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Abstract

We describe a system for o��line production and real�time playback of
motion for articulated human �gures in �D virtual environments� The key
notions are ��	 the logical storage of full�body motion in posture graphs

which provides a simple motion access method for playback
 and ��	 map�
ping the motions of higher DOF �gures to lower DOF �gures using slaving
to provide human models at several levels of detail
 both in geometry and
articulation
 for later playback� We present our system in the context of
a simple problem� Animating human �gures in a distributed simulation

using DIS protocols for communicating the human state information� We
also discuss several related techniques for real�time animation of articu�
lated �gures in visual simulation�
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� Introduction

The ability to render realistic motion is an essential part of many virtual envi�
ronment and visual simulation applications� Nowhere is this more true than in
virtual worlds containing simulated humans� Whether these human �gures rep�
resent the users� virtual personae �avatars� or computer�controlled characters�
people�s innate sensitivity as to what looks 	natural
 with respect to human
motion demands� at the very least� that moving characters be updated with
each new frame that the image generator produces�

We �rst discuss a topical problem in visual simulation which requires the
real�time rendering of realistic human motion� and then describe our system for
authoring the motion o��line� and playing back that motion in real time� We also
address some of the issues in real�time image generation of highly�articulated
�gures� as well as look at several other methods used for real�time animation�

� Human motion in DIS

The problem we are interested in is generating and displaying motion for human
�gures� in particular soldiers� in a distributed virtual environment� Parts of the
general problem and the need for representing simulated soldiers �referred to
as Dismounted Infantry� or DIs�� are covered in ��� ��� Although primarily
driven by military requirements today� the general technologies for projecting
real humans into� and representing simulated humans within� virtual environ�
ments� should be widely applicable in industry� entertainment and commerce in
the near future�

The Distributed Interactive Simulation �DIS� ��� protocol is used for de�ning
and communicating human state information in the distributed virtual environ�
ment�

A typical distributed simulation contains many simulation hosts� each con�
cerned with simulating a portion� or sub�set� of all the objects �or entities�
involved in a simulation �here� entity can refer to a human �gure� a vehicle� or
other part of the environment� and processes involved in the simulation�

DIS de�nes a protocol for heterogeneous simulation applications to inter�
operate� typically for the real�time simulation of battle�eld operations� It de�
�nes the packets of information �which are referred to as protocol data units
� PDUs� and the set of rules for exchanging the packets between simulation
applications� with the goal of achieving a shared and correlated synthetic envi�
ronment between the applications� For a good example of the software structure
inside a simulation application in this environment� the reader is referred to �����

A simple example con�guration of a distributed simulation is shown in Fig� ��
Simulator A runs a simulation of a soldier entity moving across a terrain �we are
not particularly interested in how that is done in this paper� but an example
system would be the SAFDI system ������ As the soldier moves in simulator
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Figure �� A simple distributed simulation

A� his essential state information is propagated over time to simulator B via a
stream of Entity State PDUs� Simulator B monitors this stream and updates it�s
internal state information concerning the soldier� Simulator B also has an image
generator as a component� to visually display the simulated environment and
entities� In this paper� we are interested in that part of the system in simulator
B which is used to create animations of the soldier �gure in the image generator�
according to the stream of PDUs coming from simulator A� Note that simulator
B may be simulating a set of it�s own soldiers� whose state information would
be propagated back to simulator A� via the same mechanisms� The techniques
used in this paper for animating a human �gure in a DIS�based distributed
simulation introduce several issues relating to latency and coherence between
the soldier�s state information in simulator A and B� The interested reader is
referred to �����

The DIS protocol� at least the part relating to human entities� is in its early
stages of development� and fairly limited in what it can specify about a human
�gure ����� but is a good baseline to start with�

The information representing a human entity is currently de�ned by several
discrete enumerations in the appearance �eld of an Entity State Protocol Data
Unit �PDU� in the DIS protocol ����� The relevant information we are interested
in from the Entity State PDU is shown in Fig� � The human is always in
one of the four postures� along with a weapon state� The heading de�nes the
forward direction� Although there are enumerations for walking and crawling�
we use combinations� such as �posture�standing���velocity��� to be equivalent
to walking or running� Although the protocol allows for up to three weapons of
di�erent types on a soldier� we only modeled one� a ri�e�

