Type-based Optimization for
Regular Patterns

Michael Y. Levin and Benjamin C. Pierce

University of Pennsylvania

High Performance XML Workshop, 2004

12

What is it all about?
e —

XDucE [Hosoya,Pierce,Vouillon]: an experimental
language with “native XML support” in the form of regular
types and regular pattern matching

XTATIC project: a full-blown OO language (Cﬂ) Integrated
with regular types and regular pattern matching; compiled

Into pure C?

This talk: introduction to regular types and patterns;
type-based optimization technique for pattern
compilation; and its relation to compilation of XPATH

2/24

Background

P

Regular Types and Patterns

Key observations:

e XML schema languages are based on regular tree
grammars (a simple extension of familiar regular
expressions on strings); usually schemas are used for
dynamic validation of documents

* Regular types are like schemas; they are used
statically by typechecking to ensure a program’s
assumptions about XML fragments it operates on

* Regular patterns are like regular types; they are
used dynamically to match XML fragments of certain
shape and extract their subparts

XML Values

| -—
* Syntax
v = ()
e11 .elk
el = 1[v]

* Representing XML

<a><c></c> ~ albll,cl]]

/2

Regular Types

T

)
1[T]
T,,Ty
T, | T,
Tk
Any
X

def X

d

def Caption
def Cell
def Row
def Table

t

empty sequence
element labeled 1
concatenation
alternation (union)
repetition

any sequence of trees
type definition

T type definition

captionl[]

td []

r[Cell+]

table[() |Caption, Row+t]

o2 &

Using Regular Types
L ——_

Consider the following function skeleton:

To transform (T; x) {

}

Typechecking ensures that transform Is always called with
arguments conforming to T; and that it always returns
values conforming to Ts.

/s

Regular Patterns

p = ()
1[p]
P1,P2
p1lp2
p*
Any
X

P X

empty sequence
element labeled 1
concatenation
alternation (union)
repetition

any sequence of trees
pattern name

binding

def X = p pattern definition

def Caption = caption[]

def Cell
def Row

= td[]
tr[Cell+]

table[Caption x, Row, Any y]

o2

Source Language (XDUCE)
.

XDUCE contains:

e Conventional functional language elements: top-level
function definitions; function calls; value constructors

e Pattern matching construct

match x with

| p1 — t1

| P — tk

o/2

Target Language

 Has the same constructs as the source language
e But features only basic patterns

t =
case x of
| p1 — t1
| P — t&
else t©
p = ()
1[x],y

10/24

Type-based Pattern Compilation

11/24

Goals of Translation

The goal is to convert complicated regular patterns into a
collection of nested case expressions each examining the
tag of one element in the input

The challenge is to minimize the number of tests
performed during pattern matching

Type-based optimization is a crucial technique that helps
produce efficient and compact target language code

12/24

Motivating Example

Any f(Any x) =
match x with

| Any, al] — 1
| Any — 2

13/24

Motivating Example
e,

Any f(Any x) =

case x of
O — 2
Any f(Any x) = alxly =
, case x of
match x with
O —
| Any, al] — 1
| Any — 2 case y of
O — 1
else f(y)
else f(y)
|~y — £(y)

13/24

Motivating Example

T=all,(alllbll)

Any £(T x) =
match x with
| Any, al] — 1
| Any — 2

14/24

Motivating Example
e

T=all,(alllbll)

Any £(T x) =
Any £(T x) = case x of
match x with |],y —
| Any, al] — 1 case y of
| Any — 2 | al_],_. — 1
else 2

14/24

ldea 1: Intersecting with Input Type

T=all,(alllbll)

match x with match x with
| Any,al] — 1 — | all,al]l] — 1
| Any — 2 | all,Calllbl]) — 2

15/24

ldea 2: Exhaustiveness Optimizations
O arnhn——————,

match x with

| p1 — 1 — 1
| p2 — 1
match x with match x with
| alpl,pr /1 — | al_]l,p1 — 1
| alpl,py — 2 | al_]l,ps — 2

16/24

ldea 3: Maximal Branching Factor Heuristic

match x with
| alb[]l],alAny] — 1

| alAny] — 2
fun f(T X) . Any —
f
fun £(T x) : Any = case X O
| alzl,y —
case x of
case z of
| alzl,y —
| b[_],_ —
case y of
| a[] 1 case y of
T | al_],_ — 1
|) — 2
| O — 2
else 2

1724

Optimizing XPATH

P

|dea
o ——

Apply type-based optimization to XPATH by:

* Translating an XPATH query into a regular pattern
* Performing type-based optimization
* Translating the result back into XPATH

19/24

XPATH vs. Reqgular Patterns

e Some XPATH queries involving backward axes cannot
be directly converted into regular patterns

o XPATH patterns return multiple answers; regular
patterns return true or false and possibly bind a
collection of variables

20/24

XPATH Example
e,

def auctions = auctions[auction?]
def auction = auction[item, annot?]

def annot = annot[author, hap]

//auction[annot [hap] /author="John"]

21/24

Translation of the Example’s Query
I —_—_—_, .-

//auction[annot [hap] /author="John"]

def p = auction[Any,
annot [Any, hap_auth, Any],
Any]
| Any, ~[Any, p, Anyl, Any

def hap_auth = hap[Any], Any, author["John"]
| author["John"], Any, hap[Any]

22/24

Optimized Regular Pattern

def p’ = “["["[Any],
“[["John"],
Any],
Any],
Any],
Any

/[*[2]/*[1]="John"]

// item
// author
// hap

// Q)

// Q)

// ()

224

Questions?

	What is it all about?
	Background
	Regular Types and Patterns
	XML Values
	Regular Types
	Using Regular Types
	Regular Patterns
	Source Language ({XDUCE })
	Target Language
	Type-based Pattern Compilation
	Goals of Translation
	Motivating Example
	Motivating Example
	Idea 1: Intersecting with Input Type
	Idea 2: Exhaustiveness Optimizations
	Idea 3: Maximal Branching Factor Heuristic
	Optimizing {XPATH }
	Idea
	{XPATH } vs. Regular Patterns
	{XPATH } Example
	Translation of the Example's Query
	Optimized Regular Pattern
	Questions?

