
Spring, 2014 CIT 596

Theory of Computation
Final recitation (solutions/ideas)

• Sipser 4.2

The language can be expressed as this set

{< D,R > |D is a dfa and R is a regex where L(D) = L(R)}
The algorithm for deciding this language is

1. Convert the input regular expression R to an NFA N .

2. Convert N to a DFA D′.

3. Use the fact that the equivalence of two DFAs is a decidable problem. Feed D
and D′ to a Turing Machine M that decides whether or not they are equal

(a) If M says that D and D′ are equivalent then return accept

(b) If M says D and D′ are not equivalent then return reject.

• Sipser 4.3

There are several possible solutions for this question. One of them was discussed in
the recitation where we used EQDFA as the subroutine. Here is a different solution
where we will use EDFA as a subroutine. Remember that EDFA is the one that tells
you whether the input DFA has an empty language. In other words, the question ‘does
a DFA accept anything at all’ is decidable.

On input < A >, where A is a DFA, do the following

1. Convert A to Ac, the DFA that accepts the complement of the language being
accepted by A.

2. Using EDFA as a subroutine, check and see if L(Ac) = φ or not.

3. If L(Ac) = φ return accept else return reject.

• Sipser 4.4

Again, there are a few different ways to do this question. Honglin described one solution
using the idea of ‘marking’.

Another solution is to the following

1. Convert G to Chomsky Normal Form. Let the collection of rules after this con-
version process be represented by RCNF .

1



2. Loop over the rules in RCNF . If you find a rule S → ε, then the grammar does
generate ε so return accept. Otherwise return reject.

• Sipser 4.5 is solved in the book. Please read that and ask us if you have any trouble
understanding.

• Sipser 4.12

Several possible ways to do this. We will rely on three things here. That we can make
a DFA that only accepts strings containing odd number of 1s. We can ’intersect’ two
DFAs and finally that checking the ‘emptiness’ of a DFA is a decidable thing.

Formally speaking here are the steps

1. Make Dodd which is a DFA that accepts only strings that have an odd number of
1s.

2. Use the input DFA M to create a DFA Dinter which accepts the intersection of
L(Dodd) and L(M).

3. Use EDFA as a subroutine to check and see if Dinter accepts any string at all. If
Dinter accepts a string then return reject. Else return accept.

• Sipser 4.13

We know how to convert regular expressions to DFAs. Note that A∩B = A iff A ⊆ B.

So we use this idea in the following steps

1. Convert R to DR and S to DS.

2. Use the intersection construction to make Dinter, a DFA that accepts DR ∩DS.

3. Use EQDFA as a subroutine to check equivalence of Dinter and DR. So feed
< Dinter, DR > to EQDFA.

– If EQDFA returns accept then return accept.

– If EQDFA return reject then return reject.

2