If the human can be in any of n possible postures� there are potentially n�

transitions between the postures� Rather than create n� posture transitions� we
encode the postures and transitions into a posture graph ���� The graph de�nes
the motion path to traverse to move the human �gure from any one posture to



Field Value Units

Posture Standing
Kneeling
Prone
Dead n�a

Weapon Deployed
Firing n�a

Position Px� Py� Pz meters

Velocity Vx� Vy� Vz meters�second
Heading theta degrees

Figure � Essential human state information in a DIS Entity State PDU

another� These graphs are directed and may include cycles� It also provides the
logical structure for the run�time motion database�

The posture graph we are using is shown in Fig� �� partitioned into two sub�
graphs for facilitating discussion �the dotted lines around the Standing Deployed
and Prone Deployed nodes merely represent duplicate nodes in the diagram �
they are the same as the similarly labeled nodes with solid lines� attached via
the dotted line��

When the velocity of the human is zero� the possible transitions between
�xed postures are encoded in the right�hand posture graph of Fig� �� We use
the term 	�xed
 as it is descriptive of when this graph is used� typically the
soldier �gure transitions to one of the �xed postures� represented in a node� and
stays �xed in that posture for some time�

A few of the actual �xed postures are shown in Fig� ��
When the velocity of the �gure is non�zero� the possible transitions between

locomotion postures are shown in the left�hand posture graph of Fig� �� In this
graph� the nodes are static postures� but the �gure would never be in the posture
for more than one frame�

In the posture graph� the nodes represent postures� and the directed arcs
represent the animated full�body transitions� or movements� from posture to
posture� Each arc stores the intermediate postures� or motion� and has an
associated time for traversal� The time associated with the transition arc is
used to �nd the shortest path� in time� if more than one path exists between a
starting posture and a goal posture� The human �gure is always in a posture
de�ned in a node� or in one of the intermediate postures de�ned along the arcs�
A useful analogy for visualizing the graph is shown in Fig� �� Three strips of
�lm are pasted together� representing three arcs of the graph converging on a
node �the shared frame in the middle�� In the left sequence� the stick �gure is
raising its left arm �its looking at you�� In the upper sequence� it is raising its
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Figure �� The posture graph� The dotted lines represent duplicated nodes� to
facilitate discussion� The dashed line partitions the graph into the left sub�
graph� refered to as the locomotion graph� and the right sub�graph� referred to
as the �xed posture graph



Figure �� Some of the postures a soldier can take in DIS

right foot� and in the right sequence� it is waving its left arm� The motion on
individual arcs of the graph is similar to the notion of animation tracks described
in ���� Here we are putting many of the tracks together� with common starting
and ending frames� to form the posture graph�

The system we built consists of two distinct parts� �� the o��line motion
data generator� and � the on�line real�time playback mechanism� running in a
high�performance IRIS Performer�based ���� image generator application�

� O��line motion production

Motion production involves three steps� �� creating postures and motion for
each node and arc in a posture graph� for one human model� � mapping the
resulting motion onto human models with lower degrees�of�freedom �DOF� and
lower resolution geometry� and �nally �� recording the results and storing in a
format for easy retrieval during playback�

��� Authoring the motion

The �rst step in producing motion for real�time playback is to create postures
representing the nodes in the posture graphs� as well as the corresponding mo�
tions between them� represented as the directed arcs in the graphs� We used a
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Figure �� Nodes and arcs of a posture graph seen as strips of �lm

slightly modi�ed version of the Jack human modeling and animation system ��
for this purpose� Jack provides a nice constraint�based� goal�driven system
�relying heavily on inverse�kinematics and primitive 	behavioral
 controls� for
animating human �gures� as well as facilities for organizing motions for general
posture interpolation ���� It is important to note that the posture graphs pre�
sented in this paper di�er from the posture transition graphs presented in ���� In
the latter� the posture transition graphs are used to organize motion primitives
for general posture interpolation with collision avoidance� In the former appli�
cation �this paper� the posture graphs are a logical mechanism for organizing
a database of pre�recorded motion� and determining motion sequences as paths
between nodes of the graph� An underlying assumption of the posture graphs
is that the articulated human �gure�s motion is continuous� and therefore can
be organized into a connected graph�

