques

in rendering hardware� as well as its general availability in low�cost PC plat�
forms in the near future� may ameliorate this problem� Fast� � D animation
techniques� such as those mentioned previously in discussing DOOM� have also
found their way into most types of consumer interactive visual simulation ap�
plications �a�k�a� video games�� This has heightened expectations� for quality
animation on inexpensive platforms� from the users of these systems�

The general availability of mature simulation toolkits and libraries �e�g� SIM�
SCRIPT� Stella� and SimPack�� on a variety of platforms� has greatly increased
the use of simulation� However� there is a lack of such widely available� and
used� toolkits for real�time animation� However� with the appearance of such
toolkits as IRIS Performer� and OpenGL �an open �D graphics rendering API�
available on many platforms�� it should become less burdensome in the future
to add �D animation to one�s simulations�

� Conclusions

We have described a system for o��line production and on�line playback of
human �gure motion for �D visual simulation� The techniques employed are
straightforward� and build upon several well known software systems and ca�
pabilities� As the number of possible states for a simulated human increases�
the posture graphs will need to be replaced with a more procedural approach
for changing posture� For applications built today on current workstations� the
current technique is a balance between performance and realism�

Figure �� shows a very coarse� and albeit intuitive� plot of the relation be�
tween run�time generality and computation time for several motion generation
techniques� By 	run�time generality
� we mean the notion of how general the
types of motion are which can be generated by the algorithms� For example�
table�lookup is very fast at run�time� but not very general� It can only generate
the motion which has been recorded in its tables �of course� many things can
be recorded and placed in the tables� but they are di�cult to modify or 	gen�
eralize
 at run�time�� On the other hand� a dynamics �or physical� simulation�
with proper collision detection and response� can generate very realistic motion�
under many di�erent run�time conditions� so we deem it to be more 	general
�
But a full physical simulation is very expensive and time�consuming to com�
pute� and some of the best for animation purposes are still at least an order�of�
magnitude slower than real�time� for relatively simple environments ���� For
realistic agent animation in virtual environments� the research community will
be trying to push this curve to the left and up� making the more powerful tech�
niques run faster� The curve has been drifting to the left in recent years mainly
on the progress made in rendering hardware and overall workstation compute
performance� Interestingly� when an author�s motion generator can compute �
frame of motion in less than ����th of a second� the author will usually claim it
to be a 	real�time
 motion generator� Of course� our colleagues in the real�time
community will start coughing very loudly at this� It is better to state that it
is a 	fast
 motion generator� and leave it at that� The notions of 	real�time

usually connote the presence of a scheduler of some sort� and some course of
action in the event of a failure to execute by a speci�ed deadline�

We chose humans for animating� as they are what we are interested in�
but the techniques described in this paper could be applied to other complex
articulated �gures� whose states can be characterized by postures� and whose
motions between postures can be organized into posture graphs�

References

��� Norman I� Badler� Rama Bindiganavale� John Granieri� Susanna Wei� and
Xinmin Zhao� Posture Interpolation with Collision Avoidance� In Proceed�
ings of Computer Animation ���� Geneva� Switzerland� May ����� IEEE
Computer Society Press�

�� Norman I� Badler� Cary B� Phillips� and Bonnie L� Webber� Simulating
Humans� Computer Graphics� Animation� and Control� Oxford University
Press� June �����

��� Jay Banchero� Results to be published on system for dismounted infantry
motion in a SIMNET image generator� Topographical Engineering Center�
US Army�

��� Edwin H� Blake� A Metric for Computing Adaptive Detail in Animated
Scenes using Object�Oriented Programming� In G� Marechal� editor� Eu�
rographics �	
� pages ������� North�Holland� August �����

��� David R� Pratt et al� Insertion of an Articulated Human into a Net�
worked Virtual Environment� In Proceedings of the ���� AI� Simulation
and Planning in High Autonomy Systems Conference� University of Florida�
Gainesville� ��� December �����

��� Paul A� Fishwick� Simulation Model Design and Execution� Prentice Hall�
����� p� ��������

��� Thomas A� Funkhouser and Carlo H� S!equin� Adaptive Display Algorithm
for Interactive Frame Rates During Visualization of Complex Virtual En�
vironments� In James T� Kajiya� editor� Computer Graphics �SIGGRAPH
�� Proceedings�� volume �� pages ������ August �����

��� John P� Granieri� Welton Becket� Barry Reich� Jonathan Crabtree� and
Norman I� Badler� Behavioral Control for Real�Time Simulated Human
Agents� In ACM SIGGRAPH ���� Symposium on Interactive D Graphics�
pages �������� �����

��� Institute for Simulation and Training� Orlando� FL� Standard for Dis�
tributed Interactive Simulation � Application Protocols �v ���� �th draft�
revised�� �����

���� Institute for Simulation and Training� Orlando� FL� Enumeration and Bit�
encoded Values for use with IEEE ��
	�� DIS � ����� ist�cr������ edition�
�����

���� Hyeongseok Ko� Kinematic and Dynamic Techniques for Analyzing� Pre�
dicting� and Animating Human Locomotion� PhD thesis� University of
Pennsylvania� �����

��� Brian Mirtich and John Canny� Impulse�based Simulation of Rigid Bodies�
In ACM SIGGRAPH ���� Symposium on Interactive D Graphics� pages
�������� �����

���� John Morrison� The VR�Link�tm� Networked Virtual Environment Soft�
ware Infrastructure� Presence� ����������� Spring �����

���� Ken Perlin� Danse interactif� SIGGRAPH Video Review� Vol� ��� �����

���� Marc Raibert� Human Animation and Biomechanics� In Proceedings of The
First Workshop on Simulation and Interaction in Virtual Environments�
page ��� University of Iowa� Iowa City� IA� July ����� ����� �and also
private communication��

���� Douglas A� Reece� Extending DIS for Individual Combatants� In Proceed�
ings of the ���� AI� Simulation and Planning in High Autonomy Systems
Conference� University of Florida� Gainesville� ��� December �����

���� Douglas A� Reece� Soldier Agents in a Virtual Urban Battle�eld� In Pro�
ceedings of The First Workshop on Simulation and Interaction in Virtual
Environments� pages ������ University of Iowa� Iowa City� July �����
����� �and additional private communication��

���� John Rohlf and James Helman� IRIS Performer� A High Performance
Multiprocessing Toolkit for Real�Time �D Graphics� In Andrew Glass�
ner� editor� Proceedings of SIGGRAPH ��� �Orlando� Florida� July ������
������ pages �������� July �����

���� Neil J� Rubenking� The DOOM Phenomenon� PC Magazine� �����������
���� �����

��� Greg Turk� Re�tiling Polygonal Surfaces� In Edwin E� Catmull� editor�
Computer Graphics �SIGGRAPH ��� Proceedings�� volume �� pages ���
��� July ����

��� Frank Wysocki and David Fowlkes� Team Target Engagement Simula�
tor Advanced Technology Demonstration� In Proceedings of the Individ�
ual Combatant Modeling and Simulation Symposium� pages �������� �����
February ����� Held in Fort Benning� GA�

�� Je�rey Adam Young� Doom�s Day Afternoon� Computer Player� pages
���� October �����

��� Jianmin Zhao and Norman I� Badler� Inverse kinematics positioning using
nonlinear programming for highly articulated �gures� ACM Transactions
on Graphics� to appear� �����

