Spring, 2014 CIT 596

Theory of Computation

Final recitation (solutions/ideas)

e Sipser 4.2

The language can be expressed as this set

{< D,R > |Dis a dfa and R is a regex where L(D) = L(R)}
The algorithm for deciding this language is

1. Convert the input regular expression R to an NFA N.
2. Convert N to a DFA D'.

3. Use the fact that the equivalence of two DFAs is a decidable problem. Feed D
and D’ to a Turing Machine M that decides whether or not they are equal

(a) If M says that D and D’ are equivalent then return accept
says D an are not equivalent then return reject.
b) If M D and D’ t ivalent th t ect

Sipser 4.3

There are several possible solutions for this question. One of them was discussed in
the recitation where we used FQpra as the subroutine. Here is a different solution
where we will use Epra as a subroutine. Remember that Eppy is the one that tells
you whether the input DFA has an empty language. In other words, the question ‘does
a DFA accept anything at all’ is decidable.

On input < A >, where A is a DFA, do the following

1. Convert A to A° the DFA that accepts the complement of the language being
accepted by A.

2. Using Epra as a subroutine, check and see if L(A®) = ¢ or not.

3. If L(A°) = ¢ return accept else return reject.

Sipser 4.4

Again, there are a few different ways to do this question. Honglin described one solution
using the idea of ‘marking’.

Another solution is to the following

1. Convert G' to Chomsky Normal Form. Let the collection of rules after this con-
version process be represented by Ronp.



2. Loop over the rules in Royp. If you find a rule S — ¢, then the grammar does
generate € so return accept. Otherwise return reject.

e Sipser 4.5 is solved in the book. Please read that and ask us if you have any trouble
understanding.

e Sipser 4.12

Several possible ways to do this. We will rely on three things here. That we can make
a DFA that only accepts strings containing odd number of 1s. We can ’intersect’ two
DFAs and finally that checking the ‘emptiness’ of a DFA is a decidable thing.

Formally speaking here are the steps

1. Make D,4q which is a DFA that accepts only strings that have an odd number of
1s.

2. Use the input DFA M to create a DFA D;,;., which accepts the intersection of
L(Dodd) and L(M)

3. Use Epra as a subroutine to check and see if D;,.,. accepts any string at all. If
Dinier accepts a string then return reject. Else return accept.

e Sipser 4.13
We know how to convert regular expressions to DFAs. Note that ANB = Aiff A C B.

So we use this idea in the following steps

1. Convert R to Dr and S to Dg.
2. Use the intersection construction to make D;,;.,, a DFA that accepts Dr N Dg.

3. Use EQpra as a subroutine to check equivalence of D, and Dg. So feed
< DinteraDR > to EQDFA-

— If EQ)pra returns accept then return accept.

— If EQpra return reject then return reject.