Each directed transition in the �xed posture graph typically was produced
from �� to �� motion primitives �e�g� move arm� bend torso� etc�� Many of the
directed motions from a posture node A to a posture node B are simply run in
reverse to get the corresponding motion from posture B to posture A� In several
cases� the reverse motion was scripted explicitly for more natural results�

The human �gure can also move �either forwards or backwards� depending
on the di�erence between the heading and the direction of the velocity vector� by
either locomoting �if posture is standing� or crawling �if posture is prone�� The
locomotion posture graph transitions of Fig� � were generated by Hyeongseok
Ko�s walking system ����� Six strides for each type of walking transition were



human�high human�med human�low
polygons ��� ��� ��
rigid segments �� �� �
joints �� �� ��
DOFs ��� �� �
motion ��Hz ��Hz ��Hz

Figure �� The di�erent levels of detail for the human models

generated �forward walking� backward walking� running�� left and right starting
steps� left and right ending steps� and left and right cyclic steps� The crawling
animation was generated manually� and is based on two animations � one that
goes from the prone posture to the cyclic state� and one complete cyclic motion�
Note that only straight line locomotion of �xed stride is modeled� We are
currently working on extending the system to handle variable stride length and
curved path locomotion� as possible in the system of �����

��� Slaving

The second step in the production process is concerned with preparing the mo�
tion for the real�time playback system� We wish to have tens� and potentially
hundreds� of simulated humans in a virtual environment� This necessitates hav�
ing multiple level�of�detail �LOD� models� where the higher resolution models
can be rendered when close to the viewpoint� and lower resolution models can be
used when farther away �see Section ��� for the reasoning�� We reduce the level
of detail in the geometry and articulation by creating lower�resolution �both in
geometry and articulation� human �gures� with the characteristics listed in the
table of Fig� ��

All the motions and postures of the �rst step are authored on a �relatively�
high resolution human body model which includes fully articulated hands and
spine� This model is referred to as 	human�high
 in the above table� We
manually created the two lower�resolution models� human�med and human�
low� Because of the di�erence in internal joint structure between human�high
and the lower LOD models� their motions cannot be controlled by the available
human control routines in Jack �which all make assumptions about the structure
of the human �gure � they assume a structure similar to human�high�� Instead
of controlling their motion directly� we use the motion scripts generated in the
�rst step to control the motion of a human�high� and then map the motion onto
the lower resolution human�med and human�low� We call this process slaving�
because the high resolution �gure acts as the master� and the low resolution
�gure acts as the slave�



Figure �� human�high and human�med models during slaving� human�high is
the master� Upper window is the skeletal articulation� Models are o�set for
illustrative purposes�

Even though the di�erent LOD human models have di�erent internal joint
structures and segment shapes� their gross dimensions �e�g�� length of arms�
torso� etc�� are similar� The slaving process consists of interpolating the mo�
tions for the full human �gure� generating all the in�between frames� and si�
multaneously having a lower LOD human model �human�med or human�low�
slaved� and then saving the in�between frames for the soldier� We will describe
the process used for slaving from human�high to human�med� the case with
human�low is similar�

For each frame of an animation� we �rst compute the position and joint
angles for human�high� Then� an approximation of the joint angles for human�
med are computed� This is straightforward� as certain joints are the same �the
elbow� for example� is only one DOF on both human models�� and others can



be approximated by linear combinations �for example� the �� DOFs of the spine
on human�high can be summed and mapped directly onto the � DOF torso of
human�med�� This gives a good �rst approximationof the posture mapping� and
provides an initial con�guration for the �nal mapping� For the resulting motion
of human�med to look correct� we need to have certain landmark sites of the two
bodies match exactly �the hands must be on the ri�e�� The �nal mapping step
involves solving a set of constraints �point�to�point and orientation�� to bring
the key landmark sites into alignment� The constraints are solved using an
iterative inverse kinematics routine ��� to move the body parts into alignment�

Because of di�erences in geometry between the master and slave� in general
we cannot expect all the landmark sites to match exactly� For the problem
domain of this paper� animating a soldier �gure from a stream of DIS Entity
State PDUs� the hands are always holding a ri�e� so matching the hand positions
accurately from the master is very important �otherwise the slave�s hands may
penetrate the ri�e�� Using a priority scheme in evaluating constraints� we assign
higher priority to the hand�matching constraints than others� to account for this
fact� If the slaving procedure cannot �t the master and slave within a certain
tolerance� it will generate a warning for the animator�

��� Recording

The �nal step in the motion production process is to record the resulting motions
of the human �gures� The recorded motion for one transition is referred to as
a channel set �where each joint or �gure position is referred to as a channel�
the channel is indexed by time�� Again� the channel set is analogous to an
animation track in ���� For each LOD human �gure� a homogeneous transform
is recorded� representing �gure position relative to a �xed point� and for each
joint� the joint angles are recorded �one angle per DOF�� Also for joints� the
composite joint transform is pre�computed and stored as a �x� matrix �which
can be plugged directly into the parenting hierarchy of the visual database of
the run�time system�� Each channel set has an associated transition time� The
channels of human�high are interpolated and stored at ��Hz� human�med at
��Hz� and human�low at ��Hz� These rates correspond to the motion sampling
during playback �see below��

� Real�time motion playback

The real�time playback functions are packaged as a single linkable library� in�
tended to be embedded in a host IRIS Performer�based visual simulation ap�
plication� The library loads the posture graphs shown in Fig� �� as well as
the associated channel set motion �les� Only one set of motions are loaded� and
shared amongst any number of soldier �gures being managed by the library� The
articulated soldier �gures themselves are loaded into the Performer run�time vi�
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sual database� The library runs as a separate process� the motion process�
serving motion data to the app process �the app� cull and draw process are
de�ned in the Performer multiprocessing framework� and form a software ren�
dering pipeline� which increases rendering throughput� and also latency�� See
Fig� � for a schematic overview of the runtime system� The app process is the
main controlling process� and would be where any simulation processing would
occur� For a good description of what goes on in the app process of a typical
DIS�based simulation application� the reader is referred to �����

An update function in the app process is provided which maps joint angle
values into the joint transforms of the soldier �gures in the Performer visual
database�

The app process receives PDUs containing state information for remotely�
simulated soldier �gures� It extracts the essential information �as shown in
Fig� � and sends this as requests to the motion process� The motion process
translates these requests into playbacks of channel sets �the traversal of arcs of
the posture graphs�� and continuously sends joint angle packets back to the app
process� The app process then performs the necessary edits to the articulation
matrices in the visual database� and then initiates a frame to be rendered� The
cull and draw processes form the software rendering pipeline� where the cull



culls the visual database to a viewing frustum� and then passes this modi�ed
database to the draw process� which e�ciently feeds it to the head of the
hardware graphics rendering pipeline� which then renders the �nal image to the
frame bu�er�

In the case of a �xed posture change �a motion between any two nodes in
the �xed posture graph of Figure ��� the system will �nd the shortest path �as
de�ned by traversal time� between the current and goal postures in the graph�
and execute the sequence of transitions� For example� if the posture graph is
currently at Standing Deployed� and Prone Firing is requested� it will transition
from Stand Deployed to Crawl to Prone Deployed� and �nally to Prone Firing�
The Dead posture node in Fig� � is special in that there is an implicit arc from
every node in the graph to this node� The motion along these implicit arcs is
not recorded and stored� as along all other arcs� but generated on the �y via
simple joint interpolations�

A posture change is made with a node of the �xed graph as a destination
only upon receipt of a DIS Entity State PDU indicating that the agent is in
such a posture� In the absence of further information� the agent remains in
that posture� Conversely� when a posture change is made with a node of the lo�
comotion graph as the destination� something that will occur if a PDU indicates
the agent now has a non�zero speed� the agent does not remain in that posture
once it is reached� absence of further information in this case means that the
agent�s speed is still nonzero� and hence the agent must take another step� or
crawl another meter forwards� or whatever is appropriate for the current mode
of locomotion� This continued motion requires that another posture change be
made immediately�

A simple �nite�state controller manages the posture transitions within the
locomotion graph� For instance� the transition from Standing Deployed toWalk�
ing Forwards �left foot forward� is taken whenever the agent�s speed becomes
non�zero and the agent�s heading vector agrees with the velocity vector� On the
other hand� if the vectors are not pointing in approximately the same direction�
a transition is instead made to one of the Walking Backwards states� While
the agent�s speed remains nonzero �as it is assumed to in the absence of PDU
updates�� the controller continually makes transitions back and forth between�
for example� the Walking Forwards �left foot forward� and Walking Forwards
�right foot forward� nodes� This cycle of transitions creates a smooth walking
motion by concatenating successive left and right steps� Note that since we cur�
rently have no cycles of more than two nodes� �nding the shortest path between
postures in a cycle is a trivial matter� Crawling is handled similarly� though it
is a simpler case� there is no need for separate 	left foot forward
 and 	right
foot forward
 states�

The system samples all the pre�recorded motion using elapsed time� so it is
guaranteed to always play back in real time� For a  second posture transition
recorded at ��fps� and a current frame rate of the image generator of �fps� the
playback system would play frames �� �� �� ������� It recomputes the elapsed



transition time on every frame� in case the frame rate of the image generator is
not uniform�

The motion frame update packets sent from the motion process back to the
app process are packaged to include only those joint angles which have changed
from the last update� This is one way we can minimize joint angle updates�
and take advantage of frame�to�frame coherence in the stored motions �� A full
update �all joint angles and �gure positions� is about ��� bytes�

��� Motion level�of�detail

It is recognized that maintaining a constant frame rate is essential to the be�
lievability of a simulation� even if it means accepting an update speed bounded
by the most complex scene to be rendered� Automatic geometric level�of�detail
selection� such as that supported by the IRIS Performer toolkit� is a well�known
technique for dynamically responding to graphics load by selecting the version
of a model most appropriate to the current viewing context ��� �� ���

The LOD selection within the visual database seeks to minimize polygon �ow
to the rendering pipeline �both in the software CULL and DRAW components
of the software pipeline� as well as to the transformation engines within the
hardware pipeline��

Given our representation� which enforces the separation of geometry and
motion� it is possible to expand level of detail selection into the temporal do�
main� through motion level�of�detail selection� In addition to reducing poly�
gon �ow� via selecting lower LOD geometric models� we are also selecting
lower LOD articulation models� with fewer articulation matrices� as well as
sampling motion at lower frequencies� This reduces the �ow of motion up�
dates �joint angles and matrices� to the articulation matrices in the visual
database� The models we are using are listed in Fig� ��� For example� a
motion sequence lasting � second� rendered on human�high� would generate
��� joints��� second���� updates�sec� � ���� jointupdates� On human�low�
the same motion sequence generates ��� joints��� second���� updates�sec� �
��� jointupdates�

Techniques which employ data represented at various resolutions are some�
times referred to as multi�resolution ormulti�scale techniques or analyses� When
working with images� the resolution or scale factor is usually two �i�e� an image
would be represented at ��x��� ��x��� ��x��� etc�� and when working with
successive levels�of�detail in geometry� the scale factor is an order�of�magnitude
�i�e� a geometric model at ���� triangles� ��� triangles� and �� triangles�� We
chose a scale factor of  ���Hz� ��Hz� ��Hz� between our recorded motions�
There wasn�t a tremendous amount of deep thought behind the choice� but it
does seem to work well for the current application� A more rigorous selection

�An initial implementation of the playback library was run as an independent process�
on another machine� from the host image generator� and joint angle packets were sent over
TCP�IP stream sockets� hence the desire to minimize net tra�c�



of frequencies� taking in to account rules of sampling� should be done in the
future�

In the playback system� we simultaneously transition to a di�erent geometric
representation with a simpler articulation structure� and switch between stored
motions for each articulation model� We gain performance in the image genera�
tor� while consuming more run�time storage space for the motions� Our metric
for LOD selection is simply the distance to the virtual camera� This appears to
work satisfactorily for our current application domain� but further evaluation of
the technique� as well as more sophisticated selection metrics �e�g� the metrics
described in ��� ��� need to be explored�

� Example implementations and uses

The real�time playback system has been used in two DIS�based applications to
create motion for simulated soldiers in virtual environments�

The Team Tactical Engagement Simulator ��� projects one or more soldiers
into a virtual environment� where they may engage hostile forces and practice
coordinated team activities� See Fig� � for a sample view into the training
environment� The soldier stands in front of a large projection screen� which
is his view into the environment� He has a sensor on his head and one on his
weapon� He locomotes through the environment by stepping on a resistive pad
and controls direction of movement and �eld of gaze by turning his head� The
soldier may also move o� the movement pad� and the view frustum is updated
accordingly based on his eye position �head�coupled display�� This allows the
soldier� for example� to crouch down to see under a parked vehicle� or to peek
around the corner of a building while still a�ording himself the protection of the
building� TTES also creates the necessary DIS Entity State PDUs to represent
the real soldier �mapping from sensor values into the small set of postures in the
Entity State PDU�� and sends them out over the net to other TTES stations
that are participating in the exercise� Currently� TTES uses an extension to
the system as described in this paper� Initially� they used authored motions for
the posture graphs� They currently use motion�capture data� from work done
by Boston Dynamics Inc� ���� �joint angle motion from real soldiers moving
through the postures� captured via attached magnetic or optical sensors� and
then cleaned up with post�processing �lters��

The playback system is also used in a version of the NPSNET�IV ��� system�
for generating motion of SIMNET� and DIS�controlled soldier entities� as well
as the motions for battle�eld medics�

Motion level�of�detail selection is of particular relevance to the example
projects described above� because in the situation where a hostile agent en�
ters the �eld of view of a soldier �one of the real human participants� and brings
his weapon into the deployed position� the hostile�s actions will probably be
noted only in the participant�s peripheral vision� It is well�known that humans



Figure �� A View of Battle Town with several soldiers in di�erent postures

can detect the presence of motion in their peripheral vision very easily� but
that resolution of detail is very low� When head�tracking data is available or a
head�mounted display is in use� it is possible to designate areas of the viewing
frustum as peripheral and reduce geometric and motion detail accordingly �not
just based on linear distance to the camera� but angular o�sets also�� In the
TTES environment this 	focus of attention
 information can be obtained from
the aim of the real soldier�s ri�e when it is in the raised position� as the real
soldier will almost certainly be sighting in this situation�

The system has also been integrated with a behavioral simulation which can
navigate a pedestrian agent about a simple urban environment� while respect�
ing sidewalks� crosswalks� streetlights� and other pedestrians� The behavioral
simulation is decoupled from the motion generation� it simply schedules steps
for the pedestrian� and the motion system described here creates a smoothly
locomoting human �gure ����

� Comparison of production	playback methods

One of the most obvious criteria for evaluating a given motion representation is
size� there is a clear progression in the methods used to animate humans �or any
entity whose geometric representation varies over time� based on the amount of
space required to store a given motion� We look at three methods�

The �rst method� requiring the most storage� involves generating and ren�
dering the movements of characters in an o��line fashion� Frame�by�frame� a
sequence of two�dimensional snapshots is captured and saved for later play�
back� The image generator then displays the bit�mapped frames in sequence�



possibly as texture maps on simple rectangular polygons� Hardware support
for texture mapping and alpha blending �for transparent background areas in
the texture bitmaps� make this an attractive and fast playback scheme� Fur�
thermore� mip�mapping takes care of level�of�detail management that must be
programmed explicitly in other representations� Since the stored images are two�
dimensional� it is frequently the case that artists will draw each frame by hand�
In fact� this is precisely the approach utilized in most video games for many
years� It is clear that very little computation is required at run�time� and that
altering the motions incurs a high cost and cannot be done in real time� In fact�
modifying almost any parameter except playback speed must be done o��line�
and even playback speed adjustments are limited by the recording frequency�
However� one real problem with using two�dimensional recording for playback
in a three�dimensional scene is that non�symmetric characters will require the
generation of several or many sets of frames� one for each possible viewing angle�
increasing storage requirements still further� The authors of the popular game
DOOM ���� record eight views of each animated character �for each frame� by
digitizing pictures of movable models� and at run time the appropriate frames
for the current viewing angle �approximately� are pasted onto a polygon� These
eight views give a limited number of realistic viewing angles� it is impossible� for
instance� to view a DOOM creature from directly above or below� Interestingly
enough� an article on plans for a follow�up to DOOM reveals that the authors
intend to switch to one of the two remaining representations we describe here�

Unlike the previous games� the graphic representation of characters
will be polygon models with very coarse texture mapping� This will
make it hard to emulate natural locomotion� so they�ll stay away
from creating too many biped characters���

Making the move to the second method involves a relatively slight concep�
tual change� namely taking ��dimensional snapshots instead of �dimensional
snapshots� This means storing each frame of a �gure�s motion as a full three�
dimensional model� Doing so obviates the need for multiple data sets corre�
sponding to multiple viewing positions and shifts slightly more of the compu�
tational burden over to the image generator� Instead of drawing pixels on a
polygon the run�time system sends three�dimensional polygonal information to
the graphics subsystem� It is still an in�exible approach because the �gures are
stored as solid 	lumps
 of geometry �albeit textured�� from which it is extremely
di�cult� if not impossible� to extract the articulated parts of which the origi�
nal model is comprised� Modi�cations must still be e�ected o��line� although
rendering is done in real time� This is essentially the approach used by the
SIMNET image generators to display soldiers on a simulated battle�eld ����

The �nal method is the one implemented by the system described in this
paper� in which we record not the results of the motions� but the motions
themselves� We store a single articulated three�dimensional model of each



agent� and from frame to frame record only the joint angles between articulated
segments� Modern rendering toolkits such as the IRIS Performer system used
in this project increasingly allow support for storing coordinate transformations
within a visual database� with relatively little cost associated with updating the
transformation matrices in real time� As a result of adopting this approach�
storage space is reduced and it is far easier to accurately perform interpolation
between key frames because articulation information is not lost during motion
recording� It also allows for virtual agents with some motions replayed strictly
	as�is
 and some motions which may be modi�ed or generated entirely in real
time� For instance� the slight changes in shoulder and elbow joint orientation
required to alter the aim of a weapon held by a virtual soldier could be generated
on demand�

We believe that the smallest representation presented in our list� the third
method� actually retains the most useful information and a�ords the most �ex�
ibility� while placing an acceptable amount of additional computational burden
on the run�time display system�


 Extensions � future work

We are currently exploring several extensions to the techniques described above�
to add more expressive power to the tool bag of the real�time animator�

Key�framing and interpolation The use of the pre�recorded motions in the
above posture graphs trades time for space� We do not compute joint
angles on the �y� but merely sample stored motions� As the motions
become more complex� it becomes very time�consuming to produce all the
motions in the o��line phase� so we only produce key frames in a transition�
every � to �� frames� and then use simple interpolations to generate the
inbetweens during real�time playback� This technique can�t be extended
much beyond that� as full�body human motion does not interpolate well
beyond that many frames� This also reduces the amount of stored motions
by a factor proportional to the spacing of the key frames� but increases
computation time when a playback frame lands between two key frames�
Also� replacing the recorded motion in some transition arcs with purely
procedural motion generators can further reduce storage� For example� a
sub�graph of a posture graph which only contains a few joints moving �a
left�handed wave� can easily be replaced with a simple function of time
which returns the correct shoulder� elbow� and wrist angles during di�erent
phases of the transition�

Partitioning full�body motion In the posture graphs described previously�
each motion transition included all the joint angles for the whole body� A
technique to reduce motion storage� while increasing playback �exibility�



is to partition the body into several regions� and record motion inde�
pendently for each region� For example� the lower body can be treated
separately during locomotion� and the upper body can have a variety of
di�erent animations played on it� Also� to support the mapping of motion
from partially sensed real humans �i�e� sensors on the hands� onto the
animated human �gures� we want to animate the lower body and torso
separately� then place the hands and arms using a fast inverse kinematics
solution�

Articulation level�of�detail The various LOD models we used for the hu�
man �gures were all built manually� Techniques for synthesizing lower
LOD geometric models are known� but they don�t apply to building lower
articulation LOD models� Some techniques for automatically synthesizing
the lower articulation skeletal models� given a high resolution skeleton and
a set of motions to render� would be very useful�

Other dynamic properties A limitation is currently imposed by the fact that
the segments of our articulated �gures must be rigid� However� this is more
an implementation detail than a conceptual problem� since with su�cient
computational power in the run�time system real�time segment deforma�
tion will become possible� In general it seems likely that the limiting factor
in visual simulation systems will continue to be the speed at which the
graphics subsystem can actually render geometry� The adoption of coarse�
grained multiprocessing techniques ���� will allow such operations as rigid
or elastic body deformations to be carried out in parallel as another part
of the rendering pipeline� The bottom line is that greater realism in VR
environments will not be obtained by pouring o��line CPU time and run�
time space into rendering and recording characters in exacting detail� the
visual e�ect of even the most perfectly animated �gure is signi�cantly
reduced once the viewer recognizes that its movements are exactly the
same each and every time it does something� We seek to capitalize on the
intrinsically dynamic nature of interacting with and in a virtual world by
recording less information and allowing motions to be modi�ed on the �y
to match the context in which they are replayed� Beginning e�orts in this
direction may be found in �����

Real�time animation can be viewed as one of many 	enabling
 technolo�
gies for simulations� An animation� or visual simulation� of the activities and
processes occuring in a simulation multiplies the e�ectiveness and communica�
tive ability of the simulation� making its results more intuitively understood by
non�expert viewers and participants� Unfortunately� when coupling real�time
�D animation to a simulation� one requires the presence of expensive render�
ing hardware in the simulation computer for generating the visuals� One also
needs a high�performance general purpose processor� used for executing the sim�
ulation application itself� and for 	feeding
 the rendering hardware� Advances
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Figure ��� Intuitive relation between compute time and run�time generality for
some motion generation techniques

in rendering hardware� as well as its general availability in low�cost PC plat�
forms in the near future� may ameliorate this problem� Fast�  �  D animation
techniques� such as those mentioned previously in discussing DOOM� have also
found their way into most types of consumer interactive visual simulation ap�
plications �a�k�a� video games�� This has heightened expectations� for quality
animation on inexpensive platforms� from the users of these systems�

The general availability of mature simulation toolkits and libraries �e�g� SIM�
SCRIPT� Stella� and SimPack�� on a variety of platforms� has greatly increased
the use of simulation� However� there is a lack of such widely available� and
used� toolkits for real�time animation� However� with the appearance of such
toolkits as IRIS Performer� and OpenGL �an open �D graphics rendering API�
available on many platforms�� it should become less burdensome in the future
to add �D animation to one�s simulations�

� Conclusions

We have described a system for o��line production and on�line playback of
human �gure motion for �D visual simulation� The techniques employed are
straightforward� and build upon several well known software systems and ca�
pabilities� As the number of possible states for a simulated human increases�
the posture graphs will need to be replaced with a more procedural approach
for changing posture� For applications built today on current workstations� the
current technique is a balance between performance and realism�



Figure �� shows a very coarse� and albeit intuitive� plot of the relation be�
tween run�time generality and computation time for several motion generation
techniques� By 	run�time generality
� we mean the notion of how general the
types of motion are which can be generated by the algorithms� For example�
table�lookup is very fast at run�time� but not very general� It can only generate
the motion which has been recorded in its tables �of course� many things can
be recorded and placed in the tables� but they are di�cult to modify or 	gen�
eralize
 at run�time�� On the other hand� a dynamics �or physical� simulation�
with proper collision detection and response� can generate very realistic motion�
under many di�erent run�time conditions� so we deem it to be more 	general
�
But a full physical simulation is very expensive and time�consuming to com�
pute� and some of the best for animation purposes are still at least an order�of�
magnitude slower than real�time� for relatively simple environments ���� For
realistic agent animation in virtual environments� the research community will
be trying to push this curve to the left and up� making the more powerful tech�
niques run faster� The curve has been drifting to the left in recent years mainly
on the progress made in rendering hardware and overall workstation compute
performance� Interestingly� when an author�s motion generator can compute �
frame of motion in less than ����th of a second� the author will usually claim it
to be a 	real�time
 motion generator� Of course� our colleagues in the real�time
community will start coughing very loudly at this� It is better to state that it
is a 	fast
 motion generator� and leave it at that� The notions of 	real�time

usually connote the presence of a scheduler of some sort� and some course of
action in the event of a failure to execute by a speci�ed deadline�

We chose humans for animating� as they are what we are interested in�
but the techniques described in this paper could be applied to other complex
articulated �gures� whose states can be characterized by postures� and whose
motions between postures can be organized into posture graphs�
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